1
|
Hojjati SH, Babajani-Feremi A. Seeing beyond the symptoms: biomarkers and brain regions linked to cognitive decline in Alzheimer's disease. Front Aging Neurosci 2024; 16:1356656. [PMID: 38813532 PMCID: PMC11135344 DOI: 10.3389/fnagi.2024.1356656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/08/2024] [Indexed: 05/31/2024] Open
Abstract
Objective Early Alzheimer's disease (AD) diagnosis remains challenging, necessitating specific biomarkers for timely detection. This study aimed to identify such biomarkers and explore their associations with cognitive decline. Methods A cohort of 1759 individuals across cognitive aging stages, including healthy controls (HC), mild cognitive impairment (MCI), and AD, was examined. Utilizing nine biomarkers from structural MRI (sMRI), diffusion tensor imaging (DTI), and positron emission tomography (PET), predictions were made for Mini-Mental State Examination (MMSE), Clinical Dementia Rating Scale Sum of Boxes (CDRSB), and Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS). Biomarkers included four sMRI (e.g., average thickness [ATH]), four DTI (e.g., mean diffusivity [MD]), and one PET Amyloid-β (Aβ) measure. Ensemble regression tree (ERT) technique with bagging and random forest approaches were applied in four groups (HC/MCI, HC/AD, MCI/AD, and HC/MCI/AD). Results Aβ emerged as a robust predictor of cognitive scores, particularly in late-stage AD. Volumetric measures, notably ATH, consistently correlated with cognitive scores across early and late disease stages. Additionally, ADAS demonstrated links to various neuroimaging biomarkers in all subject groups, highlighting its efficacy in monitoring brain changes throughout disease progression. ERT identified key brain regions associated with cognitive scores, such as the right transverse temporal region for Aβ, left and right entorhinal cortex, left inferior temporal gyrus, and left middle temporal gyrus for ATH, and the left uncinate fasciculus for MD. Conclusion This study underscores the importance of an interdisciplinary approach in understanding AD mechanisms, offering potential contributions to early biomarker development.
Collapse
Affiliation(s)
- Seyed Hani Hojjati
- Department of Radiology, Weill Cornell Medicine, Brain Health Imaging Institute, New York, NY, United States
| | - Abbas Babajani-Feremi
- Department of Neurology, University of Florida, Gainesville, FL, United States
- Magnetoencephalography (MEG) Lab, The Norman Fixel Institute of Neurological Diseases, University of Florida Health, Gainesville, FL, United States
| | | |
Collapse
|
2
|
Finneran DJ, Desjarlais T, Henry A, Jackman BM, Gordon MN, Morgan D. Induction of tauopathy in a mouse model of amyloidosis using intravenous administration of adeno-associated virus vectors expressing human P301L tau. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e12470. [PMID: 38689599 PMCID: PMC11058624 DOI: 10.1002/trc2.12470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/13/2024] [Accepted: 03/09/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a progressive neurodegenerative disease in which extracellular aggregates of the amyloid beta (Aβ) peptide precede widespread intracellular inclusions of the microtubule-associated protein tau. The autosomal dominant form of AD requires mutations that increase production or aggregation of the Aβ peptide. This has led to the hypothesis that amyloid deposition initiates downstream responses that lead to the hyperphosphorylation and aggregation of tau. METHODS Here we use a novel approach, somatic gene transfer via intravenous adeno-associated virus (AAV), to further explore the effects of pre-existing amyloid deposits on tauopathy. APP+PS1 mice, which develop amyloid deposits at 3 to 6 months of age, and non-transgenic littermates were injected at 8 months of age intravenously with AAV-PHP.eB encoding P301L human tau. Tissue was collected at 13 months and tauopathy was assessed. RESULTS Total human tau expression was observed to be relatively uniform throughout the brain, reflecting the vascular route of AAV administration. Phospho-tau deposition was not equal across brain regions and significantly increased in APP+PS1 mice compared to non-transgenic controls. Interestingly, the rank order of phospho-tau deposition of affected brain regions in both genotypes paralleled the rank order of amyloid plaque deposits in APP+PS1 mice. We also observed significantly increased MAPT RNA expression in APP+PS1 mice compared to non-transgenic despite equal AAV transduction efficiency between groups. DISCUSSION This model has advantages over prior approaches with widespread uniform human tau expression throughout the brain and the ability to specify the stage of amyloidosis when the tau pathology is initiated. These data add further support to the amyloid cascade hypothesis and suggest RNA metabolism as a potential mechanism for amyloid-induced tauopathy.
