1
|
Dai Y, Dong J, Wu Y, Zhu M, Xiong W, Li H, Zhao Y, Hammock BD, Zhu X. Enhancement of the liver's neuroprotective role ameliorates traumatic brain injury pathology. Proc Natl Acad Sci U S A 2023; 120:e2301360120. [PMID: 37339206 PMCID: PMC10293829 DOI: 10.1073/pnas.2301360120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/19/2023] [Indexed: 06/22/2023] Open
Abstract
Traumatic brain injury (TBI) is a pervasive problem worldwide for which no effective treatment is currently available. Although most studies have focused on the pathology of the injured brain, we have noted that the liver plays an important role in TBI. Using two mouse models of TBI, we found that the enzymatic activity of hepatic soluble epoxide hydrolase (sEH) was rapidly decreased and then returned to normal levels following TBI, whereas such changes were not observed in the kidney, heart, spleen, or lung. Interestingly, genetic downregulation of hepatic Ephx2 (which encodes sEH) ameliorates TBI-induced neurological deficits and promotes neurological function recovery, whereas overexpression of hepatic sEH exacerbates TBI-associated neurological impairments. Furthermore, hepatic sEH ablation was found to promote the generation of A2 phenotype astrocytes and facilitate the production of various neuroprotective factors associated with astrocytes following TBI. We also observed an inverted V-shaped alteration in the plasma levels of four EET (epoxyeicosatrienoic acid) isoforms (5,6-, 8,9-,11,12-, and 14,15-EET) following TBI which were negatively correlated with hepatic sEH activity. However, hepatic sEH manipulation bidirectionally regulates the plasma levels of 14,15-EET, which rapidly crosses the blood-brain barrier. Additionally, we found that the application of 14,15-EET mimicked the neuroprotective effect of hepatic sEH ablation, while 14,15-epoxyeicosa-5(Z)-enoic acid blocked this effect, indicating that the increased plasma levels of 14,15-EET mediated the neuroprotective effect observed after hepatic sEH ablation. These results highlight the neuroprotective role of the liver in TBI and suggest that targeting hepatic EET signaling could represent a promising therapeutic strategy for treating TBI.
Collapse
Affiliation(s)
- Yongfeng Dai
- School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
- Research Center for Brain Health, Pazhou Lab, Guangzhou510330, China
| | - Jinghua Dong
- School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
- Research Center for Brain Health, Pazhou Lab, Guangzhou510330, China
| | - Yu Wu
- Research Center for Brain Health, Pazhou Lab, Guangzhou510330, China
- School of Psychology, Shenzhen University, Shenzhen518060, China
| | - Minzhen Zhu
- Research Center for Brain Health, Pazhou Lab, Guangzhou510330, China
| | - Wenchao Xiong
- School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Huanyu Li
- Research Center for Brain Health, Pazhou Lab, Guangzhou510330, China
| | - Yulu Zhao
- School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
- Research Center for Brain Health, Pazhou Lab, Guangzhou510330, China
| | - Bruce D. Hammock
- Department of Entomology and Nematology, University of California, Davis, CA95616
- University of California Davis Comprehensive Cancer Center, University of California, Davis, CA95616
| | - Xinhong Zhu
- School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
- Research Center for Brain Health, Pazhou Lab, Guangzhou510330, China
- School of Psychology, Shenzhen University, Shenzhen518060, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou510006, China
| |
Collapse
|
2
|
Davis CM, Ibrahim AH, Alkayed NJ. Cytochrome P450-derived eicosanoids in brain: From basic discovery to clinical translation. ADVANCES IN PHARMACOLOGY 2023; 97:283-326. [DOI: 10.1016/bs.apha.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
3
|
Shan J, Hashimoto K. Soluble Epoxide Hydrolase as a Therapeutic Target for Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094951. [PMID: 35563342 PMCID: PMC9099663 DOI: 10.3390/ijms23094951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
It has been found that soluble epoxide hydrolase (sEH; encoded by the EPHX2 gene) in the metabolism of polyunsaturated fatty acids (PUFAs) plays a key role in inflammation, which, in turn, plays a part in the pathogenesis of neuropsychiatric disorders. Meanwhile, epoxy fatty acids such as epoxyeicosatrienoic acids (EETs), epoxyeicosatetraenoic acids (EEQs), and epoxyeicosapentaenoic acids (EDPs) have been found to exert neuroprotective effects in animal models of neuropsychiatric disorders through potent anti-inflammatory actions. Soluble expoxide hydrolase, an enzyme present in all living organisms, metabolizes epoxy fatty acids into the corresponding dihydroxy fatty acids, which are less active than the precursors. In this regard, preclinical findings using sEH inhibitors or Ephx2 knock-out (KO) mice have indicated that the inhibition or deficiency of sEH can have beneficial effects in several models of neuropsychiatric disorders. Thus, this review discusses the current findings of the role of sEH in neuropsychiatric disorders, including depression, autism spectrum disorder (ASD), schizophrenia, Parkinson’s disease (PD), and stroke, as well as the potential mechanisms underlying the therapeutic effects of sEH inhibitors.
Collapse
|
4
|
Liu K, Li L, Liu Z, Li G, Wu Y, Jiang X, Wang M, Chang Y, Jiang T, Luo J, Zhu J, Li H, Wang Y. Acute Administration of Metformin Protects Against Neuronal Apoptosis Induced by Cerebral Ischemia-Reperfusion Injury via Regulation of the AMPK/CREB/BDNF Pathway. Front Pharmacol 2022; 13:832611. [PMID: 35431946 PMCID: PMC9010658 DOI: 10.3389/fphar.2022.832611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Metformin is a first-line anti-diabetic agent with a powerful hypoglycemic effect. Several studies have reported that metformin can improve the prognosis of stroke patients and that this effect is independent of its hypoglycemic effect; however, the specific mechanism remains unclear. In this research, we explored the effect and specific mechanism of metformin in cerebral ischemia-reperfusion (I/R) injury by constructing a transient middle cerebral artery occlusion model in vivo and a glucose and oxygen deprivation/reoxygenation (OGD/R) model in vitro. The results of the in vivo experiments showed that acute treatment with low-dose metformin (10 mg/kg) ameliorated cerebral edema, reduced the cerebral infarction volume, improved the neurological deficit score, and ameliorated neuronal apoptosis in the ischemic penumbra. Moreover, metformin up-regulated the brain-derived neurotrophic factor (BDNF) expression and increased phosphorylation levels of AMP-activated protein kinase (AMPK) and cAMP-response element binding protein (CREB) in the ischemia penumbra. Nevertheless, the above-mentioned effects of metformin were reversed by Compound C. The results of the in vitro experiments showed that low metformin concentrations (20 μM) could reduce apoptosis of human umbilical vein endothelial cells (HUVECs) under OGD/R conditions and promote cell proliferation. Moreover, metformin could further promote BDNF expression and release in HUVECs under OGD/R conditions via the AMPK/CREB pathway. The Transwell chamber assay showed that HUVECs treated with metformin could reduce apoptosis of SH-SY5Y cells under OGD/R conditions and this effect could be partially reversed by transfection of BDNF siRNA in HUVECs. In summary, our results suggest that metformin upregulates the level of BDNF in the cerebral ischemic penumbra via the AMPK/CREB pathway, thereby playing a protective effect in cerebral I/R injury.
