1
|
Chiang MK, Lin TC, Lin KH, Chang YC, Hsieh-Li HM, Lai DM. Hyperbaric Oxygen Therapy Attenuated the Motor Coordination and Cognitive Impairment of Polyglutamine Spinocerebellar Ataxia SCA17 Mice. CEREBELLUM (LONDON, ENGLAND) 2024; 23:401-417. [PMID: 36943575 DOI: 10.1007/s12311-023-01548-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
Spinocerebellar ataxias (SCAs) are a large and diverse group of autosomal-dominant neurodegenerative diseases. No drugs have been approved for these relentlessly progressive and fatal SCAs. Our previous studies indicate that oxidative stress, neuroinflammation, and neuronal apoptosis are elevated in the SCA17 mice, which are the main therapeutic targets of hyperbaric oxygen treatment (HBOT). HBOT is considered to be an alternative and less invasive therapy for SCAs. In this study, we evaluated the HBOT (2.2 ATA for 14 days) effect and the persistence for the management of SCA17 mice and their wild-type littermates. We found HBOT attenuated the motor coordination and cognitive impairment of SCA17 mice and which persisted for about 1 month after the treatment. The results of several biochemistry and liver/kidney hematoxylin and eosin staining show the HBOT condition has no obvious toxicity in the mice. Immunostaining analyses show that the neuroprotective effect of HBOT could be through the promotion of BDNF production and the amelioration of neuroinflammation. Surprisingly, HBOT executes different effects on the male and female SCA17 mice, including the reduction of neuroinflammation and activation of CaMKII and ERK. This study suggests HBOT is a potential alternative therapeutic treatment for SCA17. Accumulated findings have revealed the similarity in disease pathomechanisms and possible therapeutic strategies in polyQ diseases; therefore, HBOT could be an optional treatment as well as the other polyQ diseases.
Collapse
Affiliation(s)
- Meng-Ke Chiang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ta-Chun Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | - Ya-Chin Chang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| | - Dar-Ming Lai
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Yang Z, Marcoci C, Öztürk HK, Giama E, Yenicelik AG, Slanař O, Linington C, Desai R, Smith KJ. Tissue Hypoxia and Associated Innate Immune Factors in Experimental Autoimmune Optic Neuritis. Int J Mol Sci 2024; 25:3077. [PMID: 38474322 DOI: 10.3390/ijms25053077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Visual loss in acute optic neuritis is typically attributed to axonal conduction block due to inflammatory demyelination, but the mechanisms remain unclear. Recent research has highlighted tissue hypoxia as an important cause of neurological deficits and tissue damage in both multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) and, here, we examine whether the optic nerves are hypoxic in experimental optic neuritis induced in Dark Agouti rats. At both the first and second peaks of disease expression, inflamed optic nerves labelled significantly for tissue hypoxia (namely, positive for hypoxia inducible factor-1α (HIF1α) and intravenously administered pimonidazole). Acutely inflamed nerves were also labelled significantly for innate markers of oxidative and nitrative stress and damage, including superoxide, nitric oxide and 3-nitrotyrosine. The density and diameter of capillaries were also increased. We conclude that in acute optic neuritis, the optic nerves are hypoxic and come under oxidative and nitrative stress and damage. Tissue hypoxia can cause mitochondrial failure and thus explains visual loss due to axonal conduction block. Tissue hypoxia can also induce a damaging oxidative and nitrative environment. The findings indicate that treatment to prevent tissue hypoxia in acute optic neuritis may help to restore vision and protect from damaging reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
- Zhiyuan Yang
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Cristina Marcoci
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Hatice Kübra Öztürk
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800 Prague, Czech Republic
| | - Eleni Giama
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Ayse Gertrude Yenicelik
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800 Prague, Czech Republic
| | - Christopher Linington
- School of Infection and Immunity, The Sir Graeme Davies Building, Glasgow G12 8TA, UK
| | - Roshni Desai
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Kenneth J Smith
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| |
Collapse
|