1
|
Pereira MF, Shyti R, Testa G. In and out: Benchmarking in vitro, in vivo, ex vivo, and xenografting approaches for an integrative brain disease modeling pipeline. Stem Cell Reports 2024; 19:767-795. [PMID: 38865969 PMCID: PMC11390705 DOI: 10.1016/j.stemcr.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 06/14/2024] Open
Abstract
Human cellular models and their neuronal derivatives have afforded unprecedented advances in elucidating pathogenic mechanisms of neuropsychiatric diseases. Notwithstanding their indispensable contribution, animal models remain the benchmark in neurobiological research. In an attempt to harness the best of both worlds, researchers have increasingly relied on human/animal chimeras by xenografting human cells into the animal brain. Despite the unparalleled potential of xenografting approaches in the study of the human brain, literature resources that systematically examine their significance and advantages are surprisingly lacking. We fill this gap by providing a comprehensive account of brain diseases that were thus far subjected to all three modeling approaches (transgenic rodents, in vitro human lineages, human-animal xenografting) and provide a critical appraisal of the impact of xenografting approaches for advancing our understanding of those diseases and brain development. Next, we give our perspective on integrating xenografting modeling pipeline with recent cutting-edge technological advancements.
Collapse
Affiliation(s)
- Marlene F Pereira
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Neurogenomics Centre, Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy.
| | - Reinald Shyti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy; Neurogenomics Centre, Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy.
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Neurogenomics Centre, Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy.
| |
Collapse
|
2
|
Cresto N, Janvier A, Marchi N. From neurons to the neuro-glio-vascular unit: Seizures and brain homeostasis in networks. Rev Neurol (Paris) 2023; 179:308-315. [PMID: 36759301 DOI: 10.1016/j.neurol.2022.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 02/10/2023]
Abstract
While seizures are undoubtedly neuronal events, an ensemble of auxiliary brain cells profoundly shapes synaptic transmission in health and disease conditions. Endothelial-astrocyte-pericyte assemblies at the blood-brain barrier (BBB) and neuroglia within the neuro-glio-vascular unit (NGVU) finely tune brain parenchymal homeostasis, safeguarding the ionic and molecular compositions of the interstitial fluid. BBB permeability with neuroinflammation and the resulting loss of brain homeostatic control are unifying mechanisms sustaining aberrant neuronal discharges, with temporal specificities linked to acute (head trauma, stroke, infections) and pre-existent (genetic) or chronic ( dysplasia, tumors, neurodegenerative disorders) pathological conditions. Within this research template, one hypothesis is that the topography of BBB damage and neuroinflammation could associate with symptoms, e.g., limbic structures for seizures or pre-frontal for psychiatric episodes. Another uncharted matter is whether seizure activity, without tissue lesions or sclerosis, is sufficient to promote stable cellular-level maladaptations in networks. Contingent to localization and duration, BBB damage and inflammation forecast pathological trajectories, and the concept of an epileptic NGVU could enable time-sensitive biomarkers to predict disease progression. The coherence between electrographic, imaging and molecular NGVU biomarkers could be established from the epileptogenic to the propagating zones. This paradigm shift could lead to new diagnostic and therapeutic modalities germane to specific epilepsies or when seizure activity represents a comorbidity.
Collapse
Affiliation(s)
- N Cresto
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - A Janvier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - N Marchi
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
3
|
Widdess-Walsh P. Surviving the Storm—Surviving Status Epilepticus. Epilepsy Curr 2022; 22:359-361. [DOI: 10.1177/15357597221122648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
[Box: see text]
Collapse
Affiliation(s)
- Peter Widdess-Walsh
- Beaumont Hospital Epilepsy Programme, Beaumont Hospital, Beaumont, Dublin, Ireland
| |
Collapse
|
4
|
Zhao Y, Gan L, Ren L, Lin Y, Ma C, Lin X. Factors influencing the blood-brain barrier permeability. Brain Res 2022; 1788:147937. [PMID: 35568085 DOI: 10.1016/j.brainres.2022.147937] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) is a dynamic structure that protects the brain from harmful blood-borne, endogenous and exogenous substances and maintains the homeostatic microenvironment. All constituent cell types play indispensable roles in the BBB's integrity, and other structural BBB components, such as tight junction proteins, adherens junctions, and junctional proteins, can control the barrier permeability. Regarding the need to exchange nutrients and toxic materials, solute carriers, ATP-binding case families, and ion transporter, as well as transcytosis regulate the influx and efflux transport, while the difference in localisation and expression can contribute to functional differences in transport properties. Numerous chemical mediators and other factors such as non-physicochemical factors have been identified to alter BBB permeability by mediating the structural components and barrier function, because of the close relationship with inflammation. In this review, we highlight recently gained mechanistic insights into the maintenance and disruption of the BBB. A better understanding of the factors influencing BBB permeability could contribute to supporting promising potential therapeutic targets for protecting the BBB and the delivery of central nervous system drugs via BBB permeability interventions under pathological conditions.
