1
|
De Bertier S, Lautrette G, Amador MDM, Miki T, Boillée S, Lobsiger CS, Bohl D, Darios F, Machat S, Duchesne M, Vourc'h P, Fauret-Amsellem AL, Corcia P, Guy N, Couratier P, Seilhean D, Millecamps S. MAPT mutations in amyotrophic lateral sclerosis: clinical, neuropathological and functional insights. J Neurol 2025; 272:272. [PMID: 40100285 PMCID: PMC11920346 DOI: 10.1007/s00415-025-13007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/16/2025] [Accepted: 03/01/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are part of a well-established disease continuum, underpinned by TDP43-pathology. In contrast, the clinical manifestations of Tau-linked disorders are typically limited to cognitive phenotypes or atypical parkinsonism, although few reports describe motor neuron involvement associated with MAPT (microtubule-associated protein Tau) mutations. This study aimed to investigate the contribution of MAPT to the ALS phenotype. METHODS We analyzed a whole-exome sequencing database comprising 470 ALS patients and explored the pathogenicity of the identified variants through familial, clinical, neuropathological, and cellular studies. RESULTS We identified two missense variants in the Tau repeat domains: the novel p.I308T variant, in a patient with early-onset ALS, and the p.P364S mutation in three families with spinal- or respiratory-onset ALS. Segregation of this mutation with disease could be confirmed in two affected cousins. The observation of p.P364S patient's tissue showed accumulations of hyperphosphorylated Tau in various brain regions, prominent in the motor cortex with Lewy body-like inclusions, along with a C-terminal cleaved form of Tau in muscle. In NSC-34 motor neuron cells expressing p.I308T or p.P364S mutants, Tau was discontinuous along the neurites, with clusters of mitochondria resulting from impaired mitochondrial motility. CONCLUSION These findings expand the molecular understanding of ALS to include MAPT mutations. MAPT analysis should be incorporated into ALS genetic screening, particularly in patients with a familial history of the disease. Recognizing the full spectrum of MAPT-linked neurodegenerative diseases is of considerable interest, given the ongoing efforts to develop MAPT-targeted therapies.
Collapse
Affiliation(s)
- Sibylle De Bertier
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, 75013, Paris, France
| | - Géraldine Lautrette
- Service de Neurologie, Centre de Référence SLA et autres maladies du neurone moteur, CHU Dupuytren, 87000, Limoges, France
| | - Maria-Del-Mar Amador
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, 75013, Paris, France
- Département de Neurologie, Assistance Publique Hôpitaux de Paris (APHP), Centre de Référence SLA Ile de France, Hôpital de la Pitié-Salpêtrière, DMU Neurosciences, 75013, Paris, France
| | - Tomoko Miki
- Département de Neuropathologie, APHP, Hôpital de la Pitié-Salpêtrière, DMU Neurosciences, 75013, Paris, France
| | - Séverine Boillée
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, 75013, Paris, France
| | - Christian Stefan Lobsiger
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, 75013, Paris, France
| | - Delphine Bohl
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, 75013, Paris, France
| | - Frederic Darios
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, 75013, Paris, France
| | - Selma Machat
- Service de Neurologie, Centre de Référence SLA et autres maladies du neurone moteur, CHU Dupuytren, 87000, Limoges, France
| | | | - Patrick Vourc'h
- UMR 1253, iBraiN, Université de Tours, INSERM, 37000, Tours, France
- Service de Biochimie et Biologie Moléculaire, CHU de Tours, 37000, Tours, France
| | - Anne-Laure Fauret-Amsellem
- Unité Fonctionnelle de Neurogénétique Moléculaire et Cellulaire, Département de Génétique Médicale, APHP, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, 75013, Paris, France
| | - Philippe Corcia
- UMR 1253, iBraiN, Université de Tours, INSERM, 37000, Tours, France
- Centre de référence SLA, CHU Tours, 37000, Tours, France
| | - Nathalie Guy
- Service de Neurologie, Centre de Ressources et de Compétences SLA, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Philippe Couratier
- Service de Neurologie, Centre de Référence SLA et autres maladies du neurone moteur, CHU Dupuytren, 87000, Limoges, France
| | - Danielle Seilhean
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, 75013, Paris, France
- Département de Neuropathologie, APHP, Hôpital de la Pitié-Salpêtrière, DMU Neurosciences, 75013, Paris, France
| | - Stéphanie Millecamps
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, 75013, Paris, France.