Collapse
Affiliation(s)
- Ke Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulu Li
- Department of Neurology, People’s Hospital of Zhengzhou, People’s Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhijun Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqing Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjun Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengdie Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanmin Chang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianheng Luo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongge Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongge Li, ; Yong Wang,
| | - Yong Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongge Li, ; Yong Wang,
| |
Collapse
|
5
|
Kuo YM, Lee YH. Epoxyeicosatrienoic acids and soluble epoxide hydrolase in physiology and diseases of the central nervous system. CHINESE J PHYSIOL 2022; 65:1-11. [PMID: 35229747 DOI: 10.4103/cjp.cjp_80_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are fatty acid signaling molecules synthesized by cytochrome P450 epoxygenases from arachidonic acid. The biological activity of EETs is terminated when being metabolized by soluble epoxide hydrolase (sEH), a process that serves as a key regulator of tissue EETs levels. EETs act through several signaling pathways to mediate various beneficial effects, including anti-inflammation, anti-apoptosis, and anti-oxidation with relieve of endoplasmic reticulum stress, thereby sEH has become a potential therapeutic target in cardiovascular disease and cancer therapy. Enzymes for EET biosynthesis and metabolism are both widely detected in both neuron and glial cells in the central nervous system (CNS). Recent studies discovered that astrocyte-derived EETs not only mediate neurovascular coupling and neuronal excitability by maintaining glutamate homeostasis but also glia-dependent neuroprotection. Genetic ablation as well as pharmacologic inhibition of sEH has greatly helped to elucidate the physiologic actions of EETs, and maintaining or elevating brain EETs level has been demonstrated beneficial effects in CNS disease models. Here, we review the literature regarding the studies on the bioactivity of EETs and their metabolic enzyme sEH with special attention paid to their action mechanisms in the CNS, including their modulation of neuronal activity, attenuation of neuroinflammation, regulation of cerebral blood flow, and improvement of neuronal and glial cells survival. We further reviewed the recent advance on the potential application of sEH inhibition for treating cerebrovascular disease, epilepsy, and pain disorder.
Collapse
Affiliation(s)
- Yi-Min Kuo
- Department of Anesthesiology, Taipei Veterans General Hospital; Department of Anesthesiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Hsuan Lee
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
6
|
Wang HL, Chen JW, Yang SH, Lo YC, Pan HC, Liang YW, Wang CF, Yang Y, Kuo YT, Lin YC, Chou CY, Lin SH, Chen YY. Multimodal Optical Imaging to Investigate Spatiotemporal Changes in Cerebrovascular Function in AUDA Treatment of Acute Ischemic Stroke. Front Cell Neurosci 2021; 15:655305. [PMID: 34149359 PMCID: PMC8209306 DOI: 10.3389/fncel.2021.655305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023] Open
Abstract
Administration of 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA) has been demonstrated to alleviate infarction following ischemic stroke. Reportedly, the main effect of AUDA is exerting anti-inflammation and neovascularization via the inhibition of soluble epoxide hydrolase. However, the major contribution of this anti-inflammation and neovascularization effect in the acute phase of stroke is not completely elucidated. To investigate the neuroprotective effects of AUDA in acute ischemic stroke, we combined laser speckle contrast imaging and optical intrinsic signal imaging techniques with the implantation of a lab-designed cranial window. Forepaw stimulation was applied to assess the functional changes via measuring cerebral metabolic rate of oxygen (CMRO2) that accompany neural activity. The rats that received AUDA in the acute phase of photothrombotic ischemia stroke showed a 30.5 ± 8.1% reduction in the ischemic core, 42.3 ± 15.1% reduction in the ischemic penumbra (p < 0.05), and 42.1 ± 4.6% increase of CMRO2 in response to forepaw stimulation at post-stroke day 1 (p < 0.05) compared with the control group (N = 10 for each group). Moreover, at post-stroke day 3, increased functional vascular density was observed in AUDA-treated rats (35.9 ± 1.9% higher than that in the control group, p < 0.05). At post-stroke day 7, a 105.4% ± 16.4% increase of astrocytes (p < 0.01), 30.0 ± 10.9% increase of neurons (p < 0.01), and 65.5 ± 15.0% decrease of microglia (p < 0.01) were observed in the penumbra region in AUDA-treated rats (N = 5 for each group). These results suggested that AUDA affects the anti-inflammation at the beginning of ischemic injury and restores neuronal metabolic rate of O2 and tissue viability. The neovascularization triggered by AUDA restored CBF and may contribute to ischemic infarction reduction at post-stroke day 3. Moreover, for long-term neuroprotection, astrocytes in the penumbra region may play an important role in protecting neurons from apoptotic injury.
Collapse
Affiliation(s)
- Han-Lin Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jia-Wei Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Hung Yang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chun Lo
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Han-Chi Pan
- National Laboratory Animal Center, Taipei, Taiwan
| | - Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Fu Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi Yang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yun-Ting Kuo
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chen Lin
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chin-Yu Chou
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Huang Lin
- Department of Neurology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Neurology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.,The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
7
|
Sarparast M, Dattmore D, Alan J, Lee KSS. Cytochrome P450 Metabolism of Polyunsaturated Fatty Acids and Neurodegeneration. Nutrients 2020; 12:E3523. [PMID: 33207662 PMCID: PMC7696575 DOI: 10.3390/nu12113523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Due to the aging population in the world, neurodegenerative diseases have become a serious public health issue that greatly impacts patients' quality of life and adds a huge economic burden. Even after decades of research, there is no effective curative treatment for neurodegenerative diseases. Polyunsaturated fatty acids (PUFAs) have become an emerging dietary medical intervention for health maintenance and treatment of diseases, including neurodegenerative diseases. Recent research demonstrated that the oxidized metabolites, particularly the cytochrome P450 (CYP) metabolites, of PUFAs are beneficial to several neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease; however, their mechanism(s) remains unclear. The endogenous levels of CYP metabolites are greatly affected by our diet, endogenous synthesis, and the downstream metabolism. While the activity of omega-3 (ω-3) CYP PUFA metabolites and omega-6 (ω-6) CYP PUFA metabolites largely overlap, the ω-3 CYP PUFA metabolites are more active in general. In this review, we will briefly summarize recent findings regarding the biosynthesis and metabolism of CYP PUFA metabolites. We will also discuss the potential mechanism(s) of CYP PUFA metabolites in neurodegeneration, which will ultimately improve our understanding of how PUFAs affect neurodegeneration and may identify potential drug targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Morteza Sarparast
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
| | - Devon Dattmore
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Jamie Alan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Kin Sing Stephen Lee
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
8
|
Chen W, Wang M, Zhu M, Xiong W, Qin X, Zhu X. 14,15-Epoxyeicosatrienoic Acid Alleviates Pathology in a Mouse Model of Alzheimer's Disease. J Neurosci 2020; 40:8188-8203. [PMID: 32973044 PMCID: PMC7574654 DOI: 10.1523/jneurosci.1246-20.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of late-onset dementia, and there exists an unmet medical need for effective treatments for AD. The accumulation of neurotoxic amyloid-β (Aβ) plaques contributes to the pathophysiology of AD. EPHX2 encoding soluble epoxide hydrolase (sEH)-a key enzyme for epoxyeicosatrienoic acid (EET) signaling that is mainly expressed in lysosomes of astrocytes in the adult brain-is cosited at a locus associated with AD, but it is unclear whether and how it contributes to the pathophysiology of AD. In this report, we show that the pharmacologic inhibition of sEH with 1-trifluoromethoxyphenyl- 3-(1-propionylpiperidin-4-yl) urea (TPPU) or the genetic deletion of Ephx2 reduces Aβ deposition in the brains of both male and female familial Alzheimer's disease (5×FAD) model mice. The inhibition of sEH with TPPU or the genetic deletion of Ephx2 alleviated cognitive deficits and prevented astrocyte reactivation in the brains of 6-month-old male 5×FAD mice. 14,15-EET levels in the brains of these mice were also increased by sEH inhibition. In cultured adult astrocytes treated with TPPU or 14,15-EET, astrocyte Aβ clearance was increased through enhanced lysosomal biogenesis. Infusion of 14,15-EET into the hippocampus of 5×FAD mice prevented the aggregation of Aβ. Notably, a higher concentration of 14,15-EET (200 ng/ml) infusion into the hippocampus reversed Aβ deposition in the brains of 6-month-old male 5×FAD mice. These results indicate that EET signaling, especially 14,15-EET, plays a key role in the pathophysiology of AD, and that targeting this pathway is a potential therapeutic strategy for the treatment of AD.SIGNIFICANCE STATEMENT There are limited treatment options for Alzheimer's disease (AD). EPHX2 encoding soluble epoxide hydrolase (sEH) is located at a locus that is linked to late-onset AD, but its contribution to the pathophysiology of AD is unclear. Here, we demonstrate that sEH inhibition or Ephx2 deletion alleviates pathology in familial Alzheimer's disease (5×FAD) mice. Inhibiting sEH or increasing 14,15-epoxyeicosatrienoic acid (EET) enhanced lysosomal biogenesis and amyloid-β (Aβ) clearance in cultured adult astrocytes. Moreover, the infusion of 14,15-EET into the hippocampus of 5×FAD mice not only prevented the aggregation of Aβ, but also reversed the deposition of Aβ. Thus, 14,15-EET plays a key role in the pathophysiology of AD and therapeutic strategies that target this pathway may be an effective treatment.
