1
|
Olofsson HE, Englund E. Increased frontocortical microvascular raspberry density in frontotemporal lobar degeneration compared to Lewy body disease and control cases: a neuropathological study. FREE NEUROPATHOLOGY 2025; 6:7. [PMID: 40052111 PMCID: PMC11884261 DOI: 10.17879/freeneuropathology-2025-6178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 02/20/2025] [Indexed: 03/09/2025]
Abstract
Background: Brain raspberries are histologically defined microvascular entities that are highly prevalent in the neocortex. Increased cortical raspberry density occurs in vascular dementia, but also with advancing age. Here, we examined the raspberry density in two neurodegenerative diseases, wherein vascular alterations distinct from conventional vascular risk factors have been indicated: frontotemporal lobar degeneration (FTLD) and Lewy body disease (LBD). Methods: This retrospective study included 283 clinically autopsied individuals: 105 control cases without neurodegenerative disease, 98 FTLD cases (mainly FTLD-tau and FTLD-TDP), and 80 LBD cases (mainly neocortical). The raspberry density was quantified on haematoxylin-eosin-stained tissue sections from the frontal cortex, and the frontocortical atrophy was ranked 0-3. Results: There was a higher raspberry density in the FTLD group compared to both other groups (P ≤ 0.001; Games-Howell post hoc test). The difference between the FTLD and LBD groups remained significant in multiple linear regression models that included age, sex, and either brain weight (P = 0.034) or cortical atrophy (P = 0.012). The difference between the FTLD and control groups remained significant when including age, sex, and brain weight in the model (P = 0.004), while a trend towards significance was demonstrated when including age, sex, and cortical atrophy (P = 0.054). Further analyses of the FTLD group revealed a trend towards a positive correlation between raspberry density and cortical atrophy (P = 0.062; Spearman rank correlation). Comparisons of FTLD subgroups were inconclusive. Conclusion: The frontocortical raspberry density is increased in FTLD. An examination of the raspberry density in relation to a quantitative measure of cortical atrophy is motivated to validate the results. Future studies are needed to determine whether increased raspberry density in FTLD could function as a marker for more widespread vascular alterations, and to elucidate the relation between microvascular alterations and neurodegenerative disease.
Collapse
Affiliation(s)
- Henric Ek Olofsson
- Division of Pathology, Department of Clinical Sciences
Lund, Lund University, Lund, Sweden
| | - Elisabet Englund
- Division of Pathology, Department of Clinical Sciences
Lund, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Ek Olofsson H, Österling Delshammar T, Englund E. Cortical microvascular raspberries and ageing: an independent but not exclusive relationship. Acta Neuropathol Commun 2023; 11:195. [PMID: 38087325 PMCID: PMC10714499 DOI: 10.1186/s40478-023-01700-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
INTRODUCTION Raspberries are cerebral microvascular formations of unknown origin, defined as three or more transversally sectioned vascular lumina surrounded by a common perivascular space. We have previously demonstrated an increased raspberry density in the cortex of patients with vascular dementia and cerebral atherosclerosis, while studies by other authors on overlapping and synonymously defined vascular entities mainly associate them with advancing age. The aim of the present study was to examine the relationship between raspberries and age in a large study sample while including multiple potential confounding factors in the analysis. MATERIALS AND METHODS Our study sample consisted of 263 individuals aged 20-97 years who had undergone a clinical autopsy including a neuropathological examination. The cortical raspberry density had either been quantified as part of a previous study or was examined de novo in a uniform manner on haematoxylin- and eosin-stained tissue sections from the frontal lobe. The medical records and autopsy reports were assessed regarding neurodegeneration, cerebral infarcts, cerebral atherosclerosis and small vessel disease, cardiac hypertrophy, nephrosclerosis, hypertension, and diabetes mellitus. With the patients grouped according to 10-year age interval, non-parametric tests (the Kruskal-Wallis test, followed by pairwise testing with Bonferroni-corrected P values) and multiple linear regression models (not corrected for multiple tests) were performed. RESULTS The average raspberry density increased with advancing age. The non-parametric tests demonstrated statistically significant differences in raspberry density when comparing the groups aged 60-99 years and 70-99 years to those aged 20-29 years (P < 0.012) and 30-59 years (P < 0.011), respectively. The multiple linear regression models demonstrated positive associations with age interval (P < 0.001), cerebral atherosclerosis (P = 0.024), cardiac hypertrophy (P = 0.021), hypertension subgrouped for organ damage (P = 0.006), and female sex (P = 0.004), and a tendency towards a negative association with Alzheimer's disease neuropathologic change (P = 0.048). CONCLUSION The raspberry density of the frontal cortex increases with advancing age, but our results also indicate associations with acquired pathologies. Awareness of the biological and pathological context where raspberries occur can guide further research on their origin.