Collapse
Affiliation(s)
- Dylan J. Finneran
- Department of Translational Neuroscience and the Alzheimer's AllianceMichigan State UniversityGrand RapidsMichiganUSA
| | - Taylor Desjarlais
- Department of Translational Neuroscience and the Alzheimer's AllianceMichigan State UniversityGrand RapidsMichiganUSA
| | - Alayna Henry
- Department of Translational Neuroscience and the Alzheimer's AllianceMichigan State UniversityGrand RapidsMichiganUSA
| | - Brianna M. Jackman
- Department of Translational Neuroscience and the Alzheimer's AllianceMichigan State UniversityGrand RapidsMichiganUSA
| | - Marcia N. Gordon
- Department of Translational Neuroscience and the Alzheimer's AllianceMichigan State UniversityGrand RapidsMichiganUSA
| | - David Morgan
- Department of Translational Neuroscience and the Alzheimer's AllianceMichigan State UniversityGrand RapidsMichiganUSA
| |
Collapse
|
3
|
Paul PS, Patel T, Cho JY, Yarahmady A, Khalili A, Semenchenko V, Wille H, Kulka M, Mok SA, Kar S. Native PLGA nanoparticles attenuate Aβ-seed induced tau aggregation under in vitro conditions: potential implication in Alzheimer's disease pathology. Sci Rep 2024; 14:144. [PMID: 38167993 PMCID: PMC10762165 DOI: 10.1038/s41598-023-50465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Evidence suggests that beta-amyloid (Aβ)-induced phosphorylation/aggregation of tau protein plays a critical role in the degeneration of neurons and development of Alzheimer's disease (AD), the most common cause of dementia affecting the elderly population. Many studies have pursued a variety of small molecules, including nanoparticles conjugated with drugs to interfere with Aβ and/or tau aggregation/toxicity as an effective strategy for AD treatment. We reported earlier that FDA approved PLGA nanoparticles without any drug can attenuate Aβ aggregation/toxicity in cellular/animal models of AD. In this study, we evaluated the effects of native PLGA on Aβ seed-induced aggregation of tau protein using a variety of biophysical, structural and spectroscopic approaches. Our results show that Aβ1-42 seeds enhanced aggregation of tau protein in the presence and absence of heparin and the effect was attenuated by native PLGA nanoparticles. Interestingly, PLGA inhibited aggregation of both 4R and 3R tau isoforms involved in the formation of neurofibrillary tangles in AD brains. Furthermore, Aβ seed-induced tau aggregation in the presence of arachidonic acid was suppressed by native PLGA. Collectively, our results suggest that native PLGA nanoparticles can inhibit the Aβ seed-induced aggregation of different tau protein isoforms highlighting their therapeutic implication in the treatment of AD.
Collapse
Affiliation(s)
- Pallabi Sil Paul
- Departments of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, T6G 2M8, Canada
| | - Tark Patel
- Departments of Biochemistry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, T6G 2M8, Canada
| | - Jae-Young Cho
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, T6G 2M9, Canada
| | - Allan Yarahmady
- Departments of Biochemistry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, T6G 2M8, Canada
| | - Aria Khalili
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, T6G 2M9, Canada
| | - Valentyna Semenchenko
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, T6G 2M9, Canada
| | - Holger Wille
- Departments of Biochemistry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, T6G 2M8, Canada
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, T6G 2M9, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Sue-Ann Mok
- Departments of Biochemistry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, T6G 2M8, Canada
| | - Satyabrata Kar
- Departments of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, T6G 2M8, Canada.
- Centre for Prions and Protein Folding Diseases, Departments of Medicine (Neurology) and Psychiatry, University of Alberta, Edmonton, AB, T6G 2M8, Canada.
