1
|
Schmitt V, Masanetz RK, Weidenfeller M, Ebbinghaus LS, Süß P, Rosshart SP, von Hörsten S, Zunke F, Winkler J, Xiang W. Gut-to-brain spreading of pathology in synucleinopathies: A focus on molecular signalling mediators. Behav Brain Res 2023; 452:114574. [PMID: 37423320 DOI: 10.1016/j.bbr.2023.114574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Synucleinopathies are a group of neurodegenerative disorders, classically characterized by the accumulation of aggregated alpha synuclein (aSyn) in the central nervous system. Parkinson's disease (PD) and multiple system atrophy (MSA) are the two prominent members of this family. Current treatment options mainly focus on the motor symptoms of these diseases. However, non-motor symptoms, including gastrointestinal (GI) symptoms, have recently gained particular attention, as they are frequently associated with synucleinopathies and often arise before motor symptoms. The gut-origin hypothesis has been proposed based on evidence of an ascending spreading pattern of aggregated aSyn from the gut to the brain, as well as the comorbidity of inflammatory bowel disease and synucleinopathies. Recent advances have shed light on the mechanisms underlying the progression of synucleinopathies along the gut-brain axis. Given the rapidly expanding pace of research in the field, this review presents a summary of the latest findings on the gut-to-brain spreading of pathology and potential pathology-reinforcing mediators in synucleinopathies. Here, we focus on 1) gut-to-brain communication pathways, including neuronal pathways and blood circulation, and 2) potential molecular signalling mediators, including bacterial amyloid proteins, microbiota dysbiosis-induced alterations in gut metabolites, as well as host-derived effectors, including gut-derived peptides and hormones. We highlight the clinical relevance and implications of these molecular mediators and their possible mechanisms in synucleinopathies. Moreover, we discuss their potential as diagnostic markers in distinguishing the subtypes of synucleinopathies and other neurodegenerative diseases, as well as for developing novel individualized therapeutic options for synucleinopathies.
Collapse
Affiliation(s)
- Verena Schmitt
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Rebecca Katharina Masanetz
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Martin Weidenfeller
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Lara Savannah Ebbinghaus
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Patrick Süß
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Stephan P Rosshart
- Department of Microbiome Research, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Stephan von Hörsten
- Department for Experimental Therapy, University Hospital Erlangen, Preclinical Experimental Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany.
| |
Collapse
|
2
|
Neonatal 6-hydroxydopamine lesioning of rats and dopaminergic neurotoxicity: proposed animal model of Parkinson’s disease. J Neural Transm (Vienna) 2022; 129:445-461. [DOI: 10.1007/s00702-022-02479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/11/2022] [Indexed: 10/18/2022]
|
3
|
Yip JL, Balasuriya GK, Spencer SJ, Hill-Yardin EL. The Role of Intestinal Macrophages in Gastrointestinal Homeostasis: Heterogeneity and Implications in Disease. Cell Mol Gastroenterol Hepatol 2021; 12:1701-1718. [PMID: 34506953 PMCID: PMC8551786 DOI: 10.1016/j.jcmgh.2021.08.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022]
Abstract
Intestinal macrophages play a key role in the gut immune system and the regulation of gastrointestinal physiology, including gut motility and secretion. Their ability to keep the gut from chronic inflammation despite constantly facing foreign antigens has been an important focus in gastrointestinal research. However, the heterogeneity of intestinal macrophages has impeded our understanding of their specific roles. It is now becoming clear that subsets of intestinal macrophages play diverse roles in various gastrointestinal diseases. This occurs through a complex interplay between cytokine production and enteric nervous system activation that differs for each pathologic condition. Key diseases and disorders in which intestinal macrophages play a role include postoperative ileus, inflammatory bowel disease, necrotizing enterocolitis, as well as gastrointestinal disorders associated with human immunodeficiency virus and Parkinson's disease. Here, we review the identification of intestinal macrophage subsets based on their origins and functions, how specific subsets regulate gut physiology, and the potential for these heterogeneous subpopulations to contribute to disease states. Furthermore, we outline the potential for these subpopulations to provide unique targets for the development of novel therapies for these disorders.
