1
|
Liu W, Liu Q, Zhang Z, Hu Y, Fang J. Integrating network pharmacology and experimental validation to explore the pharmacological mechanism of Astragaloside IV in alleviating urotensin II-mediated renal tubular epithelial cell injury. PLoS One 2024; 19:e0310210. [PMID: 39705287 DOI: 10.1371/journal.pone.0310210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/27/2024] [Indexed: 12/22/2024] Open
Abstract
Renal tubular epithelial cell injury is an important manifestation of chronic kidney disease (CKD). This study aims to explore the mechanism of astragaloside IV (AS-IV) in the treatment of UII-mediated renal tubular epithelial cell injury by integrating network pharmacology and experimental validation. BATMAN, SwissTarget-Prediction and ETCM data bases were used to screen the target proteins of AS-IV. DAVID software was then used to perform GO and KEGG enrichment analysis on these target genes, and STRING and cytoscape were used to construct a protein interaction network. Molecular docking analysis was performed on key genes. The CCK8 assay was applied to detect the cell viability. ELISA, laser confocal, RT-PCR, and Western blot methods were used to detect the expression of cell pathway indicators and inflammatory factors in each group. Network pharmacology analysis found that the cAMP signaling pathway is one of the most important pathways for AS-IV to treat CKD. Molecular docking results showed that the AS-IV can be well embedded in the active pockets of target proteins, such as ALB, VEGFA, AKT1, ROCK1, and DRD2. The cAMP content and expression of GPR-14, PKA, NF-κB, and TGF-β in the UII group and the UII+cAMP agonist group (Forskolin) were all higher than those in the control group (P<0.05). In the UII+SB-611812 group, UII+AS-IV group, UII+losartan group, and UII+cAMP inhibitor (H89) group, the cAMP content and the expressions of GPR-14, PKA, NF-κB and TGF-β were all decreased compared with those in the UII group (P<0.05). In conclusion, AS-IV may improve UII-mediated renal tubular epithelial cell damage by down-regulating the cAMP/PKA signaling pathway.
Collapse
Affiliation(s)
- Wenyuan Liu
- Department of Nephrology, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qianwei Liu
- Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Nephrology, Beijing Daxing District People's Hospital, Daxing, Beijing, China
| | - Ziyuan Zhang
- Department of Nephrology, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yaling Hu
- Department of Nephrology, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jingai Fang
- Department of Nephrology, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
2
|
Hassanein EHM, Ibrahim IM, Abd-Alhameed EK, Sharawi ZW, Jaber FA, Althagafy HS. Nrf2/HO-1 as a therapeutic target in renal fibrosis. Life Sci 2023; 334:122209. [PMID: 37890696 DOI: 10.1016/j.lfs.2023.122209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Chronic kidney disease (CKD) is one of the most prevalent chronic diseases and affects between 10 and 14 % of the world's population. The World Health Organization estimates that by 2040, the disease will be fifth in prevalence. End-stage CKD is characterized by renal fibrosis, which can eventually lead to kidney failure and death. Renal fibrosis develops due to multiple injuries and involves oxidative stress and inflammation. In the human body, nuclear factor erythroid 2-related factor 2 (Nrf2) plays an important role in the expression of antioxidant, anti-inflammatory, and cytoprotective genes, which prevents oxidative stress and inflammation damage. Heme oxygenase (HO-1) is an inducible homolog influenced by heme products and after exposure to cellular stress inducers such as oxidants, inflammatory chemokines/cytokines, and tissue damage as an outcome or downstream of Nrf2 activation. HO-1 is known for its antioxidative properties, which play an important role in regulating oxidative stress. In renal diseases-induced tissue fibrosis and xenobiotics-induced renal fibrosis, Nrf2/HO-1 has been targeted with promising results. This review summarizes these studies and highlights the interesting bioactive compounds that may assist in attenuating renal fibrosis mediated by HO-1 activation. In conclusion, Nrf2/HO-1 signal activation could have a renoprotective effect strategy against CKD caused by oxidative stress, inflammation, and consequent renal fibrosis.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Zeina W Sharawi
