1
|
Ho JS, Poon C, North R, Grubb W, Lempka S, Bikson M. A Visual and Narrative Timeline Review of Spinal Cord Stimulation Technology and US Food and Drug Administration Milestones. Neuromodulation 2024; 27:1020-1025. [PMID: 38970616 DOI: 10.1016/j.neurom.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 07/08/2024]
Abstract
OBJECTIVES The aim of this study was to present key technologic and regulatory milestones in spinal cord stimulation (SCS) for managing chronic pain on a narrative timeline with visual representation, relying on original sources to the extent possible. MATERIALS AND METHODS We identified technical advances in SCS that facilitated and enhanced treatment on the basis of scientific publications and approvals from the United States (US) Food and Drug Administration (FDA). We presented milestones limited to first use in key indications and in the context of new technology validation. We focused primarily on pain management, but other indications (eg, motor disorder in multiple sclerosis) were included when they affected technology development. RESULTS We developed a comprehensive visual and narrative timeline of SCS technology and US FDA milestones. Since its conception in the 1960s, the science and technology of SCS neuromodulation have continuously evolved. Advances span lead design (from paddle-type to percutaneous, and increased electrode contacts) and stimulator technology (from wireless power to internally powered and rechargeable, with miniaturized components, and programmable multichannel devices), with expanding stimulation program flexibility (such as burst and kilohertz stimulation frequencies), as well as usage features (such as remote programming and magnetic resonance imaging conditional compatibility). CONCLUSIONS This timeline represents the evolution of SCS technology alongside expanding FDA-approved indications for use.
Collapse
Affiliation(s)
- Johnson S Ho
- Department of Anesthesiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| | - Cynthia Poon
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Richard North
- The Neuromodulation Foundation, Inc, Baltimore, MD, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William Grubb
- Department of Anesthesiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Scott Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| |
Collapse
|
2
|
Cheng Y, Xie D, Han Y, Guo S, Sun Z, Jing L, Man W, Liu D, Yang K, Lei D, Meng Z, Zhang H, Wang G, Wu W, Wang G, Lu Y. Precise management system for chronic intractable pain patients implanted with spinal cord stimulation based on a remote programming platform: study protocol for a randomized controlled trial (PreMaSy study). Trials 2023; 24:580. [PMID: 37691092 PMCID: PMC10494385 DOI: 10.1186/s13063-023-07595-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Spinal cord stimulation (SCS) is a surgical technique used in patients with chronic intractable pain, and its effectiveness and safety have been validated by multiple studies. However, to maintain an optimal and steady long-term effect is still challenging. Here, we report a new management paradigm integrating smartphone application and remote programming. Chronic pain patients with SCS implants can monitor their pain status on the phone and change stimulation parameters accordingly. The PreMaSy study is a randomized controlled trial to evaluate the clinical effectiveness and safety of this precise management system. METHODS Patients with chronic intractable pain will be screened for eligibility, and 82 participants are anticipated to be enrolled in this trial. After the electrode implantation, the stimulation effectiveness will be tested. Participants with a reduction of more than 50% in the visual analog scale (VAS) will receive implantation of an implantable pulse generator and randomized (1:1) into the experimental group or control group. All participants will be asked to take online follow-ups and complete assessments using a smartphone application. Daily pain characteristic assessments and monthly quality of life questionnaires are integrated into the App, and participants will be required to complete these assessments. The daily VAS for pain intensity will be monitored and a threshold will be set based on baseline VAS score. The interventional appointment will be scheduled once the threshold is reached. The primary outcome is the health condition and quality of life assessed by the five-level EuroQol five-dimensional questionnaire (EQ-5D-5L). Utility values of EQ-5D-5L will be assessed at baseline and 1, 3, and 6 months post-operative. DISCUSSION The PreMaSy study aims to evaluate the effectiveness and safety of a novel App-based, patient-centered, self-assessment management system for chronic intractable pain. A randomized controlled trial is designed to test the non-inferiority of this precise management system compared to the monthly online follow-ups. It is also expected to yield valuable experiences regarding precision medicine. TRIAL REGISTRATION ClinicalTrials.gov NCT05761392. Registered on March 07, 2023.
Collapse
Affiliation(s)
| | - Duo Xie
- Air Force Medical Center PLA, Beijing, China
| | - Yan Han
- Department of Neurology Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Siying Guo
- School of Medicine, Tsinghua University, Beijing, China
| | - Zhenxing Sun
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Linkai Jing
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Weitao Man
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Dongkang Liu
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Kaiyuan Yang
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Dan Lei
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhe Meng
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Huifang Zhang
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Guoqin Wang
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Weiwei Wu
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Guihuai Wang
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Yang Lu
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
- Institute for Precision Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Berfelo T, van den Berg B, Krabbenbos IP, de Beer MF, Buitenweg JR. Exploring Psychophysical and Neurophysiological Responses to Intra-Epidermal Electrical Stimuli in Patients With Persistent Spinal Pain Syndrome Type 2 with a Spinal Cord Stimulator. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083629 DOI: 10.1109/embc40787.2023.10340377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
There is a lack of measures that provide insights into how spinal cord stimulation (SCS) modulates nociceptive function in patients with persistent spinal pain syndrome type 2 (PSPS-T2). Recently, we observed altered nociceptive detection thresholds (NDTs) in response to intra-epidermal electrical stimulation (IES) on the feet of PSPS-T2 patients when dorsal root ganglion stimulation was turned on. Furthermore, we observed altered NDTs and evoked potentials (EPs) in response to IES on the hands of PSPS-T2 patients. To explore whether EPs were obstructed by SCS artifacts, we applied IES twice to the hands of patients with SCS turned on (SCS-ON/ON group). To explore possible confounding effects of SCS outside the stimulated area, we repeated IES on the hands of these patients, once with SCS turned off and subsequently once with SCS turned on (SCS-OFF/ON group). The results demonstrated that EPs were not obstructed by SCS artifacts. Additionally, NDTs and EPs did not significantly change between measurements in the SCS-ON/ON and the SCS-OFF/ON groups. Therefore, the results suggested that possible confounding effects of SCS outside the nociceptive system did not interfere with the detection task performance. This work warrants further exploration of NDT-EP phenomena in response to IES at the painful feet of patients.Clinical Relevance-This work contributes to developing a clinical tool to explore psychophysical and neurophysiological biomarkers for observing modulating effects of SCS in patients with PSPS-T2.
Collapse
|