| |
Collapse
|
2
|
Favier M, Formaglio M, Cosson A, Claudé F, Fauret-Amsellem AL, Clot F, Dionet E, Bereau M, Piard J. Respiratory failure as main presentation sign of MAPT-related disorder. J Neurol 2025; 272:155. [PMID: 39820807 DOI: 10.1007/s00415-024-12759-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 01/19/2025]
Abstract
INTRODUCTION The MAPT gene encodes Tau, a protein mainly expressed by neurons. Tau protein plays an important role in cerebral microtubule polymerization and stabilization, in axonal transport and synaptic plasticity. Heterozygous pathogenic variation in MAPT are involved in a spectrum of autosomal dominant neurodegenerative diseases known as taupathies, including Alzheimer's disease, Pick's disease, fronto-temporal dementia, cortico-basal degeneration and progressive supranuclear palsy. Taupathies are characterized by the constant presence of neuronal and/or glial aberrant Tau inclusions leading to atrophy and subsequent neuronal loss resulting in central nervous system degeneration. We report here two unrelated families in which segregates a MAPT-related neurodegenerative disorder marked by respiratory failure in the foreground. RESULTS Nine individuals from two unrelated families were affected by a neurodegenerative disorder. Respiratory features were progressively worsening dyspnea-orthopnea with episodes of acute respiratory decompensation leading to hypercapnic coma or sudden death. A diaphragmatic paralysis was shown in three cases. Associated neurological signs were gait disturbances, bulbar signs including swallowing disorders and dysarthria, pyramidal signs, cognitive and behavioral disorders. ENMG inconstantly found signs of mild denervation. Post-mortem brain immuno-histochemical analysis in one patient revealed unusual composite neuronal Tau inclusions, significant neuronal loss and reactive gliosis, in cortical and subcortical regions, cranial nerves and anterior horn of spinal cord. The heterozygous missense variant c.2041C > T, p. (Pro681Ser) in MAPT was identified in both families by gene panel or exome sequencing. DISCUSSION In the literature, four additional related patients carrying the same MAPT variant, in heterozygous state, also presented rapidly progressive respiratory failure and unusual composite neuronal Tau inclusions in anterior horn of spinal cord. CONCLUSION Our observation allows to extend the phenotypic spectrum associated with MAPT variants describing a rapidly progressive respiratory failure, with episodes of exacerbations and premature death.
Collapse
Affiliation(s)
- Maud Favier
- Centre de Génétique Humaine, Centre Hospitalier Universitaire de Besançon, Besançon, France.
| | - Maité Formaglio
- Service de Neuro-Cognition, Hôpital Neurologique et Centre Mémoire Ressource Recherche (CMRR) de Lyon, Lyon, France
- BIORAN Team, Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, INSERM U1028, Lyon, France
| | - Anne Cosson
- Département de Neurologie, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Frédéric Claudé
- Pneumologie, Oncologie Thoracique et Allergologie Respiratoire, Centre Hospitalier Universitaire de Besançon, Besançon Cedex, France
| | - Anne-Laure Fauret-Amsellem
- Département de Génétique Médicale, UF de Neurogénétique Moléculaire et Cellulaire, AP-HP Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Fabienne Clot
- Département de Génétique Médicale, UF de Neurogénétique Moléculaire et Cellulaire, AP-HP Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Elsa Dionet
- Service de Neurologie, Centre Mémoire Ressource Recherche (CMRR), Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Matthieu Bereau
- Département de Neurologie, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Juliette Piard
- Centre de Génétique Humaine, Centre Hospitalier Universitaire de Besançon, Besançon, France.