Collapse
Affiliation(s)
| | | | - Sarah J. Spencer
- School of Health and Biomedical Sciences,Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Royal Melbourne Instutite of Technology, Melbourne, Victoria, Australia
| | - Elisa L. Hill-Yardin
- School of Health and Biomedical Sciences,Correspondence Address correspondence to: Elisa L. Hill-Yardin, PhD, School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia.
| |
Collapse
|
4
|
Derkinderen P, Rolli-Derkinderen M, Chapelet G, Neunlist M, Noble W. Tau in the gut, does it really matter? J Neurochem 2021; 158:94-104. [PMID: 33569813 DOI: 10.1111/jnc.15320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022]
Abstract
The enteric nervous system plays a critical role in the regulation of gastrointestinal tract functions and is often referred to as the 'second brain' because it shares many features with the central nervous system. These similarities include among others a large panel of neurotransmitters, a large population of glial cells and a susceptibility to neurodegeneration. This close homology between the central and enteric nervous systems suggests that a disease process affecting the central nervous system could also involve its enteric counterpart. This was already documented in Parkinson's disease, the most common synucleinopathy, in which alpha-synuclein deposits are reported in the enteric nervous system in the vast majority of patients. Tau is another key protein involved in neurodegenerative disorders of the brain. Whether changes in tau also occur in the enteric nervous system during gut or brain disorders has just begun to be explored. The scope of the present article is therefore to review existing studies on the expression and phosphorylation pattern of tau in the enteric nervous system under physiological and pathological conditions and to discuss the possible occurrence of 'enteric tauopathies'.
Collapse
Affiliation(s)
- Pascal Derkinderen
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France.,Department of Neurology, CHU Nantes, Nantes, France
| | - Malvyne Rolli-Derkinderen
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Guillaume Chapelet
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France.,Clinical Gerontology Department, CHU Nantes, Nantes, France
| | - Michel Neunlist
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| |
Collapse
|
5
|
Shannon K, Vanden Berghe P. The enteric nervous system in PD: gateway, bystander victim, or source of solutions. Cell Tissue Res 2018; 373:313-326. [PMID: 29936550 DOI: 10.1007/s00441-018-2856-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/10/2018] [Indexed: 12/19/2022]
Abstract
Apart from the characteristic and progressive motor- and movement-related problems, Parkinson's disease (PD) patients also suffer from several non-motor symptoms, including gastrointestinal dysfunction. The fact that the enteric nervous system (ENS) controls motility and that one of the typical PD hallmarks, α-synuclein-positive deposits, has also been found in the intestinal wall have rendered the ENS and the gut a popular subject of study in the context of PD. The possibility that these deposits could serve as an early biomarker is obviously of tremendous medical benefit but also the idea that the gut may possibly be a gateway via which the disease is initiated and progressively makes its way via the peripheral nerves to the central nervous system has increased the interest in the ENS-PD link. Furthermore, the fact that gastrointestinal symptoms are present in PD suggests that the ENS might be affected as well. However, despite a large body of literature on the topic, the actual role or the magnitude of involvement of the ENS in PD remains elusive. The multitudes of experimental approaches and animal models have complicated the interpretation of results and the outcome of different studies does not necessarily align well. In this review, we chose to highlight some elements of interest and some items of confusion, particularly those where research should be focusing. We also list a number of open questions in the field that could serve as a guideline for future, preferably concerted research.
