1
|
Mihailescu S, Hlava Q, Cook PA, Mandelli ML, Lee SE, Boeve BF, Dickerson BC, Gorno-Tempini ML, Rogalski E, Grossman M, Gee J, McMillan CT, Olm CA. Boundary-based registration improves sensitivity for detecting hypoperfusion in sporadic frontotemporal lobar degeneration. Front Neurol 2024; 15:1452944. [PMID: 39233675 PMCID: PMC11371585 DOI: 10.3389/fneur.2024.1452944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Frontotemporal lobar degeneration (FTLD) is associated with FTLD due to tau (FTLD-tau) or TDP (FTLD-TDP) inclusions found at autopsy. Arterial Spin Labeling (ASL) MRI is often acquired in the same session as a structural T1-weighted image (T1w), enabling detection of regional changes in cerebral blood flow (CBF). We hypothesize that ASL-T1w registration with more degrees of freedom using boundary-based registration (BBR) will better align ASL and T1w images and show increased sensitivity to regional hypoperfusion differences compared to manual registration in patient participants. We hypothesize that hypoperfusion will be associated with a clinical measure of disease severity, the FTLD-modified clinical dementia rating scale sum-of-boxes (FTLD-CDR). Materials and methods Patients with sporadic likely FTLD-tau (sFTLD-tau; N = 21), with sporadic likely FTLD-TDP (sFTLD-TDP; N = 14), and controls (N = 50) were recruited from the Connectomic Imaging in Familial and Sporadic Frontotemporal Degeneration project (FTDHCP). Pearson's Correlation Coefficients (CC) were calculated on cortical vertex-wise CBF between each participant for each of 3 registration methods: (1) manual registration, (2) BBR initialized with manual registration (manual+BBR), (3) and BBR initialized using FLIRT (FLIRT+BBR). Mean CBF was calculated in the same regions of interest (ROIs) for each registration method after image alignment. Paired t-tests of CC values for each registration method were performed to compare alignment. Mean CBF in each ROI was compared between groups using t-tests. Differences were considered significant at p < 0.05 (Bonferroni-corrected). We performed linear regression to relate FTLD-CDR to mean CBF in patients with sFTLD-tau and sFTLD-TDP, separately (p < 0.05, uncorrected). Results All registration methods demonstrated significant hypoperfusion in frontal and temporal regions in each patient group relative to controls. All registration methods detected hypoperfusion in the left insular cortex, middle temporal gyrus, and temporal pole in sFTLD-TDP relative to sFTLD-tau. FTLD-CDR had an inverse association with CBF in right temporal and orbitofrontal ROIs in sFTLD-TDP. Manual+BBR performed similarly to FLIRT+BBR. Discussion ASL is sensitive to distinct regions of hypoperfusion in patient participants relative to controls, and in patients with sFTLD-TDP relative to sFTLD-tau, and decreasing perfusion is associated with increasing disease severity, at least in sFTLD-TDP. BBR can register ASL-T1w images adequately for controls and patients.