- Service de Neuro-Cognition, Hôpital Neurologique et Centre Mémoire Ressource Recherche (CMRR) de Lyon, Lyon, France.
- BIORAN Team, Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, INSERM U1028, Lyon, France.
- Département de Neurologie, Centre Hospitalier Universitaire de Besançon, Besançon, France.
- Pneumologie, Oncologie Thoracique et Allergologie Respiratoire, Centre Hospitalier Universitaire de Besançon, Besançon Cedex, France.
- Département de Génétique Médicale, UF de Neurogénétique Moléculaire et Cellulaire, AP-HP Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France.
- Service de Neurologie, Centre Mémoire Ressource Recherche (CMRR), Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France.
- UMR1231 GAD, Inserm, Université de Bourgogne, Dijon, France.
| |
Collapse
|
3
|
Ellis MJ, Lekka C, Holden KL, Tulmin H, Seedat F, O'Brien DP, Dhayal S, Zeissler ML, Knudsen JG, Kessler BM, Morgan NG, Todd JA, Richardson SJ, Stefana MI. Identification of high-performing antibodies for the reliable detection of Tau proteoforms by Western blotting and immunohistochemistry. Acta Neuropathol 2024; 147:87. [PMID: 38761203 PMCID: PMC11102361 DOI: 10.1007/s00401-024-02729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 05/20/2024]
Abstract
Antibodies are essential research tools whose performance directly impacts research conclusions and reproducibility. Owing to its central role in Alzheimer's disease and other dementias, hundreds of distinct antibody clones have been developed against the microtubule-associated protein Tau and its multiple proteoforms. Despite this breadth of offer, limited understanding of their performance and poor antibody selectivity have hindered research progress. Here, we validate a large panel of Tau antibodies by Western blot (79 reagents) and immunohistochemistry (35 reagents). We address the reagents' ability to detect the target proteoform, selectivity, the impact of protein phosphorylation on antibody binding and performance in human brain samples. While most antibodies detected Tau at high levels, many failed to detect it at lower, endogenous levels. By WB, non-selective binding to other proteins affected over half of the antibodies tested, with several cross-reacting with the related MAP2 protein, whereas the "oligomeric Tau" T22 antibody reacted with monomeric Tau by WB, thus calling into question its specificity to Tau oligomers. Despite the presumption that "total" Tau antibodies are agnostic to post-translational modifications, we found that phosphorylation partially inhibits binding for many such antibodies, including the popular Tau-5 clone. We further combine high-sensitivity reagents, mass-spectrometry proteomics and cDNA sequencing to demonstrate that presumptive Tau "knockout" human cells continue to express residual protein arising through exon skipping, providing evidence of previously unappreciated gene plasticity. Finally, probing of human brain samples with a large panel of antibodies revealed the presence of C-term-truncated versions of all main Tau brain isoforms in both control and tauopathy donors. Ultimately, we identify a validated panel of Tau antibodies that can be employed in Western blotting and/or immunohistochemistry to reliably detect even low levels of Tau expression with high selectivity. This work represents an extensive resource that will enable the re-interpretation of published data, improve reproducibility in Tau research, and overall accelerate scientific progress.
Collapse
Affiliation(s)
- Michael J Ellis
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Christiana Lekka
- Islet Biology Group, Department of Clinical & Biomedical Sciences, Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter, RILD Building, Exeter, UK
| | - Katie L Holden
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Hanna Tulmin
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Faheem Seedat
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
- Nuffield Department of Women's and Reproductive Health, Women's Centre, University of Oxford, John Radcliffe Hospital, Level 3, Oxford, UK
| | - Darragh P O'Brien
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Shalinee Dhayal
- Islet Biology Group, Department of Clinical & Biomedical Sciences, Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter, RILD Building, Exeter, UK
| | - Marie-Louise Zeissler
- Islet Biology Group, Department of Clinical & Biomedical Sciences, Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter, RILD Building, Exeter, UK
| | - Jakob G Knudsen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Oxford, Radcliffe, UK
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Noel G Morgan
- Islet Biology Group, Department of Clinical & Biomedical Sciences, Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter, RILD Building, Exeter, UK
| | - John A Todd
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Sarah J Richardson
- Islet Biology Group, Department of Clinical & Biomedical Sciences, Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter, RILD Building, Exeter, UK
| | - M Irina Stefana
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK.
