1
|
Zhang S, Zhang C, Fan M, Chen T, Yan H, Shi N, Chen Y. Neuromodulation and Functional Gastrointestinal Disease. Neuromodulation 2024; 27:243-255. [PMID: 37690016 DOI: 10.1016/j.neurom.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/10/2023] [Accepted: 08/03/2023] [Indexed: 09/11/2023]
Abstract
INTRODUCTION Functional gastrointestinal disorders (FGIDs) are common, and they severely impair an individual's quality of life. The mechanism of pathogenesis and the effective treatments for FGIDs remain elusive. Neuromodulation-a relatively new treatment-has exhibited a good therapeutic effect on FGIDs, although there are different methods for different symptoms of FGIDs. MATERIALS AND METHODS We used PubMed to review the history of neuromodulation for the treatment of FGIDs and to review several recently proposed neuromodulation approaches with improved effects on FGIDs. CONCLUSION Electroacupuncture, transcutaneous electroacupuncture, transcutaneous auricular vagal nerve stimulation, sacral nerve stimulation (SNS) (which relies on vagal nerve stimulation), and gastric electrical stimulation (which works through the modulation of slow waves generated by the interstitial cells of Cajal), in addition to the noninvasive neurostimulation alternative approach method of SNS-tibial nerve stimulation and transcutaneous electrical stimulation (which is still in its infancy), are some of the proposed neuromodulation approaches with improved effects on FGIDs. This review has discussed some critical issues related to the selection of stimulation parameters and the underlying mechanism and attempts to outline future research directions backed by the existing literature.
Collapse
Affiliation(s)
- Shuhui Zhang
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Can Zhang
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Mingwei Fan
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Tan Chen
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Hui Yan
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Ning Shi
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yan Chen
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
2
|
Shlobin NA, Rosenow JM. Ethical Considerations in the Implantation of Neuromodulatory Devices. Neuromodulation 2022; 25:222-231. [PMID: 35125141 DOI: 10.1111/ner.13357] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/26/2020] [Accepted: 12/21/2020] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Neuromodulatory devices are increasingly used by neurosurgeons to manage a variety of chronic conditions. Given their potential benefits, it is imperative to create clear ethical guidelines for the use of these devices. We present a tiered ethical framework for neurosurgeon recommendations for the use of neuromodulatory devices. MATERIALS AND METHODS We conducted a literature review to identify factors neurosurgeons should consider when choosing to offer a neuromodulatory device to a patient. RESULTS Neurosurgeons must weigh reductions in debilitating symptoms, improved functionality, and preserved quality of life against risks for intraoperative complications and adverse events due to stimulation or the device itself. Neurosurgeons must also evaluate whether patients and families will maintain responsibility for the management of neuromodulatory devices. Consideration of these factors should occur on an axis of resource allocation, ranging from provision of neuromodulatory devices to those with greatest potential benefit in resource-limited settings to provision of neuromodulatory devices to all patients with indications in contexts without resource limitations. Neurosurgeons must also take action to promote device effectiveness throughout the duration of care. CONCLUSIONS Weighing risks and benefits of providing neuromodulatory devices and assessing ability to remain responsible for the devices on the level of the individual patient indicate which patients are most likely to achieve benefit from these devices. Consideration of these factors on an axis of resource allocation will allow for optimal provision of neuromodulatory devices to patients in settings of varied resources. Neurosurgeons play a primary role in promoting the effectiveness of these devices.
Collapse
Affiliation(s)
- Nathan A Shlobin
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| | - Joshua M Rosenow
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
3
|
François M, Torres H, Huesing C, Zhang R, Saurage C, Lee N, Qualls-Creekmore E, Yu S, Morrison CD, Burk D, Berthoud HR, Münzberg H. Sympathetic innervation of the interscapular brown adipose tissue in mouse. Ann N Y Acad Sci 2019; 1454:3-13. [PMID: 31184376 PMCID: PMC6810755 DOI: 10.1111/nyas.14119] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/05/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022]
Abstract
The recent discovery of significant brown fat depots in adult humans has revived discussion of exploiting brown fat thermogenesis in the control of energy balance and body weight. The sympathetic nervous system (SNS) has a key role in the activation of brown fat and functional mapping of its components will be crucial for the development of specific neuromodulation techniques. The mouse is an important species used for molecular genetic modulations, but its small size is not ideal for anatomical dissections, thus brown fat innervation studies are mostly available in larger rodents such as rats and hamsters. Here, we use pseudorabies virus retrograde tracing, whole tissue clearing, and confocal/light sheet microscopy to show the location of pre- and postganglionic neurons selectively innervating the interscapular brown adipose tissue (iBAT) in the mouse. Using iDISCO whole tissue clearing, we identified iBAT projecting postganglionic neurons in the caudal parts of the ipsilateral fused stellate/T1, as well as the T2-T5 sympathetic chain ganglia and preganglionic neurons between levels T2 and T6 of the ipsilateral spinal cord. The methodology enabled high-resolution imaging and 3D rendering of the specific SNS innervation of iBAT and will be helpful to discern peripheral nervous system innervation of other organs and tissues.
Collapse
Affiliation(s)
- Marie François
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Hayden Torres
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Clara Huesing
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Rui Zhang
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Carson Saurage
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Nathan Lee
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Emily Qualls-Creekmore
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Sangho Yu
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Christopher D Morrison
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - David Burk
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Hans Rudolf Berthoud
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Heike Münzberg
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| |
Collapse
|
4
|
Cozzens JW. The Surgical Technique of Vagus Nerve Stimulator Implantation. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|