Collapse
Affiliation(s)
- Henric Ek Olofsson
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, Sölvegatan 25 B, 22185, Lund, Sweden.
| | - Thea Österling Delshammar
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, Sölvegatan 25 B, 22185, Lund, Sweden
| | - Elisabet Englund
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, Sölvegatan 25 B, 22185, Lund, Sweden
| |
Collapse
|
3
|
Ighodaro ET, Shahidehpour RK, Bachstetter AD, Abner EL, Nelson RS, Fardo DW, Shih AY, Grant RI, Neltner JH, Schmitt FA, Jicha GA, Kryscio RJ, Wilcock DM, Van Eldik LJ, Nelson PT. A neuropathologic feature of brain aging: multi-lumen vascular profiles. Acta Neuropathol Commun 2023; 11:138. [PMID: 37641147 PMCID: PMC10464008 DOI: 10.1186/s40478-023-01638-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023] Open
Abstract
Cerebrovascular pathologies other than frank infarctions are commonly seen in aged brains. Here, we focus on multi-lumen vascular profiles (MVPs), which are characterized by multiple vessel lumens enclosed in a single vascular channel. Little information exists on the prevalence, risk factors, and co-pathologies of MVPs. Therefore, we used samples and data from the University of Kentucky Alzheimer's Disease Research Center (n = 91), the University of Kentucky Pathology Department (n = 31), and the University of Pittsburgh Pathology Department (n = 4) to study MVPs. Age at death was correlated with MVP density in the frontal neocortex, Brodmann Area 9 (r = 0.51; p < 0.0001). Exploratory analyses were performed to evaluate the association between conventional vascular risk factors (e.g., hypertension, diabetes), cardiovascular diseases (e.g., heart attack, arrhythmia), and cerebrovascular disease (e.g., stroke); the only nominal association with MVP density was a self-reported history of brain trauma (Prevalence Ratio = 2.1; 95 CI 1.1-3.9, before correcting for multiple comparisons). No specific associations were detected between neuropathological (e.g., brain arteriolosclerosis) or genetic (e.g., APOE) variables and MVP density. Using a tissue clearing method called SeeDB, we provide 3-dimensional images of MVPs in brain tissue. We conclude that MVPs are an age-related brain pathology and more work is required to identify their clinical-pathological correlation and associated risk factors.
Collapse
Affiliation(s)
- Eseosa T Ighodaro
- Department of Neurology, Emory University, Atlanta, GA, USA
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Bldg, 789 S. Limestone Ave, Lexington, KY, 40536, USA
| | - Ryan K Shahidehpour
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Bldg, 789 S. Limestone Ave, Lexington, KY, 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Adam D Bachstetter
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Bldg, 789 S. Limestone Ave, Lexington, KY, 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Erin L Abner
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Bldg, 789 S. Limestone Ave, Lexington, KY, 40536, USA
- Department of Epidemiology and Environmental Health, University of Kentucky, Lexington, KY, 40536, USA
| | | | - David W Fardo
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Bldg, 789 S. Limestone Ave, Lexington, KY, 40536, USA
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536, USA
| | - Andy Y Shih
- Department of Pediatrics, Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, University of Washington, Seattle, WA, 98101, USA
| | - Roger I Grant
- Department of Neurosciences and Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Janna H Neltner
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Kentucky, Lexington, KY, 40536, USA
| | - Frederick A Schmitt
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Bldg, 789 S. Limestone Ave, Lexington, KY, 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY, 40536, USA
| | - Gregory A Jicha
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Bldg, 789 S. Limestone Ave, Lexington, KY, 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY, 40536, USA
| | - Richard J Kryscio
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Bldg, 789 S. Limestone Ave, Lexington, KY, 40536, USA
- Department of Statistics, University of Kentucky, Lexington, KY, 40536, USA
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536, USA
| | - Donna M Wilcock
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Bldg, 789 S. Limestone Ave, Lexington, KY, 40536, USA
| | - Linda J Van Eldik
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Bldg, 789 S. Limestone Ave, Lexington, KY, 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| | - Peter T Nelson
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Bldg, 789 S. Limestone Ave, Lexington, KY, 40536, USA.