| |
Collapse
|
4
|
Ingham DJ, Hillyer KM, McGuire MJ, Gamblin TC. In vitro Tau Aggregation Inducer Molecules Influence the Effects of MAPT Mutations on Aggregation Dynamics. Biochemistry 2022; 61:1243-1259. [PMID: 35731895 PMCID: PMC9260964 DOI: 10.1021/acs.biochem.2c00111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/01/2022] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) and Alzheimer's disease-related dementias (ADRDs) affect 6 million Americans, and they are projected to have an estimated health care cost of $355 billion for 2021. A histopathological hallmark of AD and many ADRDs is the aberrant intracellular accumulation of the microtubule-associated protein tau. These neurodegenerative disorders that contain tau aggregates are collectively known as tauopathies, and recent structural studies have shown that different tauopathies are characterized by different "strains" of tau filaments. In addition, mutations in the gene that encodes for tau protein expression have been associated with a group of tauopathies known as frontotemporal dementias with parkinsonism linked to chromosome 17 (FTDP-17 or familial frontotemporal dementia). In vitro studies often use small molecules to induce tau aggregation as tau is extremely soluble and does not spontaneously aggregate under typical laboratory conditions, and the use of authentic filaments to conduct in vitro studies is not feasible. This study highlights how different inducer molecules can have fundamental disparities to how disease-related mutations affect the aggregation dynamics of tau. Using three different classes of tau aggregation inducer molecules, we characterized disease-relevant mutations in tau's PGGG motifs at positions P301S, P332S, and P364S. When comparing these mutations to wild-type tau, we found that depending on the type of inducer molecule used, we saw fundamental differences in total aggregation, aggregation kinetics, immunoreactivity, and filament numbers, length, and width. These data are consistent with the possibility that different tau aggregation inducer molecules make different structural polymorphs, although this possibility would need to be confirmed by high-resolution techniques such as cryo-electron microscopy. The data also show that disease-associated missense mutations in tau impact tau aggregation differently depending on the mechanism of aggregation induction.
Collapse
Affiliation(s)
- David J. Ingham
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66045, United States
| | - Kelsey M. Hillyer
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66045, United States
| | - Madison J. McGuire
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66045, United States
| | | |
Collapse
|
5
|
Lange LM, Gonzalez-Latapi P, Rajalingam R, Tijssen MAJ, Ebrahimi-Fakhari D, Gabbert C, Ganos C, Ghosh R, Kumar KR, Lang AE, Rossi M, van der Veen S, van de Warrenburg B, Warner T, Lohmann K, Klein C, Marras C. Nomenclature of Genetic Movement Disorders: Recommendations of the International Parkinson and Movement Disorder Society Task Force - An Update. Mov Disord 2022; 37:905-935. [PMID: 35481685 DOI: 10.1002/mds.28982] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
In 2016, the Movement Disorder Society Task Force for the Nomenclature of Genetic Movement Disorders presented a new system for naming genetically determined movement disorders and provided a criterion-based list of confirmed monogenic movement disorders. Since then, a substantial number of novel disease-causing genes have been described, which warrant classification using this system. In addition, with this update, we further refined the system and propose dissolving the imaging-based categories of Primary Familial Brain Calcification and Neurodegeneration with Brain Iron Accumulation and reclassifying these genetic conditions according to their predominant phenotype. We also introduce the novel category of Mixed Movement Disorders (MxMD), which includes conditions linked to multiple equally prominent movement disorder