- Biological Sciences Department, Faculty of Sciences, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Aranda-Rivera AK, Cruz-Gregorio A, Aparicio-Trejo OE, Ortega-Lozano AJ, Pedraza-Chaverri J. Redox signaling pathways in unilateral ureteral obstruction (UUO)-induced renal fibrosis. Free Radic Biol Med 2021; 172:65-81. [PMID: 34077780 DOI: 10.1016/j.freeradbiomed.2021.05.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
Unilateral ureteral obstruction (UUO) is an experimental rodent model that mimics renal fibrosis associated with obstructive nephropathy in an accelerated manner. After UUO, the activation of the renin-angiotensin system (RAS), nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) and mitochondrial dysfunction lead to reactive oxygen species (ROS) overproduction in the kidney. ROS are secondary messengers able to induce post-translational modifications (PTMs) in redox-sensitive proteins, which activate or deactivate signaling pathways. Therefore, in UUO, it has been proposed that ROS overproduction causes changes in said pathways promoting inflammation, oxidative stress, and apoptosis that contribute to fibrosis development. Furthermore, mitochondrial metabolism impairment has been associated with UUO, contributing to renal damage in this model. Although ROS production and oxidative stress have been studied in UUO, the development of renal fibrosis associated with redox signaling pathways has not been addressed. This review focuses on the current information about the activation and deactivation of signaling pathways sensitive to a redox state and their effect on mitochondrial metabolism in the fibrosis development in the UUO model.
Collapse
Affiliation(s)
- Ana Karina Aranda-Rivera
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Laboratorio F-225, Ciudad de México, 04510, Mexico.
| | - Alfredo Cruz-Gregorio
- Laboratorio F-225, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - Omar Emiliano Aparicio-Trejo
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - Ariadna Jazmín Ortega-Lozano
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| |
Collapse
|
4
|
Kim J, Lee SK, Kim D, Choe H, Jang YJ, Park HS, Kim JH, Hong JP, Lee YJ, Heo Y. Altered Expression of Adrenomedullin 2 and its Receptor in the Adipose Tissue of Obese Patients. J Clin Endocrinol Metab 2020; 105:5603192. [PMID: 31642491 DOI: 10.1210/clinem/dgz066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/02/2019] [Indexed: 01/11/2023]
Abstract
CONTEXT Adrenomedullin 2 (AM2) plays protective roles in the renal and cardiovascular systems. Recent studies in experimental animals demonstrated that AM2 is an adipokine with beneficial effects on energy metabolism. However, there is little information regarding AM2 expression in human adipose tissue. OBJECTIVE To investigate the pattern and regulation of the expression of AM2 and its receptor component in human adipose tissue, in the context of obesity and type 2 diabetes. METHODS We measured metabolic parameters, serum AM2, and expression of ADM2 and its receptor component genes in abdominal subcutaneous and visceral adipose tissue in obese (with or without type 2 diabetes) and normal-weight women. Serum AM2 was assessed before and 6 to 9 months after bariatric surgery. Expression/secretion of AM2 and its receptor were assessed in human adipocytes. RESULTS ADM2 mRNA in both fat depots was higher in obese patients, whether diabetic or not. Although serum AM2 was significantly lower in obese patients, it was not changed after bariatric surgery. AM2 and its receptor complex were predominantly expressed by adipocytes, and the expression of CALCRL, encoding a component of the AM2 receptor complex, was lower in both fat depots of obese patients. Incubating adipocytes with substances mimicking the microenvironment of obese adipose tissue increased ADM2 mRNA but reduced both AM2 secretion into culture media and CALCRL mRNA expression. CONCLUSIONS Our data indicate that AM2 signaling is suppressed in adipose tissue in obesity, involving lower receptor expression and ligand availability, likely contributing to insulin resistance and other aspects of the pathophysiology associated with obesity.
