1
|
Zoccali C, Mallamaci F, Lightstone L, Jha V, Pollock C, Tuttle K, Kotanko P, Wiecek A, Anders HJ, Remuzzi G, Kalantar-Zadeh K, Levin A, Vanholder R. A new era in the science and care of kidney diseases. Nat Rev Nephrol 2024; 20:460-472. [PMID: 38575770 DOI: 10.1038/s41581-024-00828-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 04/06/2024]
Abstract
Notable progress in basic, translational and clinical nephrology research has been made over the past five decades. Nonetheless, many challenges remain, including obstacles to the early detection of kidney disease, disparities in access to care and variability in responses to existing and emerging therapies. Innovations in drug development, research technologies, tissue engineering and regenerative medicine have the potential to improve patient outcomes. Exciting prospects include the availability of new drugs to slow or halt the progression of chronic kidney disease, the development of bioartificial kidneys that mimic healthy kidney functions, and tissue engineering techniques that could enable transplantable kidneys to be created from the cells of the recipient, removing the risk of rejection. Cell and gene therapies have the potential to be applied for kidney tissue regeneration and repair. In addition, about 30% of kidney disease cases are monogenic and could potentially be treated using these genetic medicine approaches. Systemic diseases that involve the kidney, such as diabetes mellitus and hypertension, might also be amenable to these treatments. Continued investment, communication, collaboration and translation of innovations are crucial to realize their full potential. In addition, increasing sophistication in exploring large datasets, implementation science, and qualitative methodologies will improve the ability to deliver transformational kidney health strategies.
Collapse
Affiliation(s)
- Carmine Zoccali
- Kidney Research Institute, New York City, NY, USA.
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy.
- Associazione Ipertensione Nefrologia Trapianto Kidney (IPNET), c/o Nefrologia, Grande Ospedale Metropolitano, Reggio Calabria, Italy.
| | - Francesca Mallamaci
- Nephrology, Dialysis and Transplantation Unit Azienda Ospedaliera "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
- CNR-IFC, Institute of Clinical Physiology, Research Unit of Clinical Epidemiology and Physiopathology of Kidney Diseases and Hypertension of Reggio Calabria, Reggio Calabria, Italy
| | - Liz Lightstone
- Department of Immunology and Inflammation, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Vivek Jha
- George Institute for Global Health, UNSW, New Delhi, India
- School of Public Health, Imperial College, London, UK
- Prasanna School of Public Health, Manipal Academy of Medical Education, Manipal, India
| | - Carol Pollock
- Kolling Institute, Royal North Shore Hospital University of Sydney, Sydney, NSW, Australia
| | - Katherine Tuttle
- Providence Medical Research Center, Providence Inland Northwest, Spokane, Washington, USA
- Department of Medicine, University of Washington, Seattle, Spokane, Washington, USA
- Kidney Research Institute, Institute of Translational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Peter Kotanko
- Kidney Research Institute, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, 40-027, Katowice, Poland
| | - Hans Joachim Anders
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig Maximilians University Munich, Munich, Germany
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCSS, Bergamo, Italy
| | - Kamyar Kalantar-Zadeh
- Harold Simmons Center for Kidney Disease Research and Epidemiology, California, USA
- Division of Nephrology and Hypertension, University of California Irvine, School of Medicine, Orange, Irvine, USA
- Veterans Affairs Healthcare System, Division of Nephrology, Long Beach, California, USA
| | - Adeera Levin
- University of British Columbia, Vancouver General Hospital, Division of Nephrology, Vancouver, British Columbia, Canada
- British Columbia, Provincial Kidney Agency, Vancouver, British Columbia, Canada
| | - Raymond Vanholder
- European Kidney Health Alliance, Brussels, Belgium
- Nephrology Section, Department of Internal Medicine and Paediatrics, University Hospital Ghent, Ghent, Belgium
| |
Collapse
|
2
|
Qing J, Zheng F, Zhi H, Yaigoub H, Tirichen H, Li Y, Zhao J, Qiang Y, Li Y. Identification of Unique Genetic Biomarkers of Various Subtypes of Glomerulonephritis Using Machine Learning and Deep Learning. Biomolecules 2022; 12:biom12091276. [PMID: 36139115 PMCID: PMC9496457 DOI: 10.3390/biom12091276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Objective: Identification of potential genetic biomarkers for various glomerulonephritis (GN) subtypes and discovering the molecular mechanisms of GN. (2) Methods: four microarray datasets of GN were downloaded from Gene Expression Omnibus (GEO) database and merged to obtain the gene expression profiles of eight GN subtypes. Then, differentially expressed immune-related genes (DIRGs) were identified to explore the molecular mechanisms of GN, and single-sample gene set enrichment analysis (ssGSEA) was performed to discover the abnormal inflammation in GN. In addition, a nomogram model was generated using the R package "glmnet", and the calibration curve was plotted to evaluate the predictive power of the nomogram model. Finally, deep learning (DL) based on a multilayer perceptron (MLP) network was performed to explore the characteristic genes for GN. (3) Results: we screened out 274 common up-regulated or down-regulated DIRGs in the glomeruli and tubulointerstitium. These DIRGs are mainly involved in T-cell differentiation, the RAS signaling pathway, and the MAPK signaling pathway. ssGSEA indicates that there is a significant increase in DC (dendritic cells) and macrophages, and a significant decrease in neutrophils and NKT cells in glomeruli, while monocytes and NK cells are increased in tubulointerstitium. A nomogram model was constructed to predict GN based on 7 DIRGs, and 20 DIRGs of each subtype of GN in glomeruli and tubulointerstitium were selected as characteristic genes. (4) Conclusions: this study reveals that the DIRGs are closely related to the pathogenesis of GN and could serve as genetic biomarkers in GN. DL further identified the characteristic genes that are essential to define the pathogenesis of GN and develop targeted therapies for eight GN subtypes.
Collapse
Affiliation(s)
- Jianbo Qing
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan 030001, China
| | - Fang Zheng
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030001, China
| | - Huiwen Zhi
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan 030001, China
| | - Hasnaa Yaigoub
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030001, China
| | - Hasna Tirichen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030001, China
| | - Yaheng Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan 030001, China
- Laboratory for Molecular Diagnosis and Treatment of Kidney Disease, Shanxi Provincial People’s Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan 030001, China
| | - Juanjuan Zhao
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030001, China
| | - Yan Qiang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030001, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan 030001, China
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan 030001, China
- Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan 030001, China
- Academy of Microbial Ecology, Shanxi Medical University, Taiyuan 030001, China
- Correspondence:
| |
Collapse
|