1
|
Gabdulkhaev R, Shimizu H, Kanazawa M, Kuroha Y, Hasegawa A, Idezuka J, Tainaka K, Onodera O, Kakita A. Blood-brain barrier dysfunction in multiple system atrophy: A human postmortem study. Neuropathology 2024. [PMID: 39665496 DOI: 10.1111/neup.13021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024]
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by an accumulation of phosphorylated α-synuclein (p-αsyn) in oligodendrocytes in the form of glial cytoplasmic inclusions (GCIs). In MSA, not only mature oligodendrocytes but also oligodendrocyte precursor cells (OPCs) are affected. The latter play an important role in remyelination by differentiating into mature oligodendrocytes, as well as maintaining the blood-brain barrier (BBB) by promoting the expression of tight junction proteins. We have hypothesized that in MSA, the BBB is impaired as a result of aberrant interactions between affected OPCs and the cerebral vasculature. To verify this hypothesis, we conducted a neuropathological examination of postmortem brains from MSA patients and control subjects, focusing on the primary motor area, one of the main regions affected in MSA. Using double immunofluorescence, we quantified the expression of tight junction protein claudin-5 in capillary endothelial cells and found that it was significantly lower in MSA than in controls in both the gray matter and white matter. Furthermore, a significantly higher amount of fibrinogen was extravasated into the brain parenchyma in MSA patients than in controls. In addition, leakage of IgG was detected almost specifically in MSA brain parenchyma, as visualized in three dimensions by combining techniques of chemical tissue clearing and light sheet microscopy. Finally, we confirmed accumulation of p-αsyn-positive GCIs along the cerebral vasculature within OPCs. These results suggest that BBB dysfunction and associated fibrinogen extravasation are constant findings in MSA, presumably triggered by the deposition of p-αsyn in perivascular OPCs.
Collapse
Affiliation(s)
- Ramil Gabdulkhaev
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroshi Shimizu
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masato Kanazawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yasuko Kuroha
- Department of Neurology, NHO Nishiniigata Chuo Hospital, Niigata, Japan
| | - Arika Hasegawa
- Department of Neurology, NHO Nishiniigata Chuo Hospital, Niigata, Japan
| | - Jiro Idezuka
- Department of Neurology, Ojiya Sakura Hospital, Niigata, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Center for Bioresources, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
2
|
Nakamori M, Shimizu H, Ogawa K, Hasuike Y, Nakajima T, Sakurai H, Araki T, Okada Y, Kakita A, Mochizuki H. Cell type-specific abnormalities of central nervous system in myotonic dystrophy type 1. Brain Commun 2022; 4:fcac154. [PMID: 35770133 PMCID: PMC9218787 DOI: 10.1093/braincomms/fcac154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/13/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Myotonic dystrophy type 1 is a multisystem genetic disorder involving the muscle, heart and CNS. It is caused by toxic RNA transcription from expanded CTG repeats in the 3′-untranslated region of DMPK, leading to dysregulated splicing of various genes and multisystemic symptoms. Although aberrant splicing of several genes has been identified as the cause of some muscular symptoms, the pathogenesis of CNS symptoms prevalent in patients with myotonic dystrophy type 1 remains unelucidated, possibly due to a limitation in studying a diverse mixture of different cell types, including neuronal cells and glial cells. Previous studies revealed neuronal loss in the cortex, myelin loss in the white matter and the presence of axonal neuropathy in patients with myotonic dystrophy type 1. To elucidate the CNS pathogenesis, we investigated cell type-specific abnormalities in cortical neurons, white matter glial cells and spinal motor neurons via laser-capture microdissection. We observed that the CTG repeat instability and cytosine–phosphate–guanine (CpG) methylation status varied among the CNS cell lineages; cortical neurons had more unstable and longer repeats with higher CpG methylation than white matter glial cells, and spinal motor neurons had more stable repeats with lower methylation status. We also identified splicing abnormalities in each CNS cell lineage, such as DLGAP1 in white matter glial cells and CAMKK2 in spinal motor neurons. Furthermore, we demonstrated that aberrant splicing of CAMKK2 is associated with abnormal neurite morphology in myotonic dystrophy type 1 motor neurons. Our laser-capture microdissection-based study revealed cell type-dependent genetic, epigenetic and splicing abnormalities in myotonic dystrophy type 1 CNS, indicating the significant potential of cell type-specific analysis in elucidating the CNS pathogenesis.