Collapse
Affiliation(s)
- Wenjun Chen
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
- Key Laboratory of Mental Health of the Ministry of Education and Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou 510515, People's Republic of China
| | - Mengyao Wang
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
- Key Laboratory of Mental Health of the Ministry of Education and Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou 510515, People's Republic of China
| | - Minzhen Zhu
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
- Key Laboratory of Mental Health of the Ministry of Education and Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou 510515, People's Republic of China
| | - Wenchao Xiong
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
- Key Laboratory of Mental Health of the Ministry of Education and Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou 510515, People's Republic of China
| | - Xihe Qin
- Eusyn Medical Technology Company, Guangzhou 510663, People's Republic of China
| | - Xinhong Zhu
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
- Key Laboratory of Mental Health of the Ministry of Education and Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou 510515, People's Republic of China
- School of Psychology, Shenzhen University, Shenzhen 518060, People's Republic of China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou 510515, People's Republic of China
| |
Collapse
|
9
|
Matin N, Fisher C, Lansdell TA, Hammock BD, Yang J, Jackson WF, Dorrance AM. Soluble epoxide hydrolase inhibition improves cognitive function and parenchymal artery dilation in a hypertensive model of chronic cerebral hypoperfusion. Microcirculation 2020; 28:e12653. [PMID: 32767848 DOI: 10.1111/micc.12653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/30/2020] [Accepted: 07/30/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Parenchymal arterioles (PAs) regulate perfusion of the cerebral microcirculation, and impaired PA endothelium-dependent dilation occurs in dementia models mimicking chronic cerebral hypoperfusion (CCH). Epoxyeicosatrienoic acids (EETs) are vasodilators; their actions are potentiated by soluble epoxide hydrolase (sEH) inhibition. We hypothesized that chronic sEH inhibition with trifluoromethoxyphenyl-3 (1-propionylpiperidin-4-yl) urea (TPPU) would prevent cognitive dysfunction and improve PA dilation in a hypertensive CCH model. METHODS Bilateral carotid artery stenosis (BCAS) was used to induce CCH in twenty-week-old male stroke-prone spontaneously hypertensive rats (SHSRP) that were treated with vehicle or TPPU for 8 weeks. Cognitive function was assessed by novel object recognition. PA dilation and structure were assessed by pressure myography, and mRNA expression in brain tissue was assessed by qRT-PCR. RESULTS TPPU did not enhance resting cerebral perfusion, but prevented CCH-induced memory deficits. TPPU improved PA endothelium-dependent dilation but reduced the sensitivity of PAs to a nitric oxide donor. TPPU treatment had no effect on PA structure or biomechanical properties. TPPU treatment increased brain mRNA expression of brain derived neurotrophic factor, doublecortin, tumor necrosis factor-alpha, sEH, and superoxide dismutase 3, CONCLUSIONS: These data suggest that sEH inhibitors may be viable treatments for cognitive impairments associated with hypertension and CCH.
Collapse
Affiliation(s)
- Nusrat Matin
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Courtney Fisher
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Theresa A Lansdell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Bruce D Hammock
- Department of Entomology &, University of California Comprehensive Cancer Center, Davis, CA, USA
| | - Jun Yang
- Department of Entomology &, University of California Comprehensive Cancer Center, Davis, CA, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
10
|
PPAR- γ Mediates Ta-VNS-Induced Angiogenesis and Subsequent Functional Recovery after Experimental Stroke in Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8163789. [PMID: 32775443 PMCID: PMC7396041 DOI: 10.1155/2020/8163789] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 02/05/2023]
Abstract
Background Neoangiogenesis after cerebral ischemia in mammals is insufficient to restore neurological function, illustrating the need to design better strategies for improving outcomes. Our previous study has suggested that transcutaneous auricular vagus nerve stimulation (ta-VNS) induced angiogenesis and improved neurological functions in a rat model of cerebral ischemia/reperfusion (I/R) injury. However, the mechanisms involved need further exploration. Peroxisome proliferator-activated receptor-γ (PPAR-γ), well known as a ligand-modulated nuclear transcription factor, plays a crucial role in the regulation of cerebrovascular structure and function. Hence, the present study was designed to explore the role of PPAR-γ in ta-VNS-mediated angiogenesis and uncover the possible molecular mechanisms against ischemic stroke. Methods Adult male Sprague-Dawley rats were transfected with either PPAR-γ small interfering RNA (siRNA) or lentiviral vector without siRNA prior to surgery and subsequently received ta-VNS treatment. The expression and localization of PPAR-γ in the ischemic boundary after ta-VNS treatment were examined. Subsequently, neurological deficit scores, neuronal damage, and infarct volume were all evaluated. Additionally, microvessel density, endothelial cell proliferation condition, and the expression of angiogenesis-related molecules in the peri-infarct cortex were measured. Results We found that the expression of PPAR-γ in the peri-infarct cortex increased at 14 d and reached normal levels at 28 d after reperfusion. Ta-VNS treatment further upregulated PPAR-γ expression in the ischemic cortex. PPAR-γ was mainly expressed in neurons and astrocytes. Furthermore, ta-VNS-treated I/R rats showed better neurobehavioral recovery, alleviated neuronal injury, reduced infarct volume, and increased angiogenesis, as indicated by the elevated levels of brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), and phosphorylated endothelial nitric oxide synthase (P-eNOS). Surprisingly, the beneficial effects of ta-VNS were weakened after PPAR-γ silencing. Conclusions Our results suggest that PPAR-γ is a potential mediator of ta-VNS-induced angiogenesis and neuroprotection against cerebral I/R injury.
Collapse
|
11
|
Pallàs M, Vázquez S, Sanfeliu C, Galdeano C, Griñán-Ferré C. Soluble Epoxide Hydrolase Inhibition to Face Neuroinflammation in Parkinson's Disease: A New Therapeutic Strategy. Biomolecules 2020; 10:E703. [PMID: 32369955 PMCID: PMC7277900 DOI: 10.3390/biom10050703] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation is a crucial process associated with the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD). Several pieces of evidence suggest an active role of lipid mediators, especially epoxy-fatty acids (EpFAs), in the genesis and control of neuroinflammation; 14,15-epoxyeicosatrienoic acid (14,15-EET) is one of the most commonly studied EpFAs, with anti-inflammatory properties. Soluble epoxide hydrolase (sEH) is implicated in the hydrolysis of 14,15-EET to its corresponding diol, which lacks anti-inflammatory properties. Preventing EET degradation thus increases its concentration in the brain through sEH inhibition, which represents a novel pharmacological approach to foster the reduction of neuroinflammation and by end neurodegeneration. Recently, it has been shown that sEH levels increase in brains of PD patients. Moreover, the pharmacological inhibition of the hydrolase domain of the enzyme or the use of sEH knockout mice reduced the deleterious effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration. This paper overviews the knowledge of sEH and EETs in PD and the importance of blocking its hydrolytic activity, degrading EETs in PD physiopathology. We focus on imperative neuroinflammation participation in the neurodegenerative process in PD and the putative therapeutic role for sEH inhibitors. In this review, we also describe highlights in the general knowledge of the role of sEH in the central nervous system (CNS) and its participation in neurodegeneration. We conclude that sEH is one of the most promising therapeutic strategies for PD and other neurodegenerative diseases with chronic inflammation process, providing new insights into the crucial role of sEH in PD pathophysiology as well as a singular opportunity for drug development.