Collapse
Affiliation(s)
- Sylvia Mihailescu
- School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Quinn Hlava
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Philip A Cook
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Maria Luisa Mandelli
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Emily Rogalski
- Healthy Aging & Alzheimer's Care Center, University of Chicago, Chicago, IL, United States
- Department of Neurology, University of Chicago, Chicago, IL, United States
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - James Gee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Corey T McMillan
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher A Olm
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
2
|
Kobayashi R, Kawakatsu S, Morioka D, Hayashi H, Utsunomiya A, Kabasawa T, Otani K. Limbic-predominant age-related TDP-43 encephalopathy characterised by frontotemporal dementia-like behavioural symptoms. Psychogeriatrics 2022; 22:574-579. [PMID: 35365961 DOI: 10.1111/psyg.12828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/14/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Ryota Kobayashi
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Shinobu Kawakatsu
- Department of Neuropsychiatry, Aizu Medical Center, Fukushima Medical University, Aizuwakamatsu, Japan
| | - Daichi Morioka
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Hiroshi Hayashi
- Department of Occupational Therapy, Fukushima Medical University School of Health Sciences, Fukushima, Japan
| | - Aya Utsunomiya
- Department of Pathological Diagnostics, Yamagata University School of Medicine, Yamagata, Japan
| | - Takanobu Kabasawa
- Department of Pathological Diagnostics, Yamagata University School of Medicine, Yamagata, Japan
| | - Koichi Otani
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| |
Collapse
|
3
|
Shinagawa S, Kawakami I, Takasaki E, Shigeta M, Arai T, Ikeda M. The Diagnostic Patterns of Referring Physicians and Hospital Expert Psychiatrists Regarding Particular Frontotemporal Lobar Degeneration Clinical and Neuropathological Subtypes. J Alzheimers Dis 2022; 88:601-608. [PMID: 35662116 DOI: 10.3233/jad-215516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND It is important to make accurate clinical diagnosis of frontotemporal lobar degeneration (FTLD), which in turn, leads to future therapic approaches. The FTLD cases are frequently inaccurately identified, but the frequency of this misidentification according to the underlying pathological subtypes is still unclear. OBJECTIVE We aimed to quantify the accuracy of behavioral variant frontotemporal dementia (bvFTD) and semantic variant primary progressive aphasia (svPPA) diagnoses by both the patients' referring physicians and hospital expert psychiatrists, and we investigated whether the physicians' and psychiatrists' diagnostic patterns are associated with a specific neuropathology. METHODS We retrospectively analyzed the cases of a series of Japanese patients with pathologically diagnosed FTLD (n = 55): the bvFTD group (n = 47) consisted of patients with FTLD-tau (n = 20), FTLD-TDP (TAR DNA-binding protein of 43-kDA) (n = 19), and FTLD-FUS (fused in sarcoma) (n = 8). The svPPA patients (n = 8) all had FTLD-TDP. RESULTS Only 31% of the patients' referring physicians mentioned FTD syndrome. The referring psychiatrists and neurologists showed similar diagnostic accuracy. High diagnostic accuracy was observed for the TDP pathology group (mainly svPPA patients). The FTLD-FUS patients were more likely to be diagnosed as having a psychiatric disorder by referring physicians. The hospital expert psychiatrists' accuracy for identifying FTLD-tau pathology was low. CONCLUSION The results of our analyses revealed a specific diagnostic pattern associated with particular FTLD pathological subtypes, which will help to improve non-specialists' diagnostic ability.
Collapse
Affiliation(s)
| | - Ito Kawakami
- Dementia Research Project, Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Emi Takasaki
- Department of Psychiatry, Jikei University School of Medicine, Tokyo, Japan
| | - Masahiro Shigeta
- Department of Psychiatry, Jikei University School of Medicine, Tokyo, Japan
| | - Tetsuaki Arai
- Department of Psychiatry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
4
|
The neurobiology of human aggressive behavior: Neuroimaging, genetic, and neurochemical aspects. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110059. [PMID: 32822763 DOI: 10.1016/j.pnpbp.2020.110059] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/12/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022]
Abstract
In modern societies, there is a strive to improve the quality of life related to risk of crimes which inevitably requires a better understanding of brain determinants and mediators of aggression. Neurobiology provides powerful tools to achieve this end. Pre-clinical and clinical studies show that changes in regional volumes, metabolism-function and connectivity within specific neural networks are related to aggression. Subregions of prefrontal cortex, insula, amygdala, basal ganglia and hippocampus play a major role within these circuits and have been consistently implicated in biology of aggression. Genetic variations in proteins regulating the synthesis, degradation, and transport of serotonin and dopamine as well as their signal transduction have been found to mediate behavioral variability observed in aggression. Gene-gene and gene-environment interactions represent additional important risk factors for aggressiveness. Considering the social burden of pathological forms of aggression, more basic and translational studies should be conducted to accelerate applications to clinical practice, justice courts, and policy making.