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA.
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
4
|
Andjelkovic AV, Situ M, Citalan-Madrid AF, Stamatovic SM, Xiang J, Keep RF. Blood-Brain Barrier Dysfunction in Normal Aging and Neurodegeneration: Mechanisms, Impact, and Treatments. Stroke 2023; 54:661-672. [PMID: 36848419 PMCID: PMC9993074 DOI: 10.1161/strokeaha.122.040578] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Cerebral endothelial cells and their linking tight junctions form a unique, dynamic and multi-functional interface, the blood-brain barrier (BBB). The endothelium is regulated by perivascular cells and components forming the neurovascular unit. This review examines BBB and neurovascular unit changes in normal aging and in neurodegenerative disorders, particularly focusing on Alzheimer disease, cerebral amyloid angiopathy and vascular dementia. Increasing evidence indicates BBB dysfunction contributes to neurodegeneration. Mechanisms underlying BBB dysfunction are outlined (endothelium and neurovascular unit mediated) as is the BBB as a therapeutic target including increasing the uptake of systemically delivered therapeutics across the BBB, enhancing clearance of potential neurotoxic compounds via the BBB, and preventing BBB dysfunction. Finally, a need for novel biomarkers of BBB dysfunction is addressed.
Collapse
Affiliation(s)
- Anuska V. Andjelkovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor MI, USA
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor MI, USA
| | - Muyu Situ
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor MI, USA
| | | | | | - Jianming Xiang
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor MI, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor MI, USA
| |
Collapse
|
5
|
Ek Olofsson H, Haglund M, Englund E. On the regional distribution of cerebral microvascular 'raspberries' and their association with cerebral atherosclerosis and acute circulatory failure. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 4:100157. [PMID: 36691600 PMCID: PMC9860404 DOI: 10.1016/j.cccb.2023.100157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Introduction In this follow-up study, cerebral microvascular formations termed 'raspberries' were quantified according to cerebral atherosclerosis (C-ASCL) and acute circulatory failure (ACF). We also examined the regional distribution of raspberries throughout the brain. Materials and methods The study population consisted of adult individuals who had undergone a diagnostic neuropathological autopsy. Groups were formed to examine the association between raspberries, C-ASCL and ACF (control group, C-ASCL group, C-ASCL+ACF group [n = 47 per group] and a combined C-ASCL-tot group [n = 94]). To examine the regional distribution, additional groups were formed based on previously known raspberry densities of the frontal cortex (high-, medium- and low-density group [n = 6 per group]). Raspberries were quantified on scanned haematoxylin-eosin-stained sections. Results Cortical raspberry density did not differ at a statistically significant level between the control group, the C-ASCL group and the C-ASCL+ACF group (P = 0.10) but did so between the control group and the C-ASCL-tot group (P = 0.033). The total raspberry density of the high-, medium- and low-density groups differed at a statistically significant level (P = 0.005), which remained in group-to-group comparisons of the high- and medium-density groups (P = 0.015) and the high- and low-density groups (P = 0.002). Raspberries were rare in cerebral white matter and in the cerebellum. Conclusion An association between raspberry density and C-ASCL is supported but is weaker than previously indicated. An association with ACF is not indicated. The raspberry density of the frontal cortex provides an approximation of the brain's total raspberry density.