Collapse
Affiliation(s)
- Yibin Zhao
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Gan
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Ren
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yubo Lin
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Congcong Ma
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianming Lin
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
5
|
Goldwaser EL, Swanson RL, Arroyo EJ, Venkataraman V, Kosciuk MC, Nagele RG, Hong LE, Acharya NK. A Preliminary Report: The Hippocampus and Surrounding Temporal Cortex of Patients With Schizophrenia Have Impaired Blood-Brain Barrier. Front Hum Neurosci 2022; 16:836980. [PMID: 35431844 PMCID: PMC9008835 DOI: 10.3389/fnhum.2022.836980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/01/2022] [Indexed: 12/25/2022] Open
Abstract
Though hippocampal volume reduction is a pathological hallmark of schizophrenia, the molecular pathway(s) responsible for this degeneration remains unknown. Recent reports have suggested the potential role of impaired blood-brain barrier (BBB) function in schizophrenia pathogenesis. However, direct evidence demonstrating an impaired BBB function is missing. In this preliminary study, we used immunohistochemistry and serum immunoglobulin G (IgG) antibodies to investigate the state of BBB function in formalin-fixed postmortem samples from the hippocampus and surrounding temporal cortex of patients with schizophrenia (n = 25) and controls without schizophrenia (n = 27) matched for age, sex, and race. Since a functional BBB prevents the extravasation of IgGs, detection of IgGs in the parenchyma is used as direct evidence of BBB breakdown. We also developed a semi-quantitative approach to quantify the extent of IgG leak and therein BBB breach. Analysis of our immunohistochemistry data demonstrated a significantly higher incidence of IgG leak in patients with schizophrenia compared to controls. Further, BBB permeability was significantly higher in advanced-age patients with schizophrenia than both advanced-age controls and middle-aged patients with schizophrenia. Male patients with schizophrenia also demonstrated a significant increase in IgG permeability compared to control males. Interestingly, the extravasated IgGs also demonstrated selective immunoreactivity for neurons. Based on these observations, we suggest that BBB dysfunction and IgG autoantibodies could be two key missing pathoetiological links underwriting schizophrenia hippocampal damage.
Collapse
Affiliation(s)
- Eric L. Goldwaser
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Randel L. Swanson
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States
- Department of Physical Medicine and Rehabilitation, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Edgardo J. Arroyo
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States
- Department of Physical Medicine and Rehabilitation, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Venkat Venkataraman
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Rowan University, Stratford, NJ, United States
- Department of Rehabilitation Medicine, Rowan University School of Osteopathic Medicine, Rowan University, Stratford, NJ, United States
| | - Mary C. Kosciuk
- Department of Geriatrics and Gerontology, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Rowan University, Stratford, NJ, United States
| | - Robert G. Nagele
- Department of Geriatrics and Gerontology, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Rowan University, Stratford, NJ, United States
| | - L. Elliot Hong
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nimish K. Acharya
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Rowan University, Stratford, NJ, United States
- Department of Geriatrics and Gerontology, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Rowan University, Stratford, NJ, United States
- *Correspondence: Nimish K. Acharya,
| |
Collapse
|
6
|
Hippocampal injury and learning deficits following non-convulsive status epilepticus in periadolescent rats. Epilepsy Behav 2021; 125:108415. [PMID: 34788732 DOI: 10.1016/j.yebeh.2021.108415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023]
Abstract
The effects of non-convulsive status epilepticus (NCSE) on the developing brain remain largely elusive. Here we investigated potential hippocampal injury and learning deficits following one or two episodes of NCSE in periadolescent rats. Non-convulsive status epilepticus was induced with subconvulsive doses of intrahippocampal kainic acid (KA) under continuous EEG monitoring in postnatal day 43 (P43) rats. The RKA group (repeated KA) received intrahippocampal KA at P43 and P44, the SKA group (single KA injection) received KA at P43 and an intrahippocampal saline injection at P44. Controls were sham-treated with saline. The modified two-way active avoidance (MAAV) test was conducted between P45 and P52 to assess learning of context-cued and tone-signaled electrical foot-shock avoidance. Histological analyses were performed at P52 to assess hippocampal neuronal densities, as well as potential reactive astrocytosis and synaptic dysfunction with GFAP (glial fibrillary acidic protein) and synaptophysin (Syp) staining, respectively. Kainic acid injections resulted in electroclinical seizures characterized by behavioral arrest, oromotor automatisms and salivation, without tonic-clonic activity. Compared to controls, both the SKA and RKA groups had lower rates of tone-signaled shock avoidance (p < 0.05). In contextual testing, SKA rats were comparable to controls (p > 0.05), but the RKA group had learning deficits (p < 0.05). Hippocampal neuronal densities were comparable in all groups. Compared to controls, both the SKA and RKA groups had higher hippocampal GFAP levels (p < 0.05). The RKA group also had lower hippocampal Syp levels compared to the SKA and control groups (p < 0.05), which were comparable (p > 0.05). We show that hippocampal NCSE in periadolescent rats results in a seizure burden-dependent hippocampal injury accompanied by cognitive deficits. Our data suggest that the diagnosis and treatment of NCSE should be prompt.