Collapse
Affiliation(s)
- Jimin Kim
- Department of Physiology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Seul Ki Lee
- Department of Physiology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Donguk Kim
- Department of Physiology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Han Choe
- Department of Physiology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Yeon Jin Jang
- Department of Physiology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Hye Soon Park
- Department of Family Medicine, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Jong-Hyeok Kim
- Department of Obstetrics and Gynaecology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Joon Pio Hong
- Department of Plastic Surgery, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Yeon Ji Lee
- Department of Family Medicine, Inha University, College of Medicine, Incheon, 22332, Korea
| | - Yoonseok Heo
- Department of Surgery, Inha University, College of Medicine, Incheon, 22332, Korea
| |
Collapse
|
5
|
Dong H, Zhou Y, Wang Y, Zhou Q, Zhang Y, Gan X, Luo Y, Li R. The protective role of intermedin in promoting angiogenesis during renal fibrosis. Gene 2019; 688:34-43. [DOI: 10.1016/j.gene.2018.11.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/09/2018] [Accepted: 11/16/2018] [Indexed: 01/12/2023]
|
6
|
WareJoncas Z, Campbell JM, Martínez-Gálvez G, Gendron WAC, Barry MA, Harris PC, Sussman CR, Ekker SC. Precision gene editing technology and applications in nephrology. Nat Rev Nephrol 2018; 14:663-677. [PMID: 30089813 PMCID: PMC6591726 DOI: 10.1038/s41581-018-0047-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The expanding field of precision gene editing is empowering researchers to directly modify DNA. Gene editing is made possible using synonymous technologies: a DNA-binding platform to molecularly locate user-selected genomic sequences and an associated biochemical activity that serves as a functional editor. The advent of accessible DNA-targeting molecular systems, such as zinc-finger nucleases, transcription activator-like effectors (TALEs) and CRISPR-Cas9 gene editing systems, has unlocked the ability to target nearly any DNA sequence with nucleotide-level precision. Progress has also been made in harnessing endogenous DNA repair machineries, such as non-homologous end joining, homology-directed repair and microhomology-mediated end joining, to functionally manipulate genetic sequences. As understanding of how DNA damage results in deletions, insertions and modifications increases, the genome becomes more predictably mutable. DNA-binding platforms such as TALEs and CRISPR can also be used to make locus-specific epigenetic changes and to transcriptionally enhance or suppress genes. Although many challenges remain, the application of precision gene editing technology in the field of nephrology has enabled the generation of new animal models of disease as well as advances in the development of novel therapeutic approaches such as gene therapy and xenotransplantation.
Collapse
Affiliation(s)
- Zachary WareJoncas
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jarryd M Campbell
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | - William A C Gendron
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Michael A Barry
- Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA
| | - Peter C Harris
- Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA
| | - Caroline R Sussman
- Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
7
|
Huang S, Ren Y, Wang X, Lazar L, Ma S, Weng G, Zhao J. Application of Ultrasound-Targeted Microbubble Destruction-Mediated Exogenous Gene Transfer in Treating Various Renal Diseases. Hum Gene Ther 2018; 30:127-138. [PMID: 30205715 DOI: 10.1089/hum.2018.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic renal disease or acute renal injury could result in end-stage renal disease or renal failure. Sonoporation, induced by ultrasound-targeted microbubble destruction (UTMD), has evolved as a new technology for gene delivery. It increases the transfection efficiency of the genes into target kidney tissues. Moreover, UTMD-mediated gene delivery can directly repair the damaged tissues or improve the recruitment and homing of stem cells in the recovery of injured tissues, which has the potential to act as a non-viral and effective method to current gene therapy. This article reviews the mechanisms and applications of UTMD in terms of renal disease, including diabetic nephropathy, renal carcinoma, acute kidney injury, renal interstitial fibrosis, nephrotoxic nephritis, urinary stones, and acute rejection.