Collapse
Affiliation(s)
- Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain;
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Department de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain;
| | - Coral Sanfeliu
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, C/Roselló 161, 08036 Barcelona, Spain;
| | - Carles Galdeano
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain;
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain;
| |
Collapse
|
12
|
Domingues MF, Callai-Silva N, Piovesan AR, Carlini CR. Soluble Epoxide Hydrolase and Brain Cholesterol Metabolism. Front Mol Neurosci 2020; 12:325. [PMID: 32063836 PMCID: PMC7000630 DOI: 10.3389/fnmol.2019.00325] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
The bifunctional enzyme soluble epoxide hydrolase (sEH) is found in all regions of the brain. It has two different catalytic activities, each assigned to one of its terminal domains: the C-terminal domain presents hydrolase activity, whereas the N-terminal domain exhibits phosphatase activity. The enzyme’s C-terminal domain has been linked to cardiovascular protective and anti-inflammatory effects. Cholesterol-related disorders have been associated with sEH, which plays an important role in the metabolism of cholesterol precursors. The role of sEH’s phosphatase activity has been so far poorly investigated in the context of the central nervous system physiology. Given that brain cholesterol disturbances play a role in the onset of Alzheimer’s disease (AD) as well as of other neurodegenerative diseases, understanding the functions of this enzyme could provide pivotal information on the pathophysiology of these conditions. Moreover, the sEH phosphatase domain could represent an underexplored target for drug design and therapeutic strategies to improve symptoms related to neurodegenerative diseases. This review discusses the function of sEH in mammals and its protein structure and catalytic activities. Particular attention was given to the distribution and expression of sEH in the human brain, deepening into the enzyme’s phosphatase activity and its participation in brain cholesterol synthesis. Finally, this review focused on the metabolism of cholesterol and its association with AD.
Collapse
Affiliation(s)
- Michelle Flores Domingues
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratory of Neurotoxins, Brain Institute (BRAINS-InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Natalia Callai-Silva
- Laboratory of Neurotoxins, Brain Institute (BRAINS-InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Angela Regina Piovesan
- Laboratory of Neurotoxins, Brain Institute (BRAINS-InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Celia Regina Carlini
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratory of Neurotoxins, Brain Institute (BRAINS-InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
13
|
Liu JJ, Raskin JS, McFarlane R, Samatham R, Cetas JS. Subarachnoid Hemorrhage Pattern Predicts Acute Cerebral Blood Flow Response in the Rat. ACTA NEUROCHIRURGICA. SUPPLEMENT 2020; 127:83-89. [PMID: 31407068 DOI: 10.1007/978-3-030-04615-6_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is considerable variability in the presentation of patients with acute subarachnoid hemorrhage (aSAH). Evidence suggests that a thick, diffuse clot better predicts the development of delayed cerebral ischemia and poor outcomes. In a rodent model of acute SAH, we directly measured the effects of the volume of blood injected versus the pattern of distribution of hemorrhage in the subarachnoid space on markers of early brain injury, namely, cerebral blood flow (CBF), cerebrospinal fluid (CSF) concentrations of P450 eicosanoids and catecholamines, and cortical spreading depolarizations (CSDs). There is a significant decrease in CBF, an increase in CSF biomarkers, and a trend toward increasing frequency and severity of CSDs when grouped by severity of hemorrhage but not by volume of blood injected. In severe hemorrhage grade animals, there was a progressive decrease in CBF after successive CSD events. These results suggest that the pattern of SAH (thick diffuse clots) correlates with the "clinical" severity of SAH.
Collapse
Affiliation(s)
- Jesse J Liu
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey S Raskin
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | | | - Ravi Samatham
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Justin S Cetas
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA.
- Portland VA Medical Center, Portland, OR, USA.
| |
Collapse
|
14
|
Ginsenosides Rb1 and Rg1 Protect Primary Cultured Astrocytes against Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury via Improving Mitochondrial Function. Int J Mol Sci 2019; 20:ijms20236086. [PMID: 31816825 PMCID: PMC6929005 DOI: 10.3390/ijms20236086] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 11/23/2022] Open
Abstract
This study aimed to evaluate whether ginsenosides Rb1 (20-S-protopanaxadiol aglycon) and Rg1 (20-S-protopanaxatriol aglycon) have mitochondrial protective effects against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury in primary mouse astrocytes and to explore the mechanisms involved. The OGD/R model was used to mimic the pathological process of cerebral ischemia-reperfusion in vitro. Astrocytes were treated with normal conditions, OGD/R, OGD/R plus Rb1, or OGD/R plus Rg1. Cell viability was measured to evaluate the cytotoxicity of Rb1 and Rg1. Intracellular reactive oxygen species (ROS) and catalase (CAT) were detected to evaluate oxidative stress. The mitochondrial DNA (mtDNA) copy number and mitochondrial membrane potential (MMP) were measured to evaluate mitochondrial function. The activities of the mitochondrial respiratory chain (MRC) complexes I–V and the level of cellular adenosine triphosphate (ATP) were measured to evaluate oxidative phosphorylation (OXPHOS) levels. Cell viability was significantly decreased in the OGD/R group compared to the control group. Rb1 or Rg1 administration significantly increased cell viability. Moreover, OGD/R caused a significant increase in ROS formation and, subsequently, it decreased the activity of CAT and the mtDNA copy number. At the same time, treatment with OGD/R depolarized the MMP in the astrocytes. Rb1 or Rg1 administration reduced ROS production, increased CAT activity, elevated the mtDNA content, and attenuated the MMP depolarization. In addition, Rb1 or Rg1 administration increased the activities of complexes I, II, III, and V and elevated the level of ATP, compared to those in the OGD/R groups. Rb1 and Rg1 have different chemical structures, but exert similar protective effects against astrocyte damage induced by OGD/R. The mechanism may be related to improved efficiency of mitochondrial oxidative phosphorylation and the reduction in ROS production in cultured astrocytes.
Collapse
|
15
|
Liver Soluble Epoxide Hydrolase Regulates Behavioral and Cellular Effects of Chronic Stress. Cell Rep 2019; 29:3223-3234.e6. [DOI: 10.1016/j.celrep.2019.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/02/2019] [Accepted: 11/01/2019] [Indexed: 12/18/2022] Open
|
16
|
Caputo MP, Radlowski EC, Lawson M, Antonson A, Watson JE, Matt SM, Leyshon BJ, Das A, Johnson RW. Herring roe oil supplementation alters microglial cell gene expression and reduces peripheral inflammation after immune activation in a neonatal piglet model. Brain Behav Immun 2019; 81:455-469. [PMID: 31271868 PMCID: PMC6754775 DOI: 10.1016/j.bbi.2019.06.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/20/2019] [Accepted: 06/29/2019] [Indexed: 01/29/2023] Open
Abstract
Neonatal brain development can be disrupted by infection that results in microglial cell activation and neuroinflammation. Studies indicate that polyunsaturated fatty acids (PUFAs) and their metabolites can resolve inflammation. It is not known if dietary PUFA increases lipid metabolites in brain or reduces neuroinflammation in neonates. We hypothesized that dietary PUFAs might suppress neuroinflammation by inhibiting pro-inflammatory cytokine over-production and promoting inflammatory resolution in the periphery and brain. Piglets were obtained on postnatal day (PD) 2 and randomly assigned to herring roe oil (HRO) or control (CON) diet. HRO was included at 2 g/kg powdered diet. HRO increased DHA levels in occipital lobe and the DHA to arachidonic acid (ARA) ratio in hippocampal tissue. HRO decreased ARA metabolites in occipital lobe. HRO failed to attenuate microglial pro-inflammatory cytokine production ex vivo. HRO did not affect fever or circulating resolvin D1 levels. HRO decreased circulating neutrophils and liver inflammatory gene expression, but increased resolution marker gene expression in liver post LPS. HRO upregulated CXCL16, TGFBR1, and C1QA in microglial cells. HRO supplementation exerted beneficial effects on inflammation in the periphery, but further studies are needed to evaluate the specific effects of omega-3 supplementation on microglial cell physiology in the neonate.