| |
Collapse
|
4
|
Wang D, Yan B, Wang A, Sun Q, Pang J, Cui Y, Tian G. Tu-Xian Decoction ameliorates diabetic cognitive impairment by inhibiting DAPK-1. Chin J Nat Med 2023; 21:950-960. [PMID: 38143108 DOI: 10.1016/s1875-5364(23)60428-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Indexed: 12/26/2023]
Abstract
Tu-Xian decoction (TXD), a traditional Chinese medicine (TCM) formula, has been frequently administered to manage diabetic cognitive impairment (DCI). Despite its widespread use, the mechanisms underlying TXD's protective effects on DCI have yet to be fully elucidated. As a significant regulator in neurodegenerative conditions, death-associated protein kinase-1 (DAPK-1) serves as a focus for understanding the action of TXD. This study was designed to whether TXD mediates its beneficial outcomes by inhibiting DAPK-1. To this end, a diabetic model was established using Sprague-Dawley (SD) rats through a high-fat, high-sugar (HFHS) diet regimen, followed by streptozotocin (STZ) injection. The experimental cohort was stratified into six groups: Control, Diabetic, TC-DAPK6, high-dose TXD, medium-dose TXD, and low-dose TXD groups. Following a 12-week treatment period, various assessments-including blood glucose levels, body weight measurements, Morris water maze (MWM) testing for cognitive function, brain magnetic resonance imaging (MRI), and histological analyses using hematoxylin-eosin (H&E), and Nissl staining-were conducted. Protein expression in the hippocampus was quantified through Western blotting analysis. The results revealed that TXD significantly improved spatial learning and memory abilities, and preserved hippocampal structure in diabetic rats. Importantly, TXD administration led to a down-regulation of proteins indicative of neurological damage and suppressed DAPK-1 activity within the hippocampal region. These results underscore TXD's potential in mitigating DCIvia DAPK-1 inhibition, positioning it as a viable therapeutic candidate for addressing this condition. Further investigation into TXD's molecular mechanisms may elucidate new pathways for the treatment of DCI.
Collapse
Affiliation(s)
- Danyang Wang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Beijing 100730, China; Chinese Academy of Mediucal Sciences & Peking Union Medical College, Beijing 100730, China
| | - Bin Yan
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Beijing 100730, China
| | - An Wang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Beijing 100730, China; Chinese Academy of Mediucal Sciences & Peking Union Medical College, Beijing 100730, China
| | - Qing Sun
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Beijing 100730, China
| | - Junyi Pang
- Department of Pathology, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Beijing 100730, China
| | - Yangming Cui
- Animal Research Laboratory Platform, Peking Union Medical College Hospital, the National Science and Technology Key Infrastructure on Translational Medicine, Beijing 100730, China
| | - Guoqing Tian
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Beijing 100730, China.
| |
Collapse
|
5
|
Williams T, Bathe T, Vo Q, Sacilotto P, McFarland K, Ruiz AJ, Hery GP, Sullivan P, Borchelt DR, Prokop S, Chakrabarty P. Humanized APOE genotypes influence lifespan independently of tau aggregation in the P301S mouse model of tauopathy. Acta Neuropathol Commun 2023; 11:99. [PMID: 37337279 DOI: 10.1186/s40478-023-01581-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 06/21/2023] Open
Abstract
Apolipoprotein (APOE) E4 isoform is a major risk factor of Alzheimer's disease and contributes to metabolic and neuropathological abnormalities during brain aging. To provide insights into whether APOE4 genotype is related to tau-associated neurodegeneration, we have generated human P301S mutant tau transgenic mice (PS19) that carry humanized APOE alleles (APOE2, APOE3 or APOE4). In aging mice that succumbed to paralysis, PS19 mice homozygous for APOE3 had the longest lifespan when compared to APOE4 and APOE2 homozygous mice (APOE3 > APOE4 ~ APOE2). Heterozygous mice with one human APOE and one mouse Apoe allele did not show any variations in lifespan. At end-stage, PS19 mice homozygous for APOE3 and APOE4 showed equivalent levels of phosphorylated tau burden, inflammation levels and ventricular volumes. Compared to these cohorts, PS19 mice homozygous for APOE2 showed lower induction of phosphorylation on selective epitopes, though the effect sizes were small and variable. In spite of this, the APOE2 cohort showed shorter lifespan relative to APOE3 homozygous mice. None of the cohorts accumulated appreciable levels of phosphorylated tau compartmentalized in the insoluble cell fraction. RNAseq analysis showed that the induction of immune gene expression was comparable across all the APOE genotypes in PS19 mice. Notably, the APOE4 homozygous mice showed additional induction of transcripts corresponding to the Alzheimer's disease-related plaque-induced gene signature. In human Alzheimer's disease brain tissues, we found no direct correlation between higher burden of phosphorylated tau and APOE4 genotype. As expected, there was a strong correlation between phosphorylated tau burden with amyloid deposition in APOE4-positive Alzheimer's disease cases. Overall, our results indicate that APOE3 genotype may confer some resilience to tauopathy, while APOE4 and APOE2 may act through multiple pathways to increase the pathogenicity in the context of tauopathy.