Collapse
Affiliation(s)
- Shuaishuai Huang
- 1 Urology and Nephrology Institute of Ningbo University, Ningbo Urology and Nephrology Hospital, Ningbo, P.R. China
| | - Yu Ren
- 1 Urology and Nephrology Institute of Ningbo University, Ningbo Urology and Nephrology Hospital, Ningbo, P.R. China
| | - Xue Wang
- 1 Urology and Nephrology Institute of Ningbo University, Ningbo Urology and Nephrology Hospital, Ningbo, P.R. China
| | - Lissy Lazar
- 2 Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, Ningbo, P.R. China
| | - Suya Ma
- 1 Urology and Nephrology Institute of Ningbo University, Ningbo Urology and Nephrology Hospital, Ningbo, P.R. China
| | - Guobin Weng
- 1 Urology and Nephrology Institute of Ningbo University, Ningbo Urology and Nephrology Hospital, Ningbo, P.R. China
| | - Jinshun Zhao
- 2 Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, Ningbo, P.R. China
| |
Collapse
|
8
|
Han WQ, Xu L, Tang XF, Chen WD, Wu YJ, Gao PJ. Membrane rafts-redox signalling pathway contributes to renal fibrosis via modulation of the renal tubular epithelial-mesenchymal transition. J Physiol 2018; 596:3603-3616. [PMID: 29863758 DOI: 10.1113/jp275952] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/25/2018] [Indexed: 01/27/2023] Open
Abstract
KEY POINTS Membrane rafts (MRs)-redox signalling pathway is activated in response to transforming growth factor-β1 (TGF-β1) stimulation in renal tubular cells. This pathway contributes to TGF-1β-induced epithelial-mesenchymal transition (EMT) in renal tubular cells. The the MRs-redox signalling pathway is activated in renal tubular cells isolated from angiotensin II (AngII)-induced hypertensive rats. Inhibition of this pathway attenuated renal inflammation and fibrosis in AngII-induced hypertension. ABSTRACT The membrane rafts (MRs)-redox pathway is characterized by NADPH oxidase subunit clustering and activation through lysosome fusion, V-type proton ATPase subunit E2 (encoded by the Atp6v1e2 gene) translocation and sphingomyelin phosphodiesterase 1 (SMPD1, encoded by the SMPD1 gene) activation. In the present study, we hypothesized that the MRs-redox-derived reactive oxygen species (ROS) are involved in renal inflammation and fibrosis by promoting renal tubular epithelial-mesenchymal transition (EMT). Results show that transforming growth factor-β1 (TGF-β1) acutely induced MR formation and ROS production in NRK-52E cells, a rat renal tubular cell line. In addition, transfection of Atp6v1e2 small hairpin RNAs (shRNA) and SMPD1 shRNA attenuated TGF-β1-induced changes in EMT markers, including E-cadherin, α-smooth muscle actin (α-SMA) and fibroblast-specific protein-1 (FSP-1) in NRK-52E cells. Moreover, Erk1/2 activation may be a downstream regulator of the MRs-redox-derived ROS, because both shRNAs significantly inhibited TGF-β1-induced Erk1/2 phosphorylation. Further in vivo study shows that the renal tubular the MRs-redox signalling pathway was activated in angiotensin II (AngII)-induced hypertension, as indicated by the increased NADPH oxidase subunit Nox4 fraction in the MR domain, SMPD1 activation and increased ROS content in isolated renal tubular cells. Finally, renal transfection of Atp6v1e2 shRNA and SMPD1 shRNA significantly prevented renal fibrosis and inflammation, as indicated by the decrease of α-SMA, fibronectin, collagen I, monocyte chemoattractant protein-1 (MCP-1), intercellular cell adhesion molecule-1 (ICAM-1) and tumour necrosis factor-α (TNF-α) in kidneys from AngII-infused rats. It was concluded that the the MRs-redox signalling pathway is involved in TGF-β1-induced renal tubular EMT and renal inflammation/fibrosis in AngII-induced hypertension.