Collapse
|
7
|
Ahl M, Avdic U, Chary K, Shibata K, Chugh D, Mickelsson PL, Kettunen M, Strandberg MC, Johansson UE, Sierra A, Ekdahl CT. Inflammatory reaction in the retina after focal non-convulsive status epilepticus in mice investigated with high resolution magnetic resonance and diffusion tensor imaging. Epilepsy Res 2021; 176:106730. [PMID: 34364020 DOI: 10.1016/j.eplepsyres.2021.106730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/30/2021] [Accepted: 07/16/2021] [Indexed: 11/27/2022]
Abstract
Pathophysiological consequences of focal non-convulsive status epilepticus (fNCSE) have been difficult to demonstrate in humans. In rats fNCSE pathology has been identified in the eyes. Here we evaluated the use of high-resolution 7 T structural T1-weighted magnetic resonance imaging (MRI) and 9.4 T diffusion tensor imaging (DTI) for detecting hippocampal fNCSE-induced retinal pathology ex vivo in mice. Seven weeks post-fNCSE, increased number of Iba1+ microglia were evident in the retina ipsilateral to the hemisphere with fNCSE, and morphologically more activated microglia were found in both ipsi- and contralateral retina compared to non-stimulated control mice. T1-weighted intensity measurements of the contralateral retina showed a minor increase within the outer nuclear and plexiform layers of the lateral retina. T1-weighted measurements were not performed in the ipsilateral retina due to technical difficulties. DTI fractional anisotropy(FA) values were discretely altered in the lateral part of the ipsilateral retina and unaltered in the contralateral retina. No changes were observed in the distal part of the optic nerve. The sensitivity of both imaging techniques for identifying larger retinal alteration was confirmed ex vivo in retinitis pigmentosa mice where a substantial neurodegeneration of the outer retinal layers is evident. With MR imaging a 50 % decrease in DTI FA values and significantly thinner retina in T1-weighted images were detected. We conclude that retinal pathology after fNCSE in mice is subtle and present bilaterally. High-resolution T1-weighted MRI and DTI independently did not detect the entire pathological retinal changes after fNCSE, but the combination of the two techniques indicated minor patchy structural changes.
Collapse
Affiliation(s)
- Matilda Ahl
- Division of Clinical Neurophysiology, Sweden; Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Sweden
| | - Una Avdic
- Division of Clinical Neurophysiology, Sweden; Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Sweden
| | - Karthik Chary
- Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FIN-70 211, Kuopio, Finland
| | - Keisuke Shibata
- Division of Clinical Neurophysiology, Sweden; Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Sweden
| | - Deepti Chugh
- Division of Clinical Neurophysiology, Sweden; Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Sweden
| | | | - Mikko Kettunen
- Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FIN-70 211, Kuopio, Finland
| | | | | | - Alejandra Sierra
- Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FIN-70 211, Kuopio, Finland
| | - Christine T Ekdahl
- Division of Clinical Neurophysiology, Sweden; Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Sweden.
| |
Collapse
|
8
|
Librizzi L, Vila Verde D, Colciaghi F, Deleo F, Regondi MC, Costanza M, Cipelletti B, de Curtis M. Peripheral blood mononuclear cell activation sustains seizure activity. Epilepsia 2021; 62:1715-1728. [PMID: 34061984 DOI: 10.1111/epi.16935] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The influx of immune cells and serum proteins from the periphery into the brain due to a dysfunctional blood-brain barrier (BBB) has been proposed to contribute to the pathogenesis of seizures in various forms of epilepsy and encephalitis. We evaluated the pathophysiological impact of activated peripheral blood mononuclear cells (PBMCs) and serum albumin on neuronal excitability in an in vitro brain preparation. METHODS A condition of mild endothelial activation induced by arterial perfusion of lipopolysaccharide (LPS) was induced in the whole brain preparation of guinea pigs maintained in vitro by arterial perfusion. We analyzed the effects of co-perfusion of human recombinant serum albumin with human PBMCs activated with concanavalin A on neuronal excitability, BBB permeability (measured by FITC-albumin extravasation), and microglial activation. RESULTS Bioplex analysis in supernatants of concanavalin A-stimulated PBMCs revealed increased levels of several inflammatory mediators, in particular interleukin (IL)-1β, tumor necrosis factor (TNF)-α, interferon (INF)-γ, IL-6, IL-10, IL-17A, and MIP3α. LPS and human albumin arterially co-perfused with either concanavalin A-activated PBMCs or the cytokine-enriched supernatant of activated PBMCs (1) modulated calcium-calmodulin-dependent protein kinase II at excitatory synapses, (2) enhanced BBB permeability, (3) induced microglial activation, and (4) promoted seizure-like events. Separate perfusions of either nonactivated PBMCs or concanavalin A-activated PBMCs without LPS/human albumin (hALB) failed to induce inflammatory and excitability changes. SIGNIFICANCE Activated peripheral immune cells, such as PBMCs, and the extravasation of serum proteins in a condition of BBB impairment contribute to seizure generation.
Collapse
Affiliation(s)
- Laura Librizzi
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Diogo Vila Verde
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Francesca Colciaghi
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Francesco Deleo
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | | | - Massimo Costanza
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Barbara Cipelletti
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| |
Collapse
|