Collapse
|
6
|
Neurovascular dysfunction in GRN-associated frontotemporal dementia identified by single-nucleus RNA sequencing of human cerebral cortex. Nat Neurosci 2022; 25:1034-1048. [PMID: 35879464 DOI: 10.1038/s41593-022-01124-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/16/2022] [Indexed: 12/13/2022]
Abstract
Frontotemporal dementia (FTD) is the second most prevalent form of early-onset dementia, affecting predominantly frontal and temporal cerebral lobes. Heterozygous mutations in the progranulin gene (GRN) cause autosomal-dominant FTD (FTD-GRN), associated with TDP-43 inclusions, neuronal loss, axonal degeneration and gliosis, but FTD-GRN pathogenesis is largely unresolved. Here we report single-nucleus RNA sequencing of microglia, astrocytes and the neurovasculature from frontal, temporal and occipital cortical tissue from control and FTD-GRN brains. We show that fibroblast and mesenchymal cell numbers were enriched in FTD-GRN, and we identified disease-associated subtypes of astrocytes and endothelial cells. Expression of gene modules associated with blood-brain barrier (BBB) dysfunction was significantly enriched in FTD-GRN endothelial cells. The vasculature supportive function and capillary coverage by pericytes was reduced in FTD-GRN tissue, with increased and hypertrophic vascularization and an enrichment of perivascular T cells. Our results indicate a perturbed BBB and suggest that the neurovascular unit is severely affected in FTD-GRN.
Collapse
|
7
|
Pottier C, Mateiu L, Baker MC, DeJesus-Hernandez M, Teixeira Vicente C, Finch NA, Tian S, van Blitterswijk M, Murray ME, Ren Y, Petrucelli L, Oskarsson B, Biernacka JM, Graff-Radford NR, Boeve BF, Petersen RC, Josephs KA, Asmann YW, Dickson DW, Rademakers R. Shared brain transcriptomic signature in TDP-43 type A FTLD patients with or without GRN mutations. Brain 2022; 145:2472-2485. [PMID: 34918030 PMCID: PMC9337811 DOI: 10.1093/brain/awab437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/24/2021] [Accepted: 10/24/2021] [Indexed: 11/28/2022] Open
Abstract
Frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) is a complex heterogeneous neurodegenerative disorder for which mechanisms are poorly understood. To explore transcriptional changes underlying FTLD-TDP, we performed RNA-sequencing on 66 genetically unexplained FTLD-TDP patients, 24 FTLD-TDP patients with GRN mutations and 24 control participants. Using principal component analysis, hierarchical clustering, differential expression and coexpression network analyses, we showed that GRN mutation carriers and FTLD-TDP-A patients without a known mutation shared a common transcriptional signature that is independent of GRN loss-of-function. After combining both groups, differential expression as compared to the control group and coexpression analyses revealed alteration of processes related to immune response, synaptic transmission, RNA metabolism, angiogenesis and vesicle-mediated transport. Deconvolution of the data highlighted strong cellular alterations that were similar in FTLD-TDP-A and GRN mutation carriers with NSF as a potentially important player in both groups. We propose several potentially druggable pathways such as the GABAergic, GDNF and sphingolipid pathways. Our findings underline new disease mechanisms and strongly suggest that affected pathways in GRN mutation carriers extend beyond GRN and contribute to genetically unexplained forms of FTLD-TDP-A.
Collapse
Affiliation(s)
- Cyril Pottier
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Ligia Mateiu
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Matthew C Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Cristina Teixeira Vicente
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - NiCole A Finch
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Shulan Tian
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Joanna M Biernacka
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Yan W Asmann
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | | | - Rosa Rademakers
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
8
|
Fisher RA, Miners JS, Love S. Pathological changes within the cerebral vasculature in Alzheimer's disease: New perspectives. Brain Pathol 2022; 32:e13061. [PMID: 35289012 PMCID: PMC9616094 DOI: 10.1111/bpa.13061] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Cerebrovascular disease underpins vascular dementia (VaD), but structural and functional changes to the cerebral vasculature contribute to disease pathology and cognitive decline in Alzheimer's disease (AD). In this review, we discuss the contribution of cerebral amyloid angiopathy and non‐amyloid small vessel disease in AD, and the accompanying changes to the density, maintenance and remodelling of vessels (including alterations to the composition and function of the cerebrovascular basement membrane). We consider how abnormalities of the constituent cells of the neurovascular unit – particularly of endothelial cells and pericytes – and impairment of the blood‐brain barrier (BBB) impact on the pathogenesis of AD. We also discuss how changes to the cerebral vasculature are likely to impair Aβ clearance – both intra‐periarteriolar drainage (IPAD) and transport of Aβ peptides across the BBB, and how impaired neurovascular coupling and reduced blood flow in relation to metabolic demand increase amyloidogenic processing of APP and the production of Aβ. We review the vasoactive properties of Aβ peptides themselves, and the probable bi‐directional relationship between vascular dysfunction and Aβ accumulation in AD. Lastly, we discuss recent methodological advances in transcriptomics and imaging that have provided novel insights into vascular changes in AD, and recent advances in assessment of the retina that allow in vivo detection of vascular changes in the early stages of AD.