Collapse
Affiliation(s)
- Wei-Qing Han
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Shanghai Institute of Hypertension, Shanghai, China
| | - Lian Xu
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Feng Tang
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Hypertension, Shanghai, China
| | - Wen-Dong Chen
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Hypertension, Shanghai, China
| | - Yong-Jie Wu
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Hypertension, Shanghai, China
| | - Ping-Jin Gao
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Shanghai Institute of Hypertension, Shanghai, China
| |
Collapse
|
9
|
Qiao X, Wang L, Wang Y, Su X, Qi Y, Fan Y, Peng Z. Intermedin inhibits unilateral ureteral obstruction-induced oxidative stress via NADPH oxidase Nox4 and cAMP-dependent mechanisms. Ren Fail 2018; 39:652-659. [PMID: 28805491 PMCID: PMC6447914 DOI: 10.1080/0886022x.2017.1361839] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
NADPH oxidase Nox4-derived reactive oxygen species (ROS) play important roles in renal fibrosis. Our previous study demonstrated that intermedin (IMD) alleviated unilateral ureteral obstruction (UUO)-induced renal fibrosis by inhibition of ROS. However, the precise mechanisms remain unclear. Herein, we investigated the effect of IMD on Nox4 expression and NADPH oxidase activity in rat UUO model, and explored if these effect were achieved through cAMP-PKA pathway, the important post-receptor signal transduction pathway of IMD, in TGF-β1-stimulated rat proximal tubular cell (NRK-52E). Renal fibrosis was induced by UUO. NRK-52E was exposed to rhTGF-β1 to establish an in vitro model of fibrosis. IMD was overexpressed in the kidney and in NRK-52E by IMD gene transfer. We studied UUO-induced ROS by measuring dihydroethidium levels and lipid peroxidation end-product 4-hydroxynonenal expression. Nox4 expression in the obstructed kidney of UUO rat or in TGF-β1-stimulated NRK-52E was measured by quantitative RT-PCR and Western blotting. We analyzed NADPH oxidase activity using a lucigenin-enhanced chemiluminescence system. We showed that UUO-stimulated ROS production was remarkably attenuated by IMD gene transfer. IMD overexpression inhibited UUO-induced up-regulation of Nox4 and activation of NADPH oxidase. Consistent with in vivo results, TGF-β1-stimulated increase in Nox4 expression and NADPH oxidase activity was blocked by IMD. In NRK-52E, these beneficial effects of IMD were abolished by pretreatment with N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide hydrochloride (H-89), a PKA inhibitor, and mimicked by a cell-permeable cAMP analog dibutyl-cAMP. Our results indicate that IMD exerts anti-oxidant effects by inhibition of Nox4, and the effect can be mediated by cAMP-PKA pathway.
Collapse
Affiliation(s)
- Xi Qiao
- a Department of Nephrology , Second Hospital of Shanxi Medical University , Shanxi , China.,b Shanxi Kidney Disease Institute , Shanxi , China
| | - Lihua Wang
- a Department of Nephrology , Second Hospital of Shanxi Medical University , Shanxi , China.,b Shanxi Kidney Disease Institute , Shanxi , China
| | - Yanhong Wang
- c Department of Microbiology and Immunology , Shanxi Medical University , Taiyuan , Shanxi , China
| | - Xiaole Su
- a Department of Nephrology , Second Hospital of Shanxi Medical University , Shanxi , China.,b Shanxi Kidney Disease Institute , Shanxi , China
| | - Yue Qi
- a Department of Nephrology , Second Hospital of Shanxi Medical University , Shanxi , China.,b Shanxi Kidney Disease Institute , Shanxi , China
| | - Yun Fan
- a Department of Nephrology , Second Hospital of Shanxi Medical University , Shanxi , China.,b Shanxi Kidney Disease Institute , Shanxi , China
| | - Zhiqiang Peng
- a Department of Nephrology , Second Hospital of Shanxi Medical University , Shanxi , China.,b Shanxi Kidney Disease Institute , Shanxi , China
| |
Collapse
|
10
|
Hull TD, Agarwal A, Hoyt K. New Ultrasound Techniques Promise Further Advances in AKI and CKD. J Am Soc Nephrol 2017; 28:3452-3460. [PMID: 28923914 DOI: 10.1681/asn.2017060647] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AKI and CKD are important clinical problems because they affect many patients and the associated diagnostic and treatment paradigms are imperfect. Ultrasound is a cost-effective, noninvasive, and simple imaging modality that offers a multitude of means to improve the diagnosis, monitoring, and treatment of both AKI and CKD, especially considering recent advances in this technique. Ultrasound alone can attenuate AKI and prevent CKD by stimulating the splenic cholinergic anti-inflammatory pathway. Additionally, microbubble contrast agents are improving the sensitivity and specificity of ultrasound for diagnosing kidney disease, especially when these agents are conjugated to ligand-specific mAbs or peptides, which make the dynamic assessment of disease progression and response to treatment possible. More recently, drug-loaded microbubbles have been developed and the load release by ultrasound exposure has been shown to be a highly specific treatment modality, making the potential applications of ultrasound even more promising. This review focuses on the multiple strategies for using ultrasound with and without microbubble technology for enhancing our understanding of the pathophysiology of AKI and CKD.
