1
|
Lin CP, Knoop LEJ, Frigerio I, Bol JGJM, Rozemuller AJM, Berendse HW, Pouwels PJW, van de Berg WDJ, Jonkman LE. Nigral Pathology Contributes to Microstructural Integrity of Striatal and Frontal Tracts in Parkinson's Disease. Mov Disord 2023; 38:1655-1667. [PMID: 37347552 DOI: 10.1002/mds.29510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Motor and cognitive impairment in Parkinson's disease (PD) is associated with dopaminergic dysfunction that stems from substantia nigra (SN) degeneration and concomitant α-synuclein accumulation. Diffusion magnetic resonance imaging (MRI) can detect microstructural alterations of the SN and its tracts to (sub)cortical regions, but their pathological sensitivity is still poorly understood. OBJECTIVE To unravel the pathological substrate(s) underlying microstructural alterations of SN, and its tracts to the dorsal striatum and dorsolateral prefrontal cortex (DLPFC) in PD. METHODS Combining post-mortem in situ MRI and histopathology, T1-weighted and diffusion MRI, and neuropathological samples of nine PD, six PD with dementia (PDD), five dementia with Lewy bodies (DLB), and 10 control donors were collected. From diffusion MRI, mean diffusivity (MD) and fractional anisotropy (FA) were derived from the SN, and tracts between the SN and caudate nucleus, putamen, and DLPFC. Phosphorylated-Ser129-α-synuclein and tyrosine hydroxylase immunohistochemistry was included to quantify nigral Lewy pathology and dopaminergic degeneration, respectively. RESULTS Compared to controls, PD and PDD/DLB showed increased MD of the SN and SN-DLPFC tract, as well as increased FA of the SN-caudate nucleus tract. Both PD and PDD/DLB showed nigral Lewy pathology and dopaminergic loss compared to controls. Increased MD of the SN and FA of SN-caudate nucleus tract were associated with SN dopaminergic loss. Whereas increased MD of the SN-DLPFC tract was associated with increased SN Lewy neurite load. CONCLUSIONS In PD and PDD/DLB, diffusion MRI captures microstructural alterations of the SN and tracts to the dorsal striatum and DLPFC, which differentially associates with SN dopaminergic degeneration and Lewy neurite pathology. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Chen-Pei Lin
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Lydian E J Knoop
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Irene Frigerio
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - John G J M Bol
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Henk W Berendse
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Petra J W Pouwels
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Laura E Jonkman
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Park M, Baik K, Lee YG, Kang SW, Jung JH, Jeong SH, Lee PH, Sohn YH, Ye BS. Implication of Small Vessel Disease MRI Markers in Alzheimer's Disease and Lewy Body Disease. J Alzheimers Dis 2021; 83:545-556. [PMID: 34366356 DOI: 10.3233/jad-210669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Small vessel disease (SVD) magnetic resonance imaging (MRI) markers including deep and periventricular white matter hyperintensities (PWMH), lacunes, and microbleeds are frequently observed in Alzheimer's disease (AD) and Lewy body disease (LBD), but their implication has not been clearly elucidated. OBJECTIVE To investigate the implication of SVD MRI markers in cognitively impaired patients with AD and/or LBD. METHODS We consecutively recruited 57 patients with pure AD-related cognitive impairment (ADCI), 49 with pure LBD-related cognitive impairment (LBCI), 45 with mixed ADCI/LBCI, and 34 controls. All participants underwent neuropsychological tests, brain MRI, and amyloid positron emission tomography. SVD MRI markers including the severity of deep and PWMH and the number of lacunes and microbleeds were visually rated. The relationships among vascular risk factors, SVD MRI markers, ADCI, LBCI, and cognitive scores were investigated after controlling for appropriate covariates. RESULTS LBCI was associated with more severe PWMH, which was conversely associated with an increased risk of LBCI independently of vascular risk factors and ADCI. PWMH was associated with attention and visuospatial dysfunction independently of vascular risk factors, ADCI, and LBCI. Both ADCI and LBCI were associated with more lobar microbleeds, but not with deep microbleeds. CONCLUSION Our findings suggest that PWMH could reflect degenerative process related with LBD, and both AD and LBD independently increase lobar microbleeds.
Collapse
Affiliation(s)
- Mincheol Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoungwon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Gun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Woo Kang
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Ho Jung
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong Ho Jeong
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Jellinger KA. Significance of cerebral amyloid angiopathy and other co-morbidities in Lewy body diseases. J Neural Transm (Vienna) 2021; 128:687-699. [PMID: 33928445 DOI: 10.1007/s00702-021-02345-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 01/12/2023]
Abstract
Lewy body dementia (LBD) and Parkinson's disease-dementia (PDD) are two major neurocognitive disorders with Lewy bodies (LB) of unknown etiology. There is considerable clinical and pathological overlap between these two conditions that are clinically distinguished based on the duration of Parkinsonism prior to development of dementia. Their morphology is characterized by a variable combination of LB and Alzheimer's disease (AD) pathologies. Cerebral amyloid angiopathy (CAA), very common in aged persons and particularly in AD, is increasingly recognized for its association with both pathologies and dementia. To investigate neuropathological differences between LB diseases with and without dementia, 110 PDD and 60 LBD cases were compared with 60 Parkinson's disease (PD) cases without dementia (PDND). The major demographic and neuropathological data were assessed retrospectively. PDD patients were significantly older than PDND ones (83.9 vs 77.8 years; p < 0.05); the age of LB patients was in between both groups (mean 80.2 years), while the duration of disease was LBD < PDD < PDND (mean 6.7 vs 12.5 and 14.3 years). LBD patients had higher neuritic Braak stages (mean 5.1 vs 4.5 and 4.0, respectively), LB scores (mean 5.3 vs 4.2 and 4.0, respectively), and Thal amyloid phases (mean 4.1 vs 3.0 and 2.3, respectively) than the two other groups. CAA was more common in LBD than in the PDD and PDND groups (93 vs 50 and 21.7%, respectively). Its severity was significantly greater in LBD than in PDD and PDND (p < 0.01), involving mainly the occipital lobes. Moreover, striatal Aβ deposition highly differentiated LBD brains from PDD. Braak neurofibrillary tangle (NFT) stages, CAA, and less Thal Aβ phases were positively correlated with LB pathology (p < 0.05), which was significantly higher in LBD than in PDD < PDND. Survival analysis showed worse prognosis in LBD than in PDD (and PDND), which was linked to both increased Braak tau stages and more severe CAA. These and other recent studies imply the association of CAA-and both tau and LB pathologies-with cognitive decline and more rapid disease progression that distinguishes LBD from PDD (and PDND).
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|