phenotypes. In this article, we present updated lists of newly confirmed monogenic causes of movement disorders. We found a total of 89 different newly identified genes that warrant a prefix based on our criteria; 6 genes for parkinsonism, 21 for dystonia, 38 for dominant and recessive ataxia, 5 for chorea, 7 for myoclonus, 13 for spastic paraplegia, 3 for paroxysmal movement disorders, and 6 for mixed movement disorder phenotypes; 10 genes were linked to combined phenotypes and have been assigned two new prefixes. The updated lists represent a resource for clinicians and researchers alike and they have also been published on the website of the Task Force for the Nomenclature of Genetic Movement Disorders on the homepage of the International Parkinson and Movement Disorder Society (https://www.movementdisorders.org/MDS/About/Committees--Other-Groups/MDS-Task-Forces/Task-Force-on-Nomenclature-in-Movement-Disorders.htm). © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Paulina Gonzalez-Latapi
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada.,Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rajasumi Rajalingam
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Marina A J Tijssen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christos Ganos
- Department of Neurology, Charité University Hospital Berlin, Berlin, Germany
| | - Rhia Ghosh
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Anthony E Lang
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Malco Rossi
- Movement Disorders Section, Neuroscience Department, Raul Carrea Institute for Neurological Research (FLENI), Buenos Aires, Argentina
| | - Sterre van der Veen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom Warner
- Department of Clinical & Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Connie Marras
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | | |
Collapse
|
6
|
Zhou XY, Lu JY, Liu FT, Wu P, Zhao J, Ju ZZ, Tang YL, Shi QY, Lin HM, Wu JJ, Yen TC, Zuo CT, Sun YM, Wang J. In Vivo 18 F-APN-1607 Tau Positron Emission Tomography Imaging in MAPT Mutations: Cross-Sectional and Longitudinal Findings. Mov Disord 2021; 37:525-534. [PMID: 34842301 DOI: 10.1002/mds.28867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/01/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Frontotemporal lobar degeneration with tauopathy caused by MAPT (microtubule-associated protein tau) mutations is a highly heterogenous disorder. The ability to visualize and longitudinally monitor tau deposits may be beneficial to understand disease pathophysiology and predict clinical trajectories. OBJECTIVE The aim of this study was to investigate the cross-sectional and longitudinal 18 F-APN-1607 positron emission tomography/computed tomography (PET/CT) imaging findings in MAPT mutation carriers. METHODS Seven carriers of MAPT mutations (six within exon 10 and one outside of exon 10) and 15 healthy control subjects were included. All participants underwent 18 F-APN-1607 PET/CT at baseline. Three carriers of exon 10 mutations received follow-up 18 F-APN-1607 PET/CT scans. Standardized uptake value ratio (SUVR) maps were obtained using the cerebellar gray matter as the reference region. SUVR values observed in MAPT mutation carriers were normalized to data from healthy control subjects. A regional SUVR z score ≥ 2 was used as the criterion to define positive 18 F-APN-1607 PET/CT findings. RESULTS Although the seven study patients had heterogenous clinical phenotypes, all showed a significant 18 F-APN-1607 uptake characterized by high-contrast signals. However, the anatomical localization of tau deposits differed in patients with distinct clinical symptoms. Follow-up imaging data, which were available for three patients, demonstrated worsening trends in patterns of tau accumulation over time, which were paralleled by a significant clinical deterioration. CONCLUSIONS Our data represent a promising step in understanding the usefulness of 18 F-APN-1607 PET/CT imaging for detecting tau accumulation in MAPT mutation carriers. Our preliminary follow-up data also suggest the potential value of 18 F-APN-1607 PET/CT for monitoring the longitudinal trajectories of frontotemporal lobar degeneration caused by MAPT mutations. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Xin-Yue Zhou