Collapse
Affiliation(s)
- Megan P. Caputo
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 449 Bevier Hall, 905 South Goodwin Ave, Urbana, IL, 61802 USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Dr., Urbana, IL, 61802 USA,Veterinary Medical Scholars Program, Office of Research and Advanced Studies, University of Illinois at Urbana-Champaign, College of Veterinary Medicine, 3505 VMBSB, 2001 South Lincoln Ave, Urbana, IL, 61802 USA
| | - Emily C. Radlowski
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 449 Bevier Hall, 905 South Goodwin Ave, Urbana, IL, 61802 USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Dr., Urbana, IL, 61802 USA
| | - Marcus Lawson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Dr., Urbana, IL, 61802 USA
| | - Adrienne Antonson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Dr., Urbana, IL, 61802 USA
| | - Josephine E. Watson
- Department of Biochemistry, School of Molecular & Cellular Biology, University of Illinois at Urbana-Champaign, 393 Morrill Hall, 505 South Goodwin Ave, Urbana, IL, 61802 USA
| | - Stephanie M. Matt
- Neuroscience Program, University of Illinois at Urbana-Champaign, 2325/21 Beckman Institute, 405 North Matthews Ave, Urbana, IL, 61801 USA
| | - Brian J. Leyshon
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 449 Bevier Hall, 905 South Goodwin Ave, Urbana, IL, 61802 USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Dr., Urbana, IL, 61802 USA
| | - Aditi Das
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 449 Bevier Hall, 905 South Goodwin Ave, Urbana, IL 61802, USA; Department of Biochemistry, School of Molecular & Cellular Biology, University of Illinois at Urbana-Champaign, 393 Morrill Hall, 505 South Goodwin Ave, Urbana, IL 61802, USA; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 3516 VMBSB, 2001 South Lincoln Ave, Urbana, IL 61802, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, 2325/21 Beckman Institute, 405 North Matthews Ave, Urbana, IL 61801, USA; Bioengineering Department, University of Illinois at Urbana-Champaign, 1102 Everitt Lab, MC-278, 1406 West Green St., Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Matthews Ave, M/C 251, Urbana, IL 61801, USA.
| | - Rodney W. Johnson
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 449 Bevier Hall, 905 South Goodwin Ave, Urbana, IL, 61802 USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Dr., Urbana, IL, 61802 USA,Neuroscience Program, University of Illinois at Urbana-Champaign, 2325/21 Beckman Institute, 405 North Matthews Ave, Urbana, IL, 61801 USA
| |
Collapse
|
17
|
Dong R, Chen M, Liu J, Kang J, Zhu S. Temporospatial effects of acyl-ghrelin on activation of astrocytes after ischaemic brain injury. J Neuroendocrinol 2019; 31:e12767. [PMID: 31276248 DOI: 10.1111/jne.12767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/04/2019] [Accepted: 06/30/2019] [Indexed: 12/13/2022]
Abstract
The protective mechanisms of astrocyte signalling are based on the release of neurotrophic factors and the clearing of toxic substances in the early stages of cerebral ischaemia. However, astrocytes are also responsible for the detrimental effects that occur during the later stages of ischaemia, in which glial scars are formed, thereby impeding neural recovery. Acyl-ghrelin has been found to be neuroprotective after stroke, although the influence of acyl-ghrelin on astrocytes after ischaemic injury is yet to be clarified. In the present study, we used permanent middle cerebral arterial occlusion to establish a brain ischaemia model in vivo, as well as oxygen and glucose deprivation (OGD) to mimic ischaemic insults in vitro. We found that acyl-ghrelin injection significantly increased the number of activated astrocytes in the peri-infarct area at day 3 after brain ischaemia and decreased the number of activated astrocytes after day 9. Moreover, the expression of fibroblast growth factor 2 (FGF2) in the ischaemic hemisphere increased markedly after day 3, and i.c.v. injection of SU5402, an inhibitor of FGF2 signalling, abolished the suppression effects of acyl-ghrelin on astrocyte activation in the peri-infarct region during the later stages of ischaemia. The results from in vitro studies also showed the dual effect of acyl-ghrelin on astrocyte viability. Acyl-ghrelin increased the viability of uninjured astrocytes in an indirect way by stimulating the secretion from OGD-injured astrocytes. It also inhibited the astrocyte viability in the presence of FGF2 in a dose-dependent manner. Furthermore, the expression of acyl-ghrelin receptors on astrocytes was increased after acyl-ghrelin and FGF2 co-treatment. In conclusion, acyl-ghrelin promoted astrocyte activation in the early stages of ischaemia but suppressed the activation in later stages of ischaemic injury. These later effects were likely to be triggered by the increased expression of endogenous FGF2 after brain ischaemia.
Collapse
Affiliation(s)
- Ruirui Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Man Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jing Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jihong Kang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shigong Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
18
|
Soluble Epoxide Hydrolase Inhibition Attenuates Excitotoxicity Involving 14,15-Epoxyeicosatrienoic Acid–Mediated Astrocytic Survival and Plasticity to Preserve Glutamate Homeostasis. Mol Neurobiol 2019; 56:8451-8474. [DOI: 10.1007/s12035-019-01669-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
|
19
|
Bioanalytical insights into the association between eicosanoids and pathogenesis of hepatocellular carcinoma. Cancer Metastasis Rev 2019; 37:269-277. [PMID: 29934821 DOI: 10.1007/s10555-018-9747-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It has been noted that inflammatory were intimately associated with the development and progression of hepatocellular carcinoma (HCC). Eicosanoids derived from arachidonic acid play crucial roles in chronic inflammation. Accordingly, there is an intricate relationship between eicosanoids and HCC, being supported by the epidemiological, clinical, and basic science studies. Herein, we intend to provide bioanalytical insights into the role of eicosanoids in HCC progression, from cell proliferation, angiogenesis migration, to apoptosis. Also, the analytical methods and biochemistry of eicosanoids are described.
Collapse
|
20
|
Hennebelle M, Metherel AH, Kitson AP, Otoki Y, Yang J, Lee KSS, Hammock BD, Bazinet RP, Taha AY. Brain oxylipin concentrations following hypercapnia/ischemia: effects of brain dissection and dissection time. J Lipid Res 2019; 60:671-682. [PMID: 30463986 PMCID: PMC6399504 DOI: 10.1194/jlr.d084228] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 10/12/2018] [Indexed: 01/12/2023] Open
Abstract
PUFAs are precursors to bioactive oxylipin metabolites that increase in the brain following CO2-induced hypercapnia/ischemia. It is not known whether the brain-dissection process and its duration also alter these metabolites. We applied CO2 with or without head-focused microwave fixation for 2 min to evaluate the effects of CO2-induced asphyxiation, dissection, and dissection time on brain oxylipin concentrations. Compared with head-focused microwave fixation (control), CO2 followed by microwave fixation prior to dissection increased oxylipins derived from lipoxygenase (LOX), 15-hydroxyprostaglandin dehydrogenase (PGDH), cytochrome P450 (CYP), and soluble epoxide hydrolase (sEH) enzymatic pathways. This effect was enhanced when the duration of postmortem ischemia was prolonged by 6.4 min prior to microwave fixation. Brains dissected from rats subjected to CO2 without microwave fixation showed greater increases in LOX, PGDH, CYP and sEH metabolites compared with all other groups, as well as increased cyclooxygenase metabolites. In nonmicrowave-irradiated brains, sEH metabolites and one CYP metabolite correlated positively and negatively with dissection time, respectively. This study presents new evidence that the dissection process and its duration increase brain oxylipin concentrations, and that this is preventable by microwave fixation. When microwave fixation is not available, lipidomic studies should account for dissection time to reduce these artifacts.