Collapse
Affiliation(s)
- Tristan Williams
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- Eli Lilly & Company, Indianapolis, IN, 46285, USA
| | - Tim Bathe
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Quan Vo
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Patricia Sacilotto
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Karen McFarland
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neurology, University of Florida, Gainesville, FL, 32610, USA
| | - Alejandra Jolie Ruiz
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Gabriela P Hery
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | | | - David R Borchelt
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, 32608, USA
| | - Paramita Chakrabarty
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
6
|
Lipoprotein Metabolism, Protein Aggregation, and Alzheimer's Disease: A Literature Review. Int J Mol Sci 2023; 24:ijms24032944. [PMID: 36769268 PMCID: PMC9918279 DOI: 10.3390/ijms24032944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. The physiopathology of AD is well described by the presence of two neuropathological features: amyloid plaques and tau neurofibrillary tangles. In the last decade, neuroinflammation and cellular stress have gained importance as key factors in the development and pathology of AD. Chronic cellular stress occurs in degenerating neurons. Stress Granules (SGs) are nonmembranous organelles formed as a response to stress, with a protective role; however, SGs have been noted to turn into pathological and neurotoxic features when stress is chronic, and they are related to an increased tau aggregation. On the other hand, correct lipid metabolism is essential to good function of the brain; apolipoproteins are highly associated with risk of AD, and impaired cholesterol efflux and lipid transport are associated with an increased risk of AD. In this review, we provide an insight into the relationship between cellular stress, SGs, protein aggregation, and lipid metabolism in AD.
Collapse
|
7
|
Moore BD, Levites Y, Xu G, Hampton H, Adamo MF, Croft CL, Futch HS, Moran C, Fromholt S, Janus C, Prokop S, Dickson D, Lewis J, Giasson BI, Golde TE, Borchelt DR. Soluble brain homogenates from diverse human and mouse sources preferentially seed diffuse Aβ plaque pathology when injected into newborn mouse hosts. FREE NEUROPATHOLOGY 2022; 3. [PMID: 35494163 DOI: 10.17879/freeneuropathology-2022-3766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Seeding of pathology related to Alzheimer's disease (AD) and Lewy body disease (LBD) by tissue homogenates or purified protein aggregates in various model systems has revealed prion-like properties of these disorders. Typically, these homogenates are injected into adult mice stereotaxically. Injection of brain lysates into newborn mice represents an alternative approach of delivering seeds that could direct the evolution of amyloid-β (Aβ) pathology co-mixed with either tau or α-synuclein (αSyn) pathology in susceptible mouse models. Methods Homogenates of human pre-frontal cortex were injected into the lateral ventricles of newborn (P0) mice expressing a mutant humanized amyloid precursor protein (APP), human P301L tau, human wild type αSyn, or combinations thereof. The homogenates were prepared from AD and AD/LBD cases displaying variable degrees of Aβ pathology and co-existing tau and αSyn deposits. Behavioral assessments of APP transgenic mice injected with AD brain lysates were conducted. For comparison, homogenates of aged APP transgenic mice that preferentially exhibit diffuse or cored deposits were similarly injected into the brains of newborn APP mice. Results We observed that lysates from the brains with AD (Aβ+, tau+), AD/LBD (Aβ+, tau+, αSyn+), or Pathological Aging (Aβ+, tau-, αSyn-) efficiently seeded diffuse Aβ deposits. Moderate seeding of cerebral amyloid angiopathy (CAA) was also observed. No animal of any genotype developed discernable tau or αSyn pathology. Performance in fear-conditioning cognitive tasks was not significantly altered in APP transgenic animals injected with AD brain lysates compared to nontransgenic controls. Homogenates prepared from aged APP transgenic mice with diffuse Aβ deposits induced similar deposits in APP host mice; whereas homogenates from APP mice with cored deposits induced similar cored deposits, albeit at a lower level. Conclusions These findings are consistent with the idea that diffuse Aβ pathology, which is a common feature of human AD, AD/LBD, and PA brains, may arise from a distinct strain of misfolded Aβ that is highly transmissible to newborn transgenic APP mice. Seeding of tau or αSyn comorbidities was inefficient in the models we used, indicating that additional methodological refinement will be needed to efficiently seed AD or AD/LBD mixed pathologies by injecting newborn mice.
Collapse
Affiliation(s)
- Brenda D Moore
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Yona Levites
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Guilian Xu
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Hailey Hampton
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Munir F Adamo
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Cara L Croft
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Hunter S Futch
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Corey Moran
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Susan Fromholt
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Christopher Janus
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Pathology, University of Florida, Gainesville, FL 32610 USA.,Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Dennis Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Jada Lewis
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Todd E Golde
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Neurology, College of Medicine, University of Florida, Gainesville FL 32610, USA
| | - David R Borchelt
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|