1
|
Cheng YJG, Chen CC, Cheng CJ. Postnatal renal tubule development: roles of tubular flow and flux. Curr Opin Nephrol Hypertens 2024; 33:518-525. [PMID: 38913022 PMCID: PMC11290981 DOI: 10.1097/mnh.0000000000001007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
PURPOSE OF REVIEW Postnatal renal tubule development is critical to adult kidney function. Several postnatal changes regulate the differentiation and proliferation of renal tubular cells. Here, we review the literature and our efforts on thick ascending limb (TAL) development in Bartter syndrome (BS). RECENT FINDINGS Glomerular filtrate quickly increases after birth, imposing fluid shear stress and circumferential stretch on immature renal tubules. Recent studies showed that kidney organoids under flow (superfusion) have better development of tubular structures and the expression of cilia and solute transporters. These effects are likely mediated by mechanosensors, such as cilia and the piezo1 channel. Improved renal oxygenation and sodium pump-dependent active transport can stimulate mitochondrial respiration and biogenesis. The functional coupling between transport and mitochondria ensures ATP supply for energy-demanding reactions in tubular cells, including cell cycle progression and proliferation. We recently discovered that postnatal renal medulla maturation and TAL elongation are impaired in Clc-k2-deficient BS mice. Primary cultured Clc-k2-deficient TAL cells have G1-S transition and proliferation delay. These developmental defects could be part of the early pathogenesis of BS and worsen the phenotype. SUMMARY Understanding how tubular flow and transepithelial ion fluxes regulate renal tubule development may improve the treatment of congenital renal tubulopathies.
Collapse
Affiliation(s)
- Yi-Jing G. Cheng
- Division of Nephrology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, U.S.A
| | - Chien-Chou Chen
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chih-Jen Cheng
- Division of Nephrology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, U.S.A
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
2
|
Restrepo JM, Torres-Canchala L, Bonventre JV, Arias JC, Ferguson M, Villegas A, Ramirez O, Filler G. Urinary KIM-1 is not correlated with gestational age among 5-year-old children born prematurely. Front Pediatr 2023; 11:1038206. [PMID: 37020658 PMCID: PMC10067877 DOI: 10.3389/fped.2023.1038206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/25/2023] [Indexed: 04/07/2023] Open
Abstract
Background Preterm birth is associated with decreased nephron endowment. Currently, there is no reliable non-invasive biomarker to identify or monitor decreased nephron number in at-risk patients. Urinary Kidney Injury Molecule-1 (KIM-1) is a biomarker of acute and chronic renal injury. We measured urinary KIM-1 among a wide array of other potential biomarkers. Methods We conducted an ambispective cohort study of 5-years-old children born prematurely and healthy controls identified from city schools. Detailed anthropometrics, renal ultrasound dimensions, and biochemical parameters were measured. Urinary KIM-1 was measured using Luminex® technology. Age independent z-scores were calculated and compared. Spearman correlations were used for estimating the association between measures and KIM-1. Results We enrolled 129 children, 97 (75.2%) born pre-term and 32 (24.8%) healthy controls born at full-term. Pre-term patients had significantly lower weight and body surface area than controls. Pre-term patients and controls did not differ in current age, sex, race, height, blood pressure, urinary sodium, fractional sodium excretion, serum creatinine and estimated GFR. All spearman correlation between KIM-1 and gestational age, renal and serum measurements were weak without statistical significance. Conclusion In 5-year-old children born prematurely, KIM-1 was not correlated with gestational age. Further prospective studies need to confirm this finding.