Collapse
|
5
|
Liu KY, Reeves S, McAleese KE, Attems J, Francis P, Thomas A, Howard R. Neuropsychiatric symptoms in limbic-predominant age-related TDP-43 encephalopathy and Alzheimer's disease. Brain 2021; 143:3842-3849. [PMID: 33188391 PMCID: PMC7805786 DOI: 10.1093/brain/awaa315] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/15/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
There is clinical overlap between presentations of dementia due to limbic-predominant age-related TDP-43 encephalopathy (LATE) and Alzheimer's disease. It has been suggested that the combination of Alzheimer's disease neuropathological change (ADNC) and LATE neuropathological changes (LATE-NC) is associated with greater neuropsychiatric symptom burden, compared to either pathology alone. Longitudinal Neuropsychiatric Inventory and psychotropic medication prescription data from neuropathologically diagnosed pure ADNC (n = 78), pure LATE-NC (n = 14) and mixed ADNC/LATE-NC (n = 39) brain bank donors were analysed using analysis of variance and linear mixed effects regression models to examine the relationship between diagnostic group and neuropsychiatric symptom burden. Nearly all donors had dementia; three (two pure LATE-NC and one pure ADNC) donors had mild cognitive impairment and another two donors with LATE-NC did not have dementia. The mixed ADNC/LATE-NC group was older than the pure ADNC group, had a higher proportion of females compared to the pure ADNC and LATE-NC groups, and had more severe dementia versus the pure LATE-NC group. After adjustment for length of follow-up, cognitive and demographic factors, mixed ADNC/LATE-NC was associated with lower total Neuropsychiatric Inventory and agitation factor scores than pure ADNC, and lower frontal factor scores than pure LATE-NC. Our findings indicate that concomitant LATE pathology in Alzheimer's disease is not associated with greater neuropsychiatric symptom burden. Future longitudinal studies are needed to further investigate whether mixed ADNC/LATE-NC may be protective against agitation and frontal symptoms in dementia caused by Alzheimer's disease or LATE pathology.
Collapse
Affiliation(s)
- Kathy Y Liu
- Division of Psychiatry, University College London, UK
| | | | - Kirsty E McAleese
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Johannes Attems
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Paul Francis
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,University of Exeter Medical School, Medical School Building, St Luke's Campus, Exeter, UK
| | - Alan Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Robert Howard
- Division of Psychiatry, University College London, UK
| |
Collapse
|
6
|
Migliaccio R, Tanguy D, Bouzigues A, Sezer I, Dubois B, Le Ber I, Batrancourt B, Godefroy V, Levy R. Cognitive and behavioural inhibition deficits in neurodegenerative dementias. Cortex 2020; 131:265-283. [PMID: 32919754 PMCID: PMC7416687 DOI: 10.1016/j.cortex.2020.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
Disinhibition, mainly caused by damage in frontotemporal brain regions, is one of the major causes of caregiver distress in neurodegenerative dementias. Behavioural inhibition deficits are usually described as a loss of social conduct and impulsivity, whereas cognitive inhibition deficits refer to impairments in the suppression of prepotent verbal responses and resistance to distractor interference. In this review, we aim to discuss inhibition deficits in neurodegenerative dementias through behavioural, cognitive, neuroanatomical and neurophysiological exploration. We also discuss impulsivity and compulsivity behaviours as related to disinhibition. We will therefore describe different tests available to assess both behavioural and cognitive disinhibition and summarise different manifestations of disinhibition across several neurodegenerative diseases (behavioural variant of frontotemporal dementia, Alzheimer's disease, Parkinson's disease, progressive supranuclear palsy, Huntington's disease). Finally, we will present the latest findings about structural, metabolic, functional, neurophysiological and also neuropathological correlates of inhibition impairments. We will briefly conclude by mentioning some of the latest pharmacological and non pharmacological treatment options available for disinhibition. Within this framework, we aim to highlight i) the current interests and limits of tests and questionnaires available to assess behavioural and cognitive inhibition in clinical practice and in clinical research; ii) the interpretation of impulsivity and compulsivity within the spectrum of inhibition deficits; and iii) the brain regions and networks involved in such behaviours.