Collapse
Affiliation(s)
- Robert A Fisher
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - J Scott Miners
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - Seth Love
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| |
Collapse
|
9
|
Hasan R, Humphrey J, Bettencourt C, Newcombe J, Lashley T, Fratta P, Raj T. Transcriptomic analysis of frontotemporal lobar degeneration with TDP-43 pathology reveals cellular alterations across multiple brain regions. Acta Neuropathol 2022; 143:383-401. [PMID: 34961893 DOI: 10.1007/s00401-021-02399-9/figures/4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 05/23/2023]
Abstract
Frontotemporal lobar degeneration (FTLD) is a group of heterogeneous neurodegenerative disorders affecting the frontal and temporal lobes of the brain. Nuclear loss and cytoplasmic aggregation of the RNA-binding protein TDP-43 represents the major FTLD pathology, known as FTLD-TDP. To date, there is no effective treatment for FTLD-TDP due to an incomplete understanding of the molecular mechanisms underlying disease development. Here we compared postmortem tissue RNA-seq transcriptomes from the frontal cortex, temporal cortex, and cerebellum between 28 controls and 30 FTLD-TDP patients to profile changes in cell-type composition, gene expression and transcript usage. We observed downregulation of neuronal markers in all three regions of the brain, accompanied by upregulation of microglia, astrocytes, and oligodendrocytes, as well as endothelial cells and pericytes, suggesting shifts in both immune activation and within the vasculature. We validate our estimates of neuronal loss using neuropathological atrophy scores and show that neuronal loss in the cortex can be mainly attributed to excitatory neurons, and that increases in microglial and endothelial cell expression are highly correlated with neuronal loss. All our analyses identified a strong involvement of the cerebellum in the neurodegenerative process of FTLD-TDP. Altogether, our data provides a detailed landscape of gene expression alterations to help unravel relevant disease mechanisms in FTLD.
Collapse
Affiliation(s)
- Rahat Hasan
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Humphrey
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Conceição Bettencourt
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Jia Newcombe
- NeuroResource, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Towfique Raj
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
10
|
Hasan R, Humphrey J, Bettencourt C, Newcombe J, Lashley T, Fratta P, Raj T. Transcriptomic analysis of frontotemporal lobar degeneration with TDP-43 pathology reveals cellular alterations across multiple brain regions. Acta Neuropathol 2022; 143:383-401. [PMID: 34961893 PMCID: PMC10725322 DOI: 10.1007/s00401-021-02399-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/28/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) is a group of heterogeneous neurodegenerative disorders affecting the frontal and temporal lobes of the brain. Nuclear loss and cytoplasmic aggregation of the RNA-binding protein TDP-43 represents the major FTLD pathology, known as FTLD-TDP. To date, there is no effective treatment for FTLD-TDP due to an incomplete understanding of the molecular mechanisms underlying disease development. Here we compared postmortem tissue RNA-seq transcriptomes from the frontal cortex, temporal cortex, and cerebellum between 28 controls and 30 FTLD-TDP patients to profile changes in cell-type composition, gene expression and transcript usage. We observed downregulation of neuronal markers in all three regions of the brain, accompanied by upregulation of microglia, astrocytes, and oligodendrocytes, as well as endothelial cells and pericytes, suggesting shifts in both immune activation and within the vasculature. We validate our estimates of neuronal loss using neuropathological atrophy scores and show that neuronal loss in the cortex can be mainly attributed to excitatory neurons, and that increases in microglial and endothelial cell expression are highly correlated with neuronal loss. All our analyses identified a strong involvement of the cerebellum in the neurodegenerative process of FTLD-TDP. Altogether, our data provides a detailed landscape of gene expression alterations to help unravel relevant disease mechanisms in FTLD.