Collapse
Affiliation(s)
- Marie Hennebelle
- Departments of Food Science and Technology University of California, Davis, Davis, CA
| | - Adam H Metherel
- Department of Nutritional Sciences Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Alex P Kitson
- Department of Nutritional Sciences Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yurika Otoki
- Departments of Food Science and Technology University of California, Davis, Davis, CA
- Food and Biodynamic Laboratory Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Jun Yang
- Entomology and Nematology, University of California, Davis, Davis, CA
- College of Agriculture and Environmental Sciences, and Comprehensive Cancer Center University of California, Davis, Davis, CA
| | - Kin Sing Stephen Lee
- Departments of Food Science and Technology University of California, Davis, Davis, CA
- College of Agriculture and Environmental Sciences, and Comprehensive Cancer Center University of California, Davis, Davis, CA
| | - Bruce D Hammock
- Entomology and Nematology, University of California, Davis, Davis, CA
- College of Agriculture and Environmental Sciences, and Comprehensive Cancer Center University of California, Davis, Davis, CA
| | - Richard P Bazinet
- Department of Nutritional Sciences Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ameer Y Taha
- Departments of Food Science and Technology University of California, Davis, Davis, CA
| |
Collapse
|
21
|
Kodani SD, Morisseau C. Role of epoxy-fatty acids and epoxide hydrolases in the pathology of neuro-inflammation. Biochimie 2019; 159:59-65. [PMID: 30716359 DOI: 10.1016/j.biochi.2019.01.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/29/2019] [Indexed: 12/31/2022]
Abstract
Neuroinflammation is a physiologic response aimed at protecting the central nervous system during injury. However, unresolved and chronic neuroinflammation can lead to long term damage and eventually neurologic disease including Parkinson's disease, Alzheimer's disease and dementia. Recently, enhancing the concentration of epoxyeicosatrienoic acids (EETs) through blocking their hydrolytic degradation by soluble epoxide hydrolase (sEH) has been applied towards reducing the long-term damage associated with central neurologic insults. Evidence suggests this protective effect is mediated, at least in part, through polarization of microglia to an anti-inflammatory phenotype that blocks the inflammatory actions of prostaglandins and promotes wound repair. This mini-review overviews the epidemiologic basis for using sEH inhibition towards neuroinflammatory disease and pharmacologic studies testing sEH inhibition in several neurologic diseases. Additionally, the combination of sEH inhibition with other eicosanoid signaling pathways is considered as an enhanced approach for developing potent neuroprotectants.
Collapse
Affiliation(s)
- Sean D Kodani
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
22
|
Ferdouse A, Leng S, Winter T, Aukema HM. The Brain Oxylipin Profile Is Resistant to Modulation by Dietary n-6 and n-3 Polyunsaturated Fatty Acids in Male and Female Rats. Lipids 2019; 54:67-80. [DOI: 10.1002/lipd.12122] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Afroza Ferdouse
- Department of Food and Human Nutritional Sciences; 190 Dysart Road, University of Manitoba Winnipeg; Canada R3T 2N2
- Canadian Centre for Agri-Food Research in Health and Medicine; 351 Tache Ave, Winnipeg Canada R2H 2A6
| | - Shan Leng
- Department of Food and Human Nutritional Sciences; 190 Dysart Road, University of Manitoba Winnipeg; Canada R3T 2N2
- Canadian Centre for Agri-Food Research in Health and Medicine; 351 Tache Ave, Winnipeg Canada R2H 2A6
| | - Tanja Winter
- Department of Food and Human Nutritional Sciences; 190 Dysart Road, University of Manitoba Winnipeg; Canada R3T 2N2
- Canadian Centre for Agri-Food Research in Health and Medicine; 351 Tache Ave, Winnipeg Canada R2H 2A6
| | - Harold M. Aukema
- Department of Food and Human Nutritional Sciences; 190 Dysart Road, University of Manitoba Winnipeg; Canada R3T 2N2
- Canadian Centre for Agri-Food Research in Health and Medicine; 351 Tache Ave, Winnipeg Canada R2H 2A6
| |
Collapse
|
23
|
Neuroprotective effects of epoxyeicosatrienoic acids. Prostaglandins Other Lipid Mediat 2018; 138:9-14. [DOI: 10.1016/j.prostaglandins.2018.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 06/19/2018] [Accepted: 07/17/2018] [Indexed: 11/22/2022]
|
24
|
Lu Y, Huang Z, Hua Y, Xiao G. Minocycline Promotes BDNF Expression of N2a Cells via Inhibition of miR-155-Mediated Repression After Oxygen-Glucose Deprivation and Reoxygenation. Cell Mol Neurobiol 2018; 38:1305-1313. [PMID: 29951932 DOI: 10.1007/s10571-018-0599-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022]
Abstract
Minocycline, an anti-infective agent of a tetracycline derivative, is reported to improve behavioral functional recovery after cerebral ischemia via enhancing the levels of brain-derived neurotrophic factor (BDNF). However, the precise mechanisms that minocycline targets to enhance the expression of BDNF are not fully defined. In the present study, we observed the neuroprotective effect and its potential mechanisms of minocycline using oxygen-glucose deprivation/reoxygenation (OGD/R)-treated N2a cells. We found that 50 µM minocycline protected against neuronal apoptosis induced by OGD/R injury, with increased expression ratio of Bcl-2/Bax and reduced expression of caspase-3. Interestingly, minocycline resulted in the up-regulation of only BDNF protein, not BDNF mRNA in N2a cells treated with OGD/R. Furthermore, we found that minocycline inhibited OGD/R-induced up-regulation of miR-155 targeted BDNF transcripts. Moreover, miR-155 mimic could partially abolish the neuroprotective effects of minocycline via inhibiting the levels of BDNF protein. These findings suggest that minocycline is neuroprotective against ischemic brain injury through their modulation of miR-155-mediated BDNF repression.
Collapse
Affiliation(s)
- Yunnan Lu
- Department of Neurology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Zhichao Huang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Rd, Gusu District, Suzhou, 215004, Jiangsu, China
| | - Ye Hua
- Department of Neurology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Guodong Xiao
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Rd, Gusu District, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
25
|
Tu R, Armstrong J, Lee KSS, Hammock BD, Sapirstein A, Koehler RC. Soluble epoxide hydrolase inhibition decreases reperfusion injury after focal cerebral ischemia. Sci Rep 2018; 8:5279. [PMID: 29588470 PMCID: PMC5869703 DOI: 10.1038/s41598-018-23504-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/13/2018] [Indexed: 01/01/2023] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are produced by cytochrome P450 epoxygenases from arachidonic acid, and their rapid metabolism is mainly through soluble epoxide hydrolase (sEH). EETs exert vasodilatory, anti-inflammatory, anti-apoptotic, and pro-angiogenic effects. Administration of sEH inhibitors before or at the onset of stroke is protective, but the effects of post-treatment at reperfusion, when inflammation is augmented, has not been as well studied. We tested the hypothesis that 1-Trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl)urea (TPPU), a potent and highly selective sEH inhibitor, suppresses inflammation and protects the brain when administered at reperfusion. Vehicle or 1 mg/kg TPPU was administered at reperfusion after 90 minutes of focal ischemia and again 24 hours later. Protein expression and activity of sEH increased after reperfusion and activity was decreased by TPPU administration. TPPU decreased infarct volume by 50%, reduced neurologic deficits and improved performance on sensorimotor tasks. Furthermore, TPPU significantly lowered the mRNA expression of interleukin-1beta by 3.5-fold and tumor necrosis factor-alpha by 2.2-fold, increased transforming growth factor-beta mRNA by 1.8-fold, and augmented immunostaining of vascular endothelial growth factor in peri-infarct cortex. Thus, inhibition of sEH at reperfusion significantly reduces infarction and improves sensorimotor function, possibly by suppressing early proinflammatory cytokines and promoting reparative cytokines and growth factors.
Collapse
Affiliation(s)
- Ranran Tu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jillian Armstrong
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kin Sing Stephen Lee
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Adam Sapirstein
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
26
|
Swardfager W, Hennebelle M, Yu D, Hammock BD, Levitt AJ, Hashimoto K, Taha AY. Metabolic/inflammatory/vascular comorbidity in psychiatric disorders; soluble epoxide hydrolase (sEH) as a possible new target. Neurosci Biobehav Rev 2018; 87:56-66. [PMID: 29407524 DOI: 10.1016/j.neubiorev.2018.01.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 02/06/2023]
Abstract
The common and severe psychiatric disorders, including major depressive disorder (MDD) and bipolar disorder (BD), are associated with inflammation, oxidative stress and changes in peripheral and brain lipid metabolism. Those pathways are implicated in the premature development of vascular and metabolic comorbidities, which account for considerable morbidity and mortality, including increased dementia risk. During endoplasmic reticulum stress, the soluble epoxide hydrolase (sEH) enzyme converts anti-inflammatory fatty acid epoxides generated by cytochrome p450 enzymes into their corresponding and generally less anti-inflammatory, or even pro-inflammatory, diols, slowing the resolution of inflammation. The sEH enzyme and its oxylipin products are elevated post-mortem in MDD, BD and schizophrenia. Preliminary clinical data suggest that oxylipins increase with symptoms in seasonal MDD and anorexia nervosa, requiring confirmation in larger studies and other cohorts. In rats, a soluble sEH inhibitor mitigated the development of depressive-like behaviors. We discuss sEH inhibitors under development for cardiovascular diseases, post-ischemic brain injury, neuropathic pain and diabetes, suggesting new possibilities to address the mood and cognitive symptoms of psychiatric disorders, and their most common comorbidities.