Collapse
Affiliation(s)
- Raffaella Migliaccio
- FrontLab, INSERM U1127, Institut du cerveau, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France; Centre de Référence des Démences Rares ou Précoces, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Institute of Memory and Alzheimer's Disease, Centre of Excellence of Neurodegenerative Disease, Department of Neurology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | - Delphine Tanguy
- FrontLab, INSERM U1127, Institut du cerveau, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France; Univ Rennes, Inserm, LTSI - UMR 1099, F-35000 Rennes, France
| | - Arabella Bouzigues
- FrontLab, INSERM U1127, Institut du cerveau, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Idil Sezer
- FrontLab, INSERM U1127, Institut du cerveau, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Bruno Dubois
- FrontLab, INSERM U1127, Institut du cerveau, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France; Centre de Référence des Démences Rares ou Précoces, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Institute of Memory and Alzheimer's Disease, Centre of Excellence of Neurodegenerative Disease, Department of Neurology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Isabelle Le Ber
- FrontLab, INSERM U1127, Institut du cerveau, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France; Centre de Référence des Démences Rares ou Précoces, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Institute of Memory and Alzheimer's Disease, Centre of Excellence of Neurodegenerative Disease, Department of Neurology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Bénédicte Batrancourt
- FrontLab, INSERM U1127, Institut du cerveau, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Valérie Godefroy
- FrontLab, INSERM U1127, Institut du cerveau, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Richard Levy
- FrontLab, INSERM U1127, Institut du cerveau, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France; Centre de Référence des Démences Rares ou Précoces, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Institute of Memory and Alzheimer's Disease, Centre of Excellence of Neurodegenerative Disease, Department of Neurology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
7
|
Batrancourt B, Lecouturier K, Ferrand-Verdejo J, Guillemot V, Azuar C, Bendetowicz D, Migliaccio R, Rametti-Lacroux A, Dubois B, Levy R. Exploration Deficits Under Ecological Conditions as a Marker of Apathy in Frontotemporal Dementia. Front Neurol 2019; 10:941. [PMID: 31551908 PMCID: PMC6736613 DOI: 10.3389/fneur.2019.00941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 08/14/2019] [Indexed: 11/13/2022] Open
Abstract
Apathy is one of the six clinical criteria for the behavioral variant of frontotemporal dementia (bvFTD), and it is almost universal in this disease. Although its consequences in everyday life are debilitating, its underlying mechanisms are poorly known, its assessment is biased by subjectivity and its care management is very limited. In this context, we have developed "ECOCAPTURE," a method aimed at providing quantifiable and objective signature(s) of apathy in order to assess it and identify its precise underlying mechanisms. ECOCAPTURE consists of the observation and recording of the patient's behavior when the participant is being submitted to a multiple-phase scenario reproducing a brief real-life situation. It is performed in a functional exploration platform transformed into a fully furnished waiting room equipped with a video and sensor-based data acquisition system. This multimodal method allowed video-based behavior analyses according to predefined behavioral categories (exploration behavior, sustained activities or inactivity) and actigraphy analyses from a 3D accelerometer. The data obtained were also correlated with behavioral/cognitive tests and scales assessing global cognitive efficiency, apathy, cognitive disinhibition, frontal syndrome, depression and anxiety. Here, bvFTD patients (n = 14) were compared to healthy participants (n = 14) during the very first minutes of the scenario, when the participants discovered the room and were encouraged to explore it. We showed that, in the context of facing a new environment, healthy participants first explored it and then engaged in sustained activities. By contrast, bvFTD patients were mostly inactive and eventually explored this new place, but in a more irregular and less efficient mode than normal subjects. This exploration deficit was correlated with apathy, disinhibition and cognitive and behavioral dysexecutive syndromes. These findings led us to discuss the presumed underlying mechanisms responsible for the exploration deficit (an inability to self-initiate actions, to integrate reward valuation and to inhibit involuntary behavior). Altogether, these results pave the way for simple and objective assessment of behavioral changes that represents a critical step for the evaluation of disease progression and efficacy of treatment in bvFTD.