Collapse
Affiliation(s)
- Rahat Hasan
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Humphrey
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Conceição Bettencourt
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Jia Newcombe
- NeuroResource, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Towfique Raj
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
11
|
Ek Olofsson H, Haglund M, Englund E. Are cortical microvascular raspberries caused by cerebral hypoperfusion? An exploratory pathological study. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2021; 2:100026. [PMID: 36324730 PMCID: PMC9616238 DOI: 10.1016/j.cccb.2021.100026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/03/2021] [Accepted: 08/15/2021] [Indexed: 12/03/2022]
Abstract
An exploratory study on the ‘raspberry’, a type of cortical microvascular formation. Hypothesis: raspberries form by angiogenesis induced by cerebral hypoperfusion. Are raspberries associated with clinical or pathological markers of hypoperfusion? Data: histopathological raspberry quantification, medical records, autopsy reports. Raspberries were associated with atherosclerosis of the basal cerebral arteries.
Introduction This retrospective study investigated a cortical microvascular formation, termed a ‘raspberry’ due to its appearance under a bright-field microscope. We examined whether there is support for the hypothesis that raspberry formation is an angiogenic process induced by cerebral hypoperfusion. Materials and Methods Raspberries were manually quantified in haematoxylin and eosin-stained cortical sections from the anterior frontal lobe of deceased individuals who had undergone a diagnostic neuropathological examination at the Department of Pathology, Lund, Sweden, during April 2019–January 2021. Subjects represented consecutively received cases during this 22-month period. The raspberry density was compared between subjects according to variables collected from medical records and autopsy reports: age, sex, hypertension, diabetes mellitus, atrial fibrillation, orthostatic hypotension, chronic heart failure, acute circulatory failure, aortic atherosclerosis, atherosclerosis of the basal cerebral arteries (referred to as ‘cerebral atherosclerosis’), cerebral small vessel disease, cerebral amyloid angiopathy, cerebral infarction, and ischaemic white matter disease. Results 62 subjects were included. The mean age was 71.9 years (range 46–97 years). 21 subjects (33.9%) were female. Independent-samples t-test showed a higher raspberry density in subjects with cerebral atherosclerosis (p = 0.029; 95% CI 0.7, 11.6 raspberries/cm²). The higher raspberry density in subjects with cerebral atherosclerosis remained in multiple linear regression (p = 0.003; 95% CI 2.3, 11.1 raspberries/cm²). Conclusion This exploratory study indicates that cortical raspberries could be associated with cerebral atherosclerosis. The remaining results were inconclusive but motivate further examination of variables such as acute circulatory failure.
Collapse
|
12
|
Ferrer I, Andrés-Benito P, Zelaya MV, Aguirre MEE, Carmona M, Ausín K, Lachén-Montes M, Fernández-Irigoyen J, Santamaría E, del Rio JA. Familial globular glial tauopathy linked to MAPT mutations: molecular neuropathology and seeding capacity of a prototypical mixed neuronal and glial tauopathy. Acta Neuropathol 2020; 139:735-771. [PMID: 31907603 PMCID: PMC7096369 DOI: 10.1007/s00401-019-02122-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Globular glial tauopathy (GGT) is a progressive neurodegenerative disease involving the grey matter and white matter (WM) and characterized by neuronal deposition of hyper-phosphorylated, abnormally conformed, truncated, oligomeric 4Rtau in neurons and in glial cells forming typical globular astrocyte and oligodendrocyte inclusions (GAIs and GOIs, respectively) and coiled bodies. Present studies centre on four genetic GGT cases from two unrelated families bearing the P301T mutation in MAPT and one case of sporadic GGT (sGGT) and one case of GGT linked to MAPT K317M mutation, for comparative purposes. Clinical and neuropathological manifestations and biochemical profiles of phospho-tau are subjected to individual variations in patients carrying the same mutation, even in carriers of the same family, independently of the age of onset, gender, and duration of the disease. Immunohistochemistry, western