1
|
Ghasemi B, Ahmadi J, Zaker F, Tabatabaei T, Kiani-Zadeh M, Kazemi A. Lower Levels of TET2 Gene Expression, with a Higher Level of TET2 Promoter Methylation in Patients with AML; Evidence for the Role of Aberrant Methylation in AML Pathogenesis. Indian J Hematol Blood Transfus 2024; 40:52-60. [PMID: 38312186 PMCID: PMC10831019 DOI: 10.1007/s12288-023-01673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/24/2023] [Indexed: 02/06/2024] Open
Abstract
DNA methylation is a key epigenetic mechanism that is dysregulated in leukemia and plays a significant role in leukemogenesis. Ten-eleven translocation 2 (TET2) is one of the most frequently mutated genes among the DNA methylation regulators in hematologic malignancies, indicating its tumor-suppressor function. In this study, we investigated the expression and methylation status of TET2 in patients with AML. Quantitative RT-PCR was used to evaluate TET2 expression in peripheral blood mononuclear cells (PBMCs) from 51 newly diagnosed AML patients and 50 healthy controls. The methylation-sensitive high-resolution melting (MS-HRM) method was used in 45 patients with AML and 15 healthy controls to evaluate the promoter methylation of TET2. TET2 expression was significantly downregulated (P < 0.0001) in patients with AML compared to that in healthy controls. Furthermore, the methylation level of the TET2 promoter was significantly different between patients and controls. Aberrant methylation of the TET2 promoter was observed in 53.3% of the patients. Interestingly, a negative (- 0.3138) and significant (P = 0.0358) correlation between TET2 methylation and expression was found. The survival of patients with downregulated TET2 was poorer than that of other patients. TET2 gene expression was significantly downregulated while the promoter methylation was higher in patients, indicating that TET2 may be a tumor suppressor gene and a prognostic factor in AML and that transcriptional silencing of the TET2 gene may play a role in AML pathogenesis. Since epigenetic mechanisms are reversible, abnormal TET2 methylation could become a therapeutic target in the future.
Collapse
Affiliation(s)
- Bahare Ghasemi
- Present Address: Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Ahmadi
- Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farhad Zaker
- Present Address: Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Tahere Tabatabaei
- Present Address: Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Kiani-Zadeh
- Present Address: Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Kazemi
- Present Address: Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Saleh AH, Samuel N, Juraschka K, Saleh MH, Taylor MD, Fehlings MG. The biology of ependymomas and emerging novel therapies. Nat Rev Cancer 2022; 22:208-222. [PMID: 35031778 DOI: 10.1038/s41568-021-00433-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 12/20/2022]
Abstract
Ependymomas are rare central nervous system tumours that can arise in the brain's supratentorial region or posterior fossa, or in the spinal cord. In 1924, Percival Bailey published the first comprehensive study of ependymomas. Since then, and especially over the past 10 years, our understanding of ependymomas has grown exponentially. In this Review, we discuss the evolution in knowledge regarding ependymoma subgroups and the resultant clinical implications. We also discuss key oncogenic and tumour suppressor signalling pathways that regulate tumour growth, the role of epigenetic dysregulation in the biology of ependymomas, and the various biological features of ependymoma tumorigenesis, including cell immortalization, stem cell-like properties, the tumour microenvironment and metastasis. We further review the limitations of current therapies such as relapse, radiation-induced cognitive deficits and chemotherapy resistance. Finally, we highlight next-generation therapies that are actively being explored, including tyrosine kinase inhibitors, telomerase inhibitors, anti-angiogenesis agents and immunotherapy.
Collapse
Affiliation(s)
- Amr H Saleh
- MD Program, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nardin Samuel
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Kyle Juraschka
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mohammad H Saleh
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Michael D Taylor
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, University Health Network, Toronto Western Hospital, Toronto, ON, Canada.
- Krembil Neuroscience Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|