Collapse
Affiliation(s)
- Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565-0871 , Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University , 1-1 Yamadaoka, Suita, Osaka 565-0871 , Japan
| | - Hiroshi Shimizu
- Department of Pathology, Brain Research Institute, Niigata University , 1-757 Asahimachi, Chuo-ku, Niigata 951-8585 , Japan
| | - Kotaro Ogawa
- Department of Neurology, Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565-0871 , Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565-0871 , Japan
| | - Yuhei Hasuike
- Department of Neurology, Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565-0871 , Japan
| | - Takashi Nakajima
- Department of Neurology, National Hospital Organization Niigata National Hospital , 3-52 Akasakamachi, Kashiwazaki, Niigata 945-8585 , Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University , 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 , Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry , 4-1-1 Ogawahigashimachi, Kodaira, Tokyo 187-8502 , Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565-0871 , Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University , 1-757 Asahimachi, Chuo-ku, Niigata 951-8585 , Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565-0871 , Japan
| |
Collapse
|
3
|
Current and future applications of induced pluripotent stem cell-based models to study pathological proteins in neurodegenerative disorders. Mol Psychiatry 2021; 26:2685-2706. [PMID: 33495544 PMCID: PMC8505258 DOI: 10.1038/s41380-020-00999-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders emerge from the failure of intricate cellular mechanisms, which ultimately lead to the loss of vulnerable neuronal populations. Research conducted across several laboratories has now provided compelling evidence that pathogenic proteins can also contribute to non-cell autonomous toxicity in several neurodegenerative contexts, including Alzheimer's, Parkinson's, and Huntington's diseases as well as Amyotrophic Lateral Sclerosis. Given the nearly ubiquitous nature of abnormal protein accumulation in such disorders, elucidating the mechanisms and routes underlying these processes is essential to the development of effective treatments. To this end, physiologically relevant human in vitro models are critical to understand the processes surrounding uptake, release and nucleation under physiological or pathological conditions. This review explores the use of human-induced pluripotent stem cells (iPSCs) to study prion-like protein propagation in neurodegenerative diseases, discusses advantages and limitations of this model, and presents emerging technologies that, combined with the use of iPSC-based models, will provide powerful model systems to propel fundamental research forward.
Collapse
|
4
|
Hideshima M, Beck G, Yamadera M, Motoyama Y, Ikenaka K, Kakuda K, Tsuda H, Nagano S, Fujimura H, Morii E, Murayama S, Mochizuki H. A clinicopathological study of ALS with L126S mutation in the SOD1 gene presenting with isolated inferior olivary hypertrophy. Neuropathology 2019; 40:191-195. [PMID: 31863610 DOI: 10.1111/neup.12620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/13/2019] [Accepted: 10/13/2019] [Indexed: 12/14/2022]
Abstract
We report an autopsy case of amyotrophic lateral sclerosis with L126S mutation in the superoxide dismutase 1 (SOD1) gene (SOD1). The patient was a 69-year-old Japanese man without relevant family history, who initially presented with slow progressive muscle weakness of the lower extremities without upper motor neuron signs, and died of respiratory failure 6 years after the onset. Neuropathological examination revealed a loss of lower motor neurons and degeneration of Clarke's column commensurate with that of the posterior spinocerebellar tract and the middle root zone of the posterior column. The primary motor area was minimally affected. Characteristic SOD1-immunopositive neuronal intracytoplasmic inclusions, mixed with neurofilament accumulation, were present in the affected areas. Isolated inferior olivary hypertrophy was observed, but did not involve the contralateral dentate nucleus, or the ipsilateral red nucleus and central tegmental tract, where no neuronal inclusions were found. In combination with data from a previous autopsy case, this study suggests that the L126S mutation may cause focal neuronal degeneration in the brainstem.
Collapse
Affiliation(s)
- Makoto Hideshima
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Goichi Beck
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Misaki Yamadera
- Department of Neurology, NHO Osaka Toneyama Medical Center, Osaka, Japan
| | - Yuichi Motoyama
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keita Kakuda
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Tsuda
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Seiichi Nagano
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Harutoshi Fujimura
- Department of Neurology, NHO Osaka Toneyama Medical Center, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shigeo Murayama
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Neurology and Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|