blotting, transcriptomic, proteomics and phosphoproteomics, and intra-cerebral inoculation of brain homogenates to wild-type (WT) mice were the methods employed. In GGT cases linked to MAPT P301T mutation, astrocyte markers GFAP, ALDH1L1, YKL40 mRNA and protein, GJA1 mRNA, and AQ4 protein are significantly increased; glutamate transporter GLT1 (EAAT2) and glucose transporter (SLC2A1) decreased; mitochondrial pyruvate carrier 1 (MPC1) increased, and mitochondrial uncoupling protein 5 (UCP5) almost absent in GAIs in frontal cortex (FC). Expression of oligodendrocyte markers OLIG1 and OLIG2mRNA, and myelin-related genes MBP, PLP1, CNP, MAG, MAL, MOG, and MOBP are significantly decreased in WM; CNPase, PLP1, and MBP antibodies reveal reduction and disruption of myelinated fibres; and SMI31 antibodies mark axonal damage in the WM. Altered expression of AQ4, GLUC-t, and GLT-1 is also observed in sGGT and in GGT linked to MAPT K317M mutation. These alterations point to primary astrogliopathy and oligodendrogliopathy in GGT. In addition, GGT linked to MAPT P301T mutation proteotypes unveil a proteostatic imbalance due to widespread (phospho)proteomic dearrangement in the FC and WM, triggering a disruption of neuron projection morphogenesis and synaptic transmission. Identification of hyper-phosphorylation of variegated proteins calls into question the concept of phospho-tau-only alteration in the pathogenesis of GGT. Finally, unilateral inoculation of sarkosyl-insoluble fractions of GGT homogenates from GGT linked to MAPT P301T, sGGT, and GGT linked to MAPT K317M mutation in the hippocampus, corpus callosum, or caudate/putamen in wild-type mice produces seeding, and time- and region-dependent spreading of phosphorylated, non-oligomeric, and non-truncated 4Rtau and 3Rtau, without GAIs and GOIs but only of coiled bodies. These experiments prove that host tau strains are important in the modulation of cellular vulnerability and phenotypes of phospho-tau aggregates.
Collapse
|
13
|
Ek Olofsson H, Englund E. A cortical microvascular structure in vascular dementia, Alzheimer's disease, frontotemporal lobar degeneration and nondemented controls: a sign of angiogenesis due to brain ischaemia? Neuropathol Appl Neurobiol 2019; 45:557-569. [PMID: 30957900 PMCID: PMC6850314 DOI: 10.1111/nan.12552] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/02/2019] [Indexed: 12/30/2022]
Abstract
Aims We observed a microvascular structure in the cerebral cortex that has not, to our knowledge, been previously described. We have termed the structure a ‘raspberry’, referring to its appearance under a bright‐field microscope. We hypothesized that raspberries form through angiogenesis due to some form of brain ischaemia or hypoperfusion. The aims of this study were to quantify raspberry frequency within the cerebral cortex according to diagnosis (vascular dementia, Alzheimer's disease, frontotemporal lobar degeneration and nondemented controls) and brain regions (frontal, temporal, parietal and occipital cortices, regardless of diagnosis). Materials and methods In each of 10 age‐matched subjects per group, a 20‐mm section of the cerebral cortex was examined in haematoxylin‐and‐eosin‐stained sections of the frontal, temporal and parietal, and/or occipital lobes. Tests were performed to validate the haematoxylin‐and‐eosin‐based identification of relative differences between the groups, and to investigate inter‐rater variability. Results Raspberry frequency was highest in subjects with vascular dementia, followed by those with frontotemporal lobar degeneration, Alzheimer's disease and last, nondemented controls. The frequency of raspberries in subjects with vascular dementia differed from that of all other groups at a statistically significant level. In the cerebral lobes, there was a statistically significant difference between the frontal and occipital cortices. Conclusions We believe the results support the hypothesis that raspberries are a sign of angiogenesis in the adult brain. It is pertinent to discuss possible proangiogenic stimuli, including brain ischaemia (such as mild hypoperfusion due to a combination of small vessel disease and transient hypotension), neuroinflammation and protein pathology.
Collapse
Affiliation(s)
- H Ek Olofsson
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - E Englund
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| |
Collapse
|