Collapse
Affiliation(s)
- W Swardfager
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada; Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada; University Health Network Toronto Rehabilitation Institute, Toronto, Canada.
| | - M Hennebelle
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - D Yu
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada; Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada
| | - B D Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center UCDMC, University of California, Davis, CA, USA
| | - A J Levitt
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - K Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - A Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| |
Collapse
|
27
|
Blockade of soluble epoxide hydrolase attenuates post-ischemic neuronal hyperexcitation and confers resilience against stroke with TrkB activation. Sci Rep 2018; 8:118. [PMID: 29311641 PMCID: PMC5758800 DOI: 10.1038/s41598-017-18558-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/14/2017] [Indexed: 11/09/2022] Open
Abstract
Inhibition and deletion of soluble epoxide hydrolase (sEH) has been suggested to ameliorate infarction in experimental ischemic stroke possibly via vasoactive epoxyeicosatrienoic acids. However, it is unknown whether the neuroprotective mechanisms involve alteration of post-ischemic neuronal transmission and neurotrophic signaling. We used a permanent middle cerebral artery occlusion (MCAO) model in adult wild-type mice with the sEH inhibitor 12-(3-adamantan-1-yl-ureido)dodecanoic acid (AUDA) post-treatment and in sEH knockout (sEH KO) mice. We found that sensorimotor recovery was significantly enhanced after MCAO in both AUDA-treated and sEH KO mice, with decreased sEH activity and brain infarction. Decreased post-ischemic long-term potentiation (iLTP) was observed in an ex vivo hippocampal oxygen-glucose deprivation model. Tropomyosin receptor kinase B (TrkB) activation, rather than glutamate receptor alteration, was consistently found after the different manipulations. Immunohistochemistry further revealed peri-infarct neuronal TrkB activation and microvasculature augmentation in AUDA-treated and sEH KO mice, suggesting parallel neurovascular enhancement. Mechanistically, pretreatment with a selective TrkB antagonist ANA12 countered the effect of iLTP attenuation induced by sEH deletion ex vivo and abolished the infarct reduction in vivo. Together, the neuroprotective effects of sEH inhibition and gene deletion can both be mediated partially via enhancement of TrkB signaling which attenuated post-ischemic neuroexcitation and neurological deficits.
Collapse
|
28
|
Wu CH, Shyue SK, Hung TH, Wen S, Lin CC, Chang CF, Chen SF. Genetic deletion or pharmacological inhibition of soluble epoxide hydrolase reduces brain damage and attenuates neuroinflammation after intracerebral hemorrhage. J Neuroinflammation 2017; 14:230. [PMID: 29178914 PMCID: PMC5702198 DOI: 10.1186/s12974-017-1005-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/15/2017] [Indexed: 12/23/2022] Open
Abstract
Background Inflammatory responses significantly contribute to neuronal damage and poor functional outcomes following intracerebral hemorrhage (ICH). Soluble epoxide hydrolase (sEH) is known to induce neuroinflammatory responses via degradation of anti-inflammatory epoxyeicosatrienoic acids (EET), and sEH is upregulated in response to brain injury. The present study investigated the involvement of sEH in ICH-induced neuroinflammation, brain damage, and functional deficits using a mouse ICH model and microglial cultures. Methods ICH was induced by injecting collagenase in both wild-type (WT) C57BL/6 mice and sEH knockout (KO) mice. WT mice were injected intracerebroventricularly with 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA), a selective sEH inhibitor, 30 min before ICH. Expression of sEH in the hemorrhagic hemisphere was examined by immunofluorescence and Western blot analysis. The effects of genetic deletion or pharmacological inhibition of sEH by AUDA on neuroinflammatory responses, EET degradation, blood-brain barrier (BBB) permeability, histological damage, and functional deficits were evaluated. The anti-inflammatory mechanism of sEH inactivation was investigated in thrombin- or hemin-stimulated cultured microglia. Results ICH induced an increase in sEH protein levels in the hemorrhagic hemisphere from 3 h to 4 days. sEH was expressed in microglia/macrophages, astrocytes, neurons, and endothelial cells in the perihematomal region. Genetic deletion of sEH significantly attenuated microglia/macrophage activation and expression of inflammatory mediators and reduced EET degradation at 1 and 4 days post-ICH. Deletion of sEH also reduced BBB permeability, matrix metalloproteinase (MMP)-9 activity, neutrophil infiltration, and neuronal damage at 1 and 4 days. Likewise, administration of AUDA attenuated proinflammatory microglia/macrophage activation and EET degradation at 1 day post-ICH. These findings were associated with a reduction in functional deficits and brain damage for up to 28 days. AUDA also ameliorated neuronal death, BBB disruption, MMP-9 activity, and neutrophil infiltration at 1 day. However, neither gene deletion nor pharmacological inhibition of sEH altered the hemorrhage volume following ICH. In primary microglial cultures, genetic deletion or pharmacological inhibition of sEH by AUDA reduced thrombin- and hemin-induced microglial activation. Furthermore, AUDA reduced thrombin- and hemin-induced P38 MAPK and NF-κB activation in BV2 microglia cultures. Ultimately, AUDA attenuated N2A neuronal death that was induced by BV2 microglial conditioned media. Conclusions Our results suggest that inhibition of sEH may provide a potential therapy for ICH by suppressing microglia/macrophage-mediated neuroinflammation. Electronic supplementary material The online version of this article (10.1186/s12974-017-1005-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chun-Hu Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Song-Kun Shyue
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Taipei, Taiwan, Republic of China.,College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Shin Wen
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chao-Chang Lin
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, 45 Cheng Hsin Street, Taipei, Taiwan, Republic of China
| | - Che-Feng Chang
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Szu-Fu Chen
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan, Republic of China. .,Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, 45 Cheng Hsin Street, Taipei, Taiwan, Republic of China.
| |
Collapse
|
29
|
Abstract
Cytochrome P450 eicosanoids play important roles in brain function and disease through their complementary actions on cell-cell communications within the neurovascular unit (NVU) and mechanisms of brain injury. Epoxy- and hydroxyeicosanoids, respectively formed by cytochrome P450 epoxygenases and ω-hydroxylases, play opposing roles in cerebrovascular function and in pathological processes underlying neural injury, including ischemia, neuroinflammation and oxidative injury. P450 eicosanoids also contribute to cerebrovascular disease risk factors, including hypertension and diabetes. We summarize studies investigating the roles P450 eicosanoids in cerebrovascular physiology and disease to highlight the existing balance between these important lipid signaling molecules, as well as their roles in maintaining neurovascular homeostasis and in acute and chronic neurovascular and neurodegenerative disorders.