Collapse
Affiliation(s)
- Jaime M. Restrepo
- Pediatric Nephrology Service, Fundación Valle del Lili, Cali, Colombia
| | - Laura Torres-Canchala
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia
- Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | | | | | - Michael Ferguson
- Pediatric Nephrology Service, Boston Children Hospital, Boston, United States
| | - Adriana Villegas
- Department of Pathology and Laboratory Medicine, Fundación Valle del Lili, Cali, Colombia
| | - Oscar Ramirez
- Department of Pediatrics, Centro Médico Imbanaco de Cali, Cali, Colombia
- Fundación POHEMA, Cali, Colombia
| | - Guido Filler
- TheLilibeth Caberto Kidney Clinical Research Unit, Western University, London, ON, Canada
| |
Collapse
|
3
|
Fetal growth restriction followed by very preterm birth is associated with smaller kidneys but preserved kidney function in adolescence. Pediatr Nephrol 2022; 38:1855-1866. [PMID: 36409369 PMCID: PMC10154253 DOI: 10.1007/s00467-022-05785-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/02/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Preterm birth and fetal growth restriction (FGR) are associated with structural and functional kidney changes, increasing long-term risk for chronic kidney disease and hypertension. However, recent studies in preterm children are conflicting, indicating structural changes but normal kidney function. This study therefore assessed kidney structure and function in a cohort of adolescents born very preterm with and without verified FGR. METHODS Adolescents born very preterm with FGR and two groups with appropriate birthweight (AGA) were included; one matched for gestational week at birth and one born at term. Cortical and medullary kidney volumes and T1 and T2* mapping values were assessed by magnetic resonance imaging. Biochemical markers of kidney function and renin-angiotensin-aldosterone system (RAAS) activation were analyzed. RESULTS Sixty-four adolescents were included (13-16 years; 48% girls). Very preterm birth with FGR showed smaller total (66 vs. 75 ml/m2; p = 0.01) and medullary volume (19 vs. 24 ml/m2; p < 0.0001) compared to term AGA. Corticomedullary volume ratio decreased from preterm FGR (2.4) to preterm AGA (2.2) to term AGA (1.9; p = 0.004). There were no differences in T1 or T2* values (all p ≥ 0.34) or in biochemical markers (all p ≥ 0.12) between groups. CONCLUSIONS FGR with abnormal fetal blood flow followed by very preterm birth is associated with smaller total kidney and medullary kidney volumes, but not with markers of kidney dysfunction or RAAS activation in adolescence. Decreased total kidney and medullary volumes may still precede a long-term decrease in kidney function, and potentially be used as a prognostic marker. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
|
4
|
Chainoglou A, Chrysaidou K, Kotsis V, Stabouli S. Preterm Birth, Kidney Function and Cardiovascular Disease in Children and Adolescents. CHILDREN 2022; 9:children9081130. [PMID: 36010021 PMCID: PMC9406522 DOI: 10.3390/children9081130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022]
Abstract
Over recent decades, there has been a global increase in preterm birth rate, which constitutes about 11% of total births worldwide. The present review aims to summarize the current knowledge on the long-term consequences of prematurity on renal and cardiovascular development and function. Recent literature supports that prematurity, intrauterine growth restriction or low birth weight (LBW) may have an adverse impact on the development of multiple organ systems, predisposing to chronic diseases in childhood and adulthood, such as arterial hypertension and chronic kidney disease. According to human autopsy and epidemiological studies, children born preterm have a lower nephron number, decreased kidney size and, in some cases, affected renal function. The origin of hypertension in children and adults born preterm seems to be multifactorial as a result of alterations in renal, cardiac and vascular development and function. The majority of the studies report increased systolic and diastolic blood pressure (BP) in individuals born preterm compared to full term. The early prevention and detection of chronic non-communicable diseases, which start from childhood and track until adulthood in children with a history of prematurity or LBW, are important.
Collapse
Affiliation(s)
- Athanasia Chainoglou
- 1st Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University Thessaloniki, Hippokratio Hospital, 54642 Thessaloniki, Greece; (A.C.); (K.C.)
| | - Katerina Chrysaidou
- 1st Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University Thessaloniki, Hippokratio Hospital, 54642 Thessaloniki, Greece; (A.C.); (K.C.)
| | - Vasilios Kotsis
- Hypertension-24h ABPM ESH Center of Excellence, 3rd Department of Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, 56429 Thessaloniki, Greece;
| | - Stella Stabouli
- 1st Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University Thessaloniki, Hippokratio Hospital, 54642 Thessaloniki, Greece; (A.C.); (K.C.)