Collapse
Affiliation(s)
- Bénédicte Batrancourt
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, Institut du Cerveau et de la Moelle épiniére (ICM), FRONTlab, Paris, France
| | - Karen Lecouturier
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, Institut du Cerveau et de la Moelle épiniére (ICM), FRONTlab, Paris, France
| | - Johan Ferrand-Verdejo
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, Institut du Cerveau et de la Moelle épiniére (ICM), FRONTlab, Paris, France
| | - Vincent Guillemot
- Institut Pasteur, Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI), Paris, France
| | - Carole Azuar
- AP-HP, Groupe Hospitalier Pitiè-Salpêtrière, Département de Neurologie, Institut de la Mèmoire et de la Maladie d'Alzheimer (IM2A), Paris, France
| | - David Bendetowicz
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, Institut du Cerveau et de la Moelle épiniére (ICM), FRONTlab, Paris, France.,AP-HP, Groupe Hospitalier Pitiè-Salpêtrière, Département de Neurologie, Institut de la Mèmoire et de la Maladie d'Alzheimer (IM2A), Paris, France.,AP-HP, Groupe Hospitalier Pitiè-Salpêtrière, Département de Neurologie, Behavioral Neuropsychiatry Unit, Paris, France
| | - Raffaella Migliaccio
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, Institut du Cerveau et de la Moelle épiniére (ICM), FRONTlab, Paris, France.,AP-HP, Groupe Hospitalier Pitiè-Salpêtrière, Département de Neurologie, Institut de la Mèmoire et de la Maladie d'Alzheimer (IM2A), Paris, France.,AP-HP, Groupe Hospitalier Pitiè-Salpêtrière, Département de Neurologie, Behavioral Neuropsychiatry Unit, Paris, France
| | - Armelle Rametti-Lacroux
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, Institut du Cerveau et de la Moelle épiniére (ICM), FRONTlab, Paris, France
| | - Bruno Dubois
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, Institut du Cerveau et de la Moelle épiniére (ICM), FRONTlab, Paris, France.,AP-HP, Groupe Hospitalier Pitiè-Salpêtrière, Département de Neurologie, Institut de la Mèmoire et de la Maladie d'Alzheimer (IM2A), Paris, France
| | - Richard Levy
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, Institut du Cerveau et de la Moelle épiniére (ICM), FRONTlab, Paris, France.,AP-HP, Groupe Hospitalier Pitiè-Salpêtrière, Département de Neurologie, Institut de la Mèmoire et de la Maladie d'Alzheimer (IM2A), Paris, France.,AP-HP, Groupe Hospitalier Pitiè-Salpêtrière, Département de Neurologie, Behavioral Neuropsychiatry Unit, Paris, France
| |
Collapse
|
8
|
Przybyla M, Stevens CH, van der Hoven J, Harasta A, Bi M, Ittner A, van Hummel A, Hodges JR, Piguet O, Karl T, Kassiou M, Housley GD, Ke YD, Ittner LM, van Eersel J. Disinhibition-like behavior in a P301S mutant tau transgenic mouse model of frontotemporal dementia. Neurosci Lett 2016; 631:24-29. [DOI: 10.1016/j.neulet.2016.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/19/2016] [Accepted: 08/04/2016] [Indexed: 11/28/2022]
|
9
|
Uchihara T, Yoshida M. Symposium: How to calibrate clinical diagnosis by feedback through neuropathology: how doctors are tricked. Neuropathology 2016; 36:381-2. [PMID: 27214665 DOI: 10.1111/neup.12312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Toshiki Uchihara
- Laboratory of Structural Neuropathology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| |
Collapse
|