Collapse
Affiliation(s)
- Catherine M Davis
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239, United States; The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, United States
| | - Xuehong Liu
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, United States
| | - Nabil J Alkayed
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239, United States; The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
30
|
Hung TH, Shyue SK, Wu CH, Chen CC, Lin CC, Chang CF, Chen SF. Deletion or inhibition of soluble epoxide hydrolase protects against brain damage and reduces microglia-mediated neuroinflammation in traumatic brain injury. Oncotarget 2017; 8:103236-103260. [PMID: 29262558 PMCID: PMC5732724 DOI: 10.18632/oncotarget.21139] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 08/17/2017] [Indexed: 11/25/2022] Open
Abstract
Traumatic brain injury (TBI) induces a series of inflammatory processes that contribute to neuronal damage. The present study investigated the involvement of soluble epoxide hydrolase (sEH) in neuroinflammation and brain damage in mouse TBI and in microglial cultures. The effects of genetic deletion of sEH and treatment with an sEH inhibitor, 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA), on brain damage and inflammatory responses were evaluated in mice subjected to controlled cortical impact. The anti-inflammatory mechanism of sEH inhibition/deletion was investigated in vitro. TBI-induced an increase in sEH protein level in the injured cortex from 1 h to 4 days and sEH was expressed in microglia. Genetic deletion of sEH significantly attenuated functional deficits and brain damage up to 28 days post-TBI. Deletion of sEH also reduced neuronal death, apoptosis, brain edema, and BBB permeability at 1 and 4 day(s). These changes were associated with markedly reduced microglial/macrophage activation, neutrophil infiltration, matrix metalloproteinase-9 activity, inflammatory mediator expression at 1 and 4 day(s), and epoxyeicosatrienoic acid (EET) degradation at 1 and 4 day(s). Administration of AUDA attenuated brain edema, apoptosis, inflammatory mediator upregulation and EET degradation at 4 days. In primary microglial cultures, AUDA attenuated both LPS- or IFN-γ-stimulated nitric oxide (NO) production and reduced LPS- or IFN-γ-induced p38 MAPK and NF-κB signaling. Deletion of sEH also reduced IFN-γ-induced NO production. Moreover, AUDA attenuated N2A neuronal death induced by BV2 microglial-conditioned media. Our results suggest that inhibition of sEH may be a potential therapy for TBI by modulating the cytotoxic functions of microglia.
Collapse
Affiliation(s)
- Tai-Ho Hung
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Taipei and College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Song-Kun Shyue
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chun-Hu Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chien-Cheng Chen
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China
| | - Chao-Chang Lin
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China
| | - Che-Feng Chang
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Szu-Fu Chen
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China.,Departments of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan, Republic of China
| |
Collapse
|
31
|
Huang HJ, Wang YT, Lin HC, Lee YH, Lin AMY. Soluble Epoxide Hydrolase Inhibition Attenuates MPTP-Induced Neurotoxicity in the Nigrostriatal Dopaminergic System: Involvement of α-Synuclein Aggregation and ER Stress. Mol Neurobiol 2017; 55:138-144. [DOI: 10.1007/s12035-017-0726-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Geng HX, Li RP, Li YG, Wang XQ, Zhang L, Deng JB, Wang L, Deng JX. 14,15-EET Suppresses Neuronal Apoptosis in Ischemia-Reperfusion Through the Mitochondrial Pathway. Neurochem Res 2017; 42:2841-2849. [PMID: 28508993 DOI: 10.1007/s11064-017-2297-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/28/2017] [Accepted: 05/08/2017] [Indexed: 11/28/2022]
Abstract
Neuronal apoptosis mediated by the mitochondrial apoptosis pathway is an important pathological process in cerebral ischemia-reperfusion injury. 14,15-EET, an intermediate metabolite of arachidonic acid, can promote cell survival during ischemia/reperfusion. However, whether the mitochondrial apoptotic pathway is involved this survival mechanism is not fully understood. In this study, we observed that infarct size in ischemia-reperfusion injury was reduced in sEH gene knockout mice. In addition, Caspase 3 activation, cytochrome C release and AIF nuclear translocation were also inhibited. In this study, 14,15-EET pretreatment reduced neuronal apoptosis in the oxygen-glucose deprivation and re-oxygenation group in vitro. The mitochondrial apoptosis pathway was also inhibited, as evidenced by AIF translocation from the mitochondria to nucleus and the reduction in the expressions of cleaved-caspase 3 and cytochrome C in the cytoplasm. 14,15-EET could reduce neuronal apoptosis through upregulation of the ratio of Bcl-2 (anti-apoptotic protein) to Bax (apoptosis protein) and inhibition of Bax aggregation onto mitochondria. PI3K/AKT pathway is also probably involved in the reduction of neuronal apoptosis by EET. Our study suggests that 14,15-EET could suppress neuronal apoptosis and reduce infarct volume through the mitochondrial apoptotic pathway. Furthermore, the PI3K/AKT pathway also appears to be involved in the neuroprotection against ischemia-reperfusion by 14,15-EET.
Collapse
Affiliation(s)
- Hui-Xia Geng
- School of Nursing and Health Sciences, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Rui-Ping Li
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Ying-Ge Li
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Xiao-Qing Wang
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Li Zhang
- School of Nursing and Health Sciences, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Jin-Bo Deng
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Lai Wang
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China.
| | - Jie-Xin Deng
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China.
| |
Collapse
|
33
|
Zhang Y, Hong G, Lee KSS, Hammock BD, Gebremedhin D, Harder DR, Koehler RC, Sapirstein A. Inhibition of soluble epoxide hydrolase augments astrocyte release of vascular endothelial growth factor and neuronal recovery after oxygen-glucose deprivation. J Neurochem 2017; 140:814-825. [PMID: 28002622 DOI: 10.1111/jnc.13933] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 11/30/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are synthesized in astrocytes, and inhibitors of soluble epoxide hydrolase (sEH), which hydrolyzes EETs, reduce infarct volume in ischemic stroke. Astrocytes can release protective neurotrophic factors, such as vascular endothelial growth factor (VEGF). We found that addition of sEH inhibitors to rat cultured astrocytes immediately after oxygen-glucose deprivation (OGD) markedly increased VEGF concentration in the medium 48 h later and the effect was blocked by an EET antagonist. The sEH inhibitors increased EET concentrations to levels capable of increasing VEGF. When the sEH inhibitors were removed from the medium at 48 h, the increase in VEGF persisted for an additional 48 h. Neurons exposed to OGD and subsequently to astrocyte medium previously conditioned with OGD plus sEH inhibitors showed increased phosphorylation of their VEGF receptor-2, less TUNEL staining, and increased phosphorylation of Akt, which was blocked by a VEGF receptor-2 antagonist. Our findings indicate that sEH inhibitors, applied to cultured astrocytes after an ischemia-like insult, can increase VEGF secretion. The released VEGF then enhances Akt-enabled cell survival signaling in neurons through activation of VEGF receptor-2 leading to less neuronal cell death. These results suggest a new strategy by which astrocytes can be leveraged to support neuroprotection.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland.,Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gina Hong
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Kin Sing Stephen Lee
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California, USA
| | - Debebe Gebremedhin
- Department of Physiology and the Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David R Harder
- Department of Physiology and the Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Clement J. Zablocki VA Medical Center, Milwaukee, Wisconsin
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Adam Sapirstein
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
34
|
Gene deficiency and pharmacological inhibition of soluble epoxide hydrolase confers resilience to repeated social defeat stress. Proc Natl Acad Sci U S A 2016; 113:E1944-52. [PMID: 26976569 DOI: 10.1073/pnas.1601532113] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Depression is a severe and chronic psychiatric disease, affecting 350 million subjects worldwide. Although multiple antidepressants have been used in the treatment of depressive symptoms, their beneficial effects are limited. The soluble epoxide hydrolase (sEH) plays a key role in the inflammation that is involved in depression. Thus, we examined here the role of sEH in depression. In both inflammation and social defeat stress models of depression, a potent sEH inhibitor, TPPU, displayed rapid antidepressant effects. Expression of sEH protein in the brain from chronically stressed (susceptible) mice was higher than of control mice. Furthermore, expression of sEH protein in postmortem brain samples of patients with psychiatric diseases, including depression, bipolar disorder, and schizophrenia, was higher than controls. This finding suggests that increased sEH levels might be involved in the pathogenesis of certain psychiatric diseases. In support of this hypothesis, pretreatment with TPPU prevented the onset of depression-like behaviors after inflammation or repeated social defeat stress. Moreover, sEH KO mice did not show depression-like behavior after repeated social defeat stress, suggesting stress resilience. The sEH KO mice showed increased brain-derived neurotrophic factor (BDNF) and phosphorylation of its receptor TrkB in the prefrontal cortex, hippocampus, but not nucleus accumbens, suggesting that increased BDNF-TrkB signaling in the prefrontal cortex and hippocampus confer stress resilience. All of these findings suggest that sEH plays a key role in the pathophysiology of depression, and that epoxy fatty acids, their mimics, as well as sEH inhibitors could be potential therapeutic or prophylactic drugs for depression.
Collapse
|