Collapse
Affiliation(s)
- Travis D Hull
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas; and .,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
11
|
Qiao X, Wang L, Wang Y, Su X, Qiao Y, Fan Y, Peng Z. Intermedin attenuates renal fibrosis by induction of heme oxygenase-1 in rats with unilateral ureteral obstruction. BMC Nephrol 2017; 18:232. [PMID: 28697727 PMCID: PMC5505135 DOI: 10.1186/s12882-017-0659-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 07/05/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Intermedin [IMD, adrenomedullin-2 (ADM-2)] attenuates renal fibrosis by inhibition of oxidative stress. However, the precise mechanisms remain unknown. Heme oxygenase-1 (HO-1), an antioxidant agent, is associated with antifibrogenic effects. ADM is known to induce HO-1. Whether IMD has any effect on HO-1 is unclear. Herein, we determined whether the antifibrotic properties of IMD are mediated by induction of HO-1. METHODS Renal fibrosis was induced by unilateral ureteral obstruction (UUO) performed on male Wistar rats. Rat proximal tubular epithelial cell line (NRK-52E) was exposed to rhTGF-β1 (10 ng/ml) to establish an in vitro model of epithelial-mesenchymal transition (EMT). IMD was over-expressed in vivo and in vitro using the vector pcDNA3.1-IMD. Zinc protoporphyrin (ZnPP) was used to block HO-1 enzymatic activity. IMD effects on HO-1 expression in the obstructed kidney of UUO rat and in TGF-β1-stimulated NRK-52E were analyzed by real-time RT-PCR, Western blotting or immunohistochemistry. HO activity in the obstructed kidney, contralateral kidney of UUO rat and NRK-52E was examined by measuring bilirubin production. Renal fibrosis was determined by Masson trichrome staining and collagen I expression. Macrophage infiltration and IL-6 expression were evaluated using immunohistochemical analysis. In vivo and in vitro EMT was assessed by measuring α-smooth muscle actin (α-SMA) and E-cadherin expression using Western blotting or immunofluorescence, respectively. RESULTS HO-1 expression and HO activity were increased in IMD-treated UUO kidneys or NRK-52E. The obstructed kidneys of UUO rats demonstrated significant interstitial fibrosis on day 7 after operation. In contrast, kidneys that were treated with IMD gene transfer exhibited minimal interstitial fibrosis. The obstructed kidneys of UUO rats also had greater macrophage infiltration and IL-6 expression. IMD restrained infiltration of macrophages and expression of IL-6 in UUO kidneys. The degree of EMT was extensive in obstructed kidneys of UUO rats as indicated by decreased expression of E-cadherin and increased expression of α-SMA. In vitro studies using NRK-52E confirmed these observations. EMT was suppressed by IMD gene delivery. However, all of the above beneficial effects of IMD were eliminated by ZnPP, an inhibitor of HO enzyme activity. CONCLUSION This study demonstrates that IMD attenuates renal fibrosis by induction of HO-1.