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-Ying Lu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng-Tao Liu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Wu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jue Zhao
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zi-Zhao Ju
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Lin Tang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing-Yi Shi
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Hua-Mei Lin
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian-Jun Wu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Chuan-Tao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Min Sun
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Wiersma VI, Hoozemans JJM, Scheper W. Untangling the origin and function of granulovacuolar degeneration bodies in neurodegenerative proteinopathies. Acta Neuropathol Commun 2020; 8:153. [PMID: 32883341 PMCID: PMC7469111 DOI: 10.1186/s40478-020-00996-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
In the brains of tauopathy patients, tau pathology coincides with the presence of granulovacuolar degeneration bodies (GVBs) both at the regional and cellular level. Recently, it was shown that intracellular tau pathology causes GVB formation in experimental models thus explaining the strong correlation between these neuropathological hallmarks in the human brain. These novel models of GVB formation provide opportunities for future research into GVB biology, but also urge reevaluation of previous post-mortem observations. Here, we review neuropathological data on GVBs in tauopathies and other neurodegenerative proteinopathies. We discuss the possibility that intracellular aggregates composed of proteins other than tau are also able to induce GVB formation. Furthermore, the potential mechanisms of GVB formation and the downstream functional implications hereof are outlined in view of the current available data. In addition, we provide guidelines for the identification of GVBs in tissue and cell models that will help to facilitate and streamline research towards the elucidation of the role of these enigmatic and understudied structures in neurodegeneration.
Collapse
|
8
|
Zhao M, Kao CS, Arndt C, Tran DD, Cho WI, Maksimovic K, Chen XXL, Khan M, Zhu H, Qiao J, Peng K, Hong J, Xu J, Kim D, Kim JR, Lee J, van Bruggen R, Yoon WH, Park J. Knockdown of genes involved in axonal transport enhances the toxicity of human neuromuscular disease-linked MATR3 mutations in Drosophila. FEBS Lett 2020; 594:2800-2818. [PMID: 32515490 DOI: 10.1002/1873-3468.13858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Mutations in the nuclear matrix protein Matrin 3 (MATR3) have been identified in amyotrophic lateral sclerosis and myopathy. To investigate the mechanisms underlying MATR3 mutations in neuromuscular diseases and efficiently screen for modifiers of MATR3 toxicity, we generated transgenic MATR3 flies. Our findings indicate that expression of wild-type or mutant MATR3 in motor neurons reduces climbing ability and lifespan of flies, while their expression in indirect flight muscles (IFM) results in abnormal wing positioning and muscle degeneration. In both motor neurons and IFM, mutant MATR3 expression results in more severe phenotypes than wild-type MATR3, demonstrating that the disease-linked mutations confer pathogenicity. We conducted a targeted candidate screen for modifiers of the MATR3 abnormal wing phenotype and identified multiple enhancers involved in axonal transport. Knockdown of these genes enhanced protein levels and insolubility of mutant MATR3. These results suggest that accumulation of mutant MATR3 contributes to toxicity and implicate axonal transport dysfunction in disease pathogenesis.