- Correspondence: ; Tel.: +30-697-643-3767
| |
Collapse
|
5
|
Restrepo JM, Torres-Canchala L, Cadavid JCA, Ferguson M, Villegas A, Ramirez O, Rengifo M, Filler G. Renal volume of five-year-old preterm children are not different than full-term controls. J Pediatr (Rio J) 2022; 98:282-288. [PMID: 34506749 PMCID: PMC9431995 DOI: 10.1016/j.jped.2021.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE In previous studies, smaller renal volumes were reported in prematurely born infants, however, these renal volumes were not corrected for body surface area, the main determinant of renal size. Given the rapid growth of the renal cortex after premature birth, the authors hypothesized that corrected volumes would not differ from healthy controls. METHODS Ambispective cohort study with prospective follow-up of prematurely born babies in a large specialized center and retrospectively recruited healthy control group. Children were assessed for renal length and renal volumes at age 5 by three independent ultrasonographers. Detailed anthropometry, blood pressure and renal function were also obtained. Age independent z-scores were calculated for all parameters and compared using descriptive statistics. RESULTS Eighty-nine premature study participants (median 32 weeks gestational age) and 33 healthy controls (median 38 weeks gestational age) were studied. Study participants did not differ in age, sex, Afro-Colombian descent, height, blood pressure, serum creatinine, or new Schwartz eGFR. Premature study participants had a significantly lower weight (17.65 ± 2.93 kg) than controls (19.05 ± 2.81 kg, p = 0.0072) and lower body surface area. The right renal volumes were significantly smaller (39.4 vs 43.4 mL), but after correction for body surface area, the renal volume and renal length z-scores were identical for both kidneys (mean right kidney -0.707 vs -0.507; mean left kidney -0.498 vs -0.524, respectively). CONCLUSION Renal volumes need to be corrected to body surface area. After correction for body surface area, 5-year-old healthy and prematurely born children have comparable renal volumes.
Collapse
Affiliation(s)
- Jaime M Restrepo
- Pediatric Nephrology Service, Fundación Valle del Lili, Cali, Colombia
| | | | | | - Michael Ferguson
- Pediatric Nephrology Service, Boston Children Hospital, Boston, United States
| | - Adriana Villegas
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia
| | - Oscar Ramirez
- Department of Pediatrics Centro Médico Imbanaco de Cali, Cali, Colombia; Fundación POHEMA, Colombia
| | - Martin Rengifo
- Radiology Service, Fundación Valle del Lili, Cali, Colombia
| | - Guido Filler
- Departments of Paediatrics, Medicine, and Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada; The Lilibeth Caberto Kidney Clinical Research Unit, Western University, London, Canada.
| |
Collapse
|
6
|
Alkhalefah A, Eyre HJ, Hussain R, Glazier JD, Ashton N. Impact of maternal intermittent fasting during pregnancy on cardiovascular, metabolic and renal function in adult rat offspring. PLoS One 2022; 17:e0258372. [PMID: 35271586 PMCID: PMC8912128 DOI: 10.1371/journal.pone.0258372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Pregnant Muslim women are exempt from fasting during Ramadan; however a majority are reported to fast. The impact of this form of maternal intermittent fasting (IF) on fetal development and offspring health is not well defined. Using a rat model, we have shown previously that maternal IF results in fetal growth restriction accompanied by changes in placental nutrient transport function. The aim of this study was to assess cardiovascular, metabolic and renal function in adult offspring of IF-exposed dams. Food was withheld from Wistar rats from 17:00 to 09:00 daily throughout pregnancy; controls had ad libitum access to food. Birth weight was unaffected; however male IF pups grew more slowly up to 10 weeks of age (P < 0.01) whereas IF females matched their control counterparts. Systolic blood pressure (SBP), glucose tolerance and basal renal function at 14 weeks were not affected by IF exposure. When offered saline solutions (0.9–2.1%) to drink, females showed a greater salt preference than males (P < 0.01); however there were no differences between dietary groups. A separate group of pups was weaned onto a 4% NaCl diet. SBP increased in IF pups sooner, at 7 weeks (P < 0.01), than controls which became hypertensive from 10 weeks. Renal function did not appear to differ; however markers of renal injury were elevated in IF males (P < 0.05). Maternal IF does not affect resting cardiovascular, metabolic and renal function; but when challenged by dietary salt load male IF offspring are more prone to renal injury.