Collapse
Affiliation(s)
- Xi Qiao
- Department of Nephrology, Second Hospital of Shanxi Medical University, Shanxi Kidney Disease Institute, 382, WuYi Road, Taiyuan, 030001, Shanxi, People's Republic of China.
| | - Lihua Wang
- Department of Nephrology, Second Hospital of Shanxi Medical University, Shanxi Kidney Disease Institute, 382, WuYi Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, 56, Xinjian Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Xiaole Su
- Department of Nephrology, Second Hospital of Shanxi Medical University, Shanxi Kidney Disease Institute, 382, WuYi Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yufeng Qiao
- Department of Nephrology, Second Hospital of Shanxi Medical University, Shanxi Kidney Disease Institute, 382, WuYi Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yun Fan
- Department of Nephrology, Second Hospital of Shanxi Medical University, Shanxi Kidney Disease Institute, 382, WuYi Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Zhiqiang Peng
- Department of Nephrology, Second Hospital of Shanxi Medical University, Shanxi Kidney Disease Institute, 382, WuYi Road, Taiyuan, 030001, Shanxi, People's Republic of China
| |
Collapse
|
12
|
Lv Y, Zhang SY, Liang X, Zhang H, Xu Z, Liu B, Xu MJ, Jiang C, Shang J, Wang X. Adrenomedullin 2 Enhances Beiging in White Adipose Tissue Directly in an Adipocyte-autonomous Manner and Indirectly through Activation of M2 Macrophages. J Biol Chem 2016; 291:23390-23402. [PMID: 27621315 DOI: 10.1074/jbc.m116.735563] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Indexed: 12/15/2022] Open
Abstract
Adrenomedullin 2 (ADM2) is an endogenous bioactive peptide belonging to the calcitonin gene-related peptide family. Our previous studies showed that overexpression of ADM2 in mice reduced obesity and insulin resistance by increasing thermogenesis in brown adipose tissue. However, the effects of ADM2 in another type of thermogenic adipocyte, beige adipocytes, remain to be understood. The plasma ADM2 levels were inversely correlated with obesity in humans, and adipo-ADM2-transgenic (tg) mice displayed resistance to high-fat diet-induced obesity with increased energy expenditure. Beiging of subcutaneous white adipose tissues (WAT) was more noticeably induced in high-fat diet-fed transgenic mice with adipocyte-ADM2 overexpression (adipo-ADM2-tg mice) than in WT animals. ADM2 treatment in primary rat subcutaneous adipocytes induced beiging with up-regulation of UCP1 and beiging-related marker genes and increased mitochondrial uncoupling respiration, which was mainly mediated by activation of the calcitonin receptor-like receptor (CRLR)·receptor activity-modifying protein 1 (RAMP1) complex and PKA and p38 MAPK signaling pathways. Importantly, this adipocyte-autonomous beiging effect by ADM2 was translatable to human primary adipocytes. In addition, M2 macrophage activation also contributed to the beiging effects of ADM2 through catecholamine secretion. Therefore, our study reveals that ADM2 enhances subcutaneous WAT beiging via a direct effect by activating the CRLR·RAMP1-cAMP/PKA and p38 MAPK pathways in white adipocytes and via an indirect effect by stimulating alternative M2 polarization in macrophages. Through both mechanisms, beiging of WAT by ADM2 results in increased energy expenditure and reduced obesity, suggesting ADM2 as a novel anti-obesity target.
Collapse
Affiliation(s)
- Ying Lv
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Song-Yang Zhang
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Xianyi Liang
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Heng Zhang
- the Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhi Xu
- the Department of General Surgery, Peking University Third Hospital, Beijing 100191, China, and
| | - Bo Liu
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Ming-Jiang Xu
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Changtao Jiang
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China,
| | - Jin Shang
- the Department of Cardiometabolic Disease, Merck Research Laboratories, Merck & Co, Inc., Kenilworth, New Jersey 07033
| | - Xian Wang
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| |
Collapse
|