Collapse
Affiliation(s)
- Melody Zhao
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Ching Serena Kao
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Claudia Arndt
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - David Duc Tran
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Woo In Cho
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Katarina Maksimovic
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Xiao Xiao Lily Chen
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Mashiat Khan
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Hongxian Zhu
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Julia Qiao
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Kailong Peng
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jingyao Hong
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jialu Xu
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Deanna Kim
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jihye Rachel Kim
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jooyun Lee
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Rebekah van Bruggen
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Wan Hee Yoon
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jeehye Park
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
Forrest SL, Kril JJ, Halliday GM. Cellular and regional vulnerability in frontotemporal tauopathies. Acta Neuropathol 2019; 138:705-727. [PMID: 31203391 DOI: 10.1007/s00401-019-02035-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/04/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022]
Abstract
The frontotemporal tauopathies all deposit abnormal tau protein aggregates, but often of only certain isoforms and in distinguishing pathologies of five main types (neuronal Pick bodies, neurofibrillary tangles, astrocytic plaques, tufted astrocytes, globular glial inclusions and argyrophilic grains). In those with isoform specific tau aggregates glial pathologies are substantial, even though there is limited evidence that these cells normally produce tau protein. This review will assess the differentiating features and clinicopathological correlations of the frontotemporal tauopathies, the genetic predisposition for these different pathologies, their neuroanatomical selectivity, current observations on how they spread through the brain, and any potential contributing cellular and molecular changes. The findings show that diverse clinical phenotypes relate most to the brain region degenerating rather than the type of pathology involved, that different regions on the MAPT gene and novel risk genes are associated with specific tau pathologies, that the 4-repeat glial tauopathies do not follow individual patterns of spreading as identified for neuronal pathologies, and that genetic and pathological data indicate that neuroinflammatory mechanisms are involved. Each pathological frontotemporal tauopathy subtype with their distinct pathological features differ substantially in the cell type affected, morphology, biochemical and anatomical distribution of inclusions, a fundamental concept central to future success in understanding the disease mechanisms required for developing therapeutic interventions. Tau directed therapies targeting genetic mechanisms, tau aggregation and pathological spread are being trialled, although biomarkers that differentiate these diseases are required. Suggested areas of future research to address the regional and cellular vulnerabilities in frontotemporal tauopathies are discussed.
Collapse
|
10
|
Origone P, Geroldi A, Lamp M, Sanguineri F, Caponnetto C, Cabona C, Gotta F, Trevisan L, Bellone E, Manganelli F, Devigili G, Mandich P. Role of MAPT in Pure Motor Neuron Disease: Report of a Recurrent Mutation in Italian Patients. NEURODEGENER DIS 2019; 18:310-314. [PMID: 30893702 DOI: 10.1159/000497820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/11/2019] [Indexed: 11/19/2022] Open
Abstract
The aim of our study was to evaluate the role of mutations in the MAPT gene in patients with pure amyotrophic lateral sclerosis (ALS). A cohort of 120 ALS patients, both sporadic and familial, without cognitive impairment was analyzed by next-generation sequencing with a multiple-gene panel comprising 23 genes, including MAPT, known to be associated with ALS and frontotemporal dementia. The presence of the C9orf72 expansion was also investigated. Twelve patients had mutations in the SOD1, TARDBP, MATR3, and FUS genes, while 10 patients carried the C9orf72 expansion. One female patient was found to carry the D348G mutation in MAPT, previously reported in an Italian family with lower motor neuron disease. Our patient presented both upper and lower motor neuron signs, early development of dyspnea, resting and kinetic tremor, and a slow disease course (> 11 years). The present case further broadens the clinical phenotype associated with MAPT mutations and suggests that, although rarely, MAPT mutations can cause ALS and, therefore, should be analyzed in ALS patients, especially in those with early breathing difficulties and long-lasting disease.
Collapse
Affiliation(s)
- Paola Origone
- Deptartment of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Genoa, Italy, .,Medical Genetics Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy,
| | - Alessandro Geroldi
- Deptartment of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Merit Lamp
- Deptartment of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Genoa, Italy.,Medical Genetics Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca Sanguineri
- Deptartment of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Claudia Caponnetto
- Neurological Clinic, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Corrado Cabona
- Deptartment of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Genoa, Italy.,Neurological Clinic, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fabio Gotta
- Deptartment of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Genoa, Italy.,Medical Genetics Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lucia Trevisan
- Deptartment of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Genoa, Italy.,Medical Genetics Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Emilia Bellone
- Deptartment of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Genoa, Italy.,Medical Genetics Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
| | - Grazia Devigili
- 1st Neurology Unit, Department of Clinical Neurosciences, IRCCS "Carlo Besta" Neurological Institute, Milan, Italy
| | - Paola Mandich
- Deptartment of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Genoa, Italy.,Medical Genetics Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|