Collapse
Affiliation(s)
- Alaa Alkhalefah
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, St. Mary’s Hospital, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Heather J. Eyre
- Divison of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Rezwana Hussain
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, St. Mary’s Hospital, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Jocelyn D. Glazier
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Nick Ashton
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Voggel J, Mohr J, Nüsken KD, Dötsch J, Nüsken E, Alejandre Alcazar MA. Translational insights into mechanisms and preventive strategies after renal injury in neonates. Semin Fetal Neonatal Med 2022; 27:101245. [PMID: 33994314 DOI: 10.1016/j.siny.2021.101245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Adverse perinatal circumstances can cause acute kidney injury (AKI) and contribute to chronic kidney disease (CKD). Accumulating evidence indicate that a wide spectrum of perinatal conditions interferes with normal kidney development and ultimately leads to aberrant kidney structure and function later in life. The present review addresses the lack of mechanistic knowledge with regard to perinatal origins of CKD and provides a comprehensive overview of pre- and peri-natal insults, including genetic predisposition, suboptimal nutritional supply, obesity and maternal metabolic disorders as well as placental insufficiency leading to intrauterine growth restriction (IUGR), prematurity, infections, inflammatory processes, and the need for life-saving treatments (e.g. oxygen supplementation, mechanical ventilation, medications) in neonates. Finally, we discuss future preventive, therapeutic, and regenerative directions. In summary, this review highlights the perinatal vulnerability of the kidney and the early origins of increased susceptibility toward AKI and CKD during postnatal life. Promotion of kidney health and prevention of disease require the understanding of perinatal injury in order to optimize perinatal micro- and macro-environments and enable normal kidney development.
Collapse
Affiliation(s)
- Jenny Voggel
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Pediatric and Adolescent Medicine, Germany; University of Cologne, Faculty of Medicine, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Germany
| | - Jasmine Mohr
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Translational Experimental Pediatrics - Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, Germany; University of Cologne, Faculty of Medicine, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Germany
| | - Kai-Dietrich Nüsken
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Pediatric and Adolescent Medicine, Germany
| | - Jörg Dötsch
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Pediatric and Adolescent Medicine, Germany
| | - Eva Nüsken
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Pediatric and Adolescent Medicine, Germany
| | - Miguel A Alejandre Alcazar
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Translational Experimental Pediatrics - Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, Germany; University of Cologne, Faculty of Medicine, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Germany; Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Faculty of Medicine, University Hospital Cologne Cologne, Germany; Institute for Lung Health, University of Giessen and Marburg Lung Centre (UGMLC), Member of the German Centre for Lung Research (DZL), Gießen, Germany.
| |
Collapse
|
8
|
|
9
|
Lumbers ER, Kandasamy Y, Delforce SJ, Boyce AC, Gibson KJ, Pringle KG. Programming of Renal Development and Chronic Disease in Adult Life. Front Physiol 2020; 11:757. [PMID: 32765290 PMCID: PMC7378775 DOI: 10.3389/fphys.2020.00757] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022] Open
Abstract
Chronic kidney disease (CKD) can have an insidious onset because there is a gradual decline in nephron number throughout life. There may be no overt symptoms of renal dysfunction until about two thirds or more of the nephrons have been destroyed and glomerular filtration rate (GFR) falls to below 25% of normal (often in mid-late life) (Martinez-Maldonaldo et al., 1992). Once End Stage Renal Disease (ESRD) has been reached, survival depends on renal replacement therapy (RRT). CKD causes hypertension and cardiovascular disease; and hypertension causes CKD. Albuminuria is also a risk factor for cardiovascular disease. The age of onset of CKD is partly determined during fetal life. This review describes the mechanisms underlying the development of CKD in adult life that results from abnormal renal development caused by an adverse intrauterine environment. The basis of this form of CKD is thought to be mainly due to a reduction in the number of nephrons formed in utero which impacts on the age dependent decline in glomerular function. Factors that affect the risk of reduced nephron formation during intrauterine life are discussed and include maternal nutrition (malnutrition and obesity, micronutrients), smoking and alcohol, use of drugs that block the maternal renin-angiotensin system, glucocorticoid excess and maternal renal dysfunction and prematurity. Since CKD, hypertension and cardiovascular disease add to the disease burden in the community we recommend that kidney size at birth should be recorded using ultrasound and those individuals who are born premature or who have small kidneys at this time should be monitored regularly by determining GFR and albumin:creatinine clearance ratio. Furthermore, public health measures aimed at limiting the prevalence of obesity and diabetes mellitus as well as providing advice on limiting the amount of protein ingested during a single meal, because they are all associated with increased glomerular hyperfiltration and subsequent glomerulosclerosis would be beneficial.
Collapse
Affiliation(s)
- Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Yoga Kandasamy
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,Department of Neonatology, Townsville University Hospital, Douglas, QLD, Australia
| | - Sarah J Delforce
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Amanda C Boyce
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Karen J Gibson
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|