Collapse
Affiliation(s)
| | - Pieter Vanden Berghe
- Lab. for Enteric NeuroScience (LENS), Translational Research of Gastrointestinal Disorder (TARGID), CHROMETA, University of Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Manfredsson FP, Luk KC, Benskey MJ, Gezer A, Garcia J, Kuhn NC, Sandoval IM, Patterson JR, O'Mara A, Yonkers R, Kordower JH. Induction of alpha-synuclein pathology in the enteric nervous system of the rat and non-human primate results in gastrointestinal dysmotility and transient CNS pathology. Neurobiol Dis 2018; 112:106-118. [PMID: 29341898 DOI: 10.1016/j.nbd.2018.01.008] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/28/2017] [Accepted: 01/09/2018] [Indexed: 01/09/2023] Open
Abstract
Alpha-Synuclein (α-syn) is by far the most highly vetted pathogenic and therapeutic target in Parkinson's disease. Aggregated α-syn is present in sporadic Parkinson's disease, both in the central nervous system (CNS) and peripheral nervous system (PNS). The enteric division of the PNS is of particular interest because 1) gastric dysfunction is a key clinical manifestation of Parkinson's disease, and 2) Lewy pathology in myenteric and submucosal neurons of the enteric nervous system (ENS) has been referred to as stage zero in the Braak pathological staging of Parkinson's disease. The presence of Lewy pathology in the ENS and the fact that patients often experience enteric dysfunction before the onset of motor symptoms has led to the hypothesis that α-syn pathology starts in the periphery, after which it spreads to the CNS via interconnected neural pathways. Here we sought to directly test this hypothesis in rodents and non-human primates (NHP) using two distinct models of α-syn pathology: the α-syn viral overexpression model and the preformed fibril (PFF) model. Subjects (rat and NHP) received targeted enteric injections of PFFs or adeno-associated virus overexpressing the Parkinson's disease associated A53T α-syn mutant. Rats were evaluated for colonic motility monthly and sacrificed at 1, 6, or 12 months, whereas NHPs were sacrificed 12 months following inoculation, after which the time course and spread of pathology was examined in all animals. Rats exhibited a transient GI phenotype that resolved after four months. Minor α-syn pathology was observed in the brainstem (dorsal motor nucleus of the vagus and locus coeruleus) 1 month after PFF injections; however, no pathology was observed at later time points (nor in saline or monomer treated animals). Similarly, a histopathological analysis of the NHP brains revealed no pathology despite the presence of robust α-syn pathology throughout the ENS which persisted for the entirety of the study (12 months). Our study shows that induction of α-syn pathology in the ENS is sufficient to induce GI dysfunction. Moreover, our data suggest that sustained spread of α-syn pathology from the periphery to the CNS and subsequent propagation is a rare event, and that the presence of enteric α-syn pathology and dysfunction may represent an epiphenomenon.
Collapse
Affiliation(s)
- Fredric P Manfredsson
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States; Mercy Health Saint Mary's, Grand Rapids, MI, United States.
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Matthew J Benskey
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Aysegul Gezer
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States; DO/PHD Physician Scientist Training Program, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| | - Joanna Garcia
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Nathan C Kuhn
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Ivette M Sandoval
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States; Mercy Health Saint Mary's, Grand Rapids, MI, United States
| | - Joseph R Patterson
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Alana O'Mara
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States; Undergraduate Neuroscience Program, Michigan State University, East Lansing, MI, United States
| | - Reid Yonkers
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States; Undergraduate Neuroscience Program, Michigan State University, East Lansing, MI, United States
| | - Jeffrey H Kordower
- Dept. of Neurological Science, Rush University Medical Center, Chicago, IL, United States; Center on Neurodegeneration, Van Andel Research Institute, Grand Rapids, MI, United States
| |
Collapse
|
7
|
Ruffmann C, Parkkinen L. Gut Feelings About α-Synuclein in Gastrointestinal Biopsies: Biomarker in the Making? Mov Disord 2016; 31:193-202. [PMID: 26799450 PMCID: PMC4755164 DOI: 10.1002/mds.26480] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 12/16/2022] Open
Abstract
In recent years, several studies have investigated the potential of immunohistochemical detection of α-synuclein in the gastrointestinal tract to diagnose Parkinson's disease (PD). Although methodological heterogeneity has hindered comparability between studies, it has become increasingly apparent that the high sensitivity and specificity reported in preliminary studies has not been sustained in subsequent large-scale studies. What constitutes pathological α-synuclein in the alimentary canal that could distinguish between PD patients and controls and how this can be reliably detected represent key outstanding questions in the field. In this review, we will comment on and compare the variable technical aspects from previous studies, and by highlighting some advantages and shortcomings we hope to delineate a standardized approach to facilitate the consensus criteria urgently needed in the field. Furthermore, we will describe alternative detection techniques to conventional immunohistochemistry that have recently emerged and may facilitate ease of interpretation and reliability of gastrointestinal α-synuclein detection. Such techniques have the potential to detect the presence of pathological α-synuclein and include the paraffin-embedded tissue blot, the proximity ligation assay, the protein misfolding cyclic amplification technique, and the real-time quaking-induced conversion assay. Finally, we will review 2 nonsynonymous theories that have driven enteric α-synuclein research, namely, (1) that α-synuclein propagates in a prion-like fashion from the peripheral nervous system to the brain via vagal connections and (2) that gastrointestinal α-synuclein deposition may be used as a clinically useful biomarker in PD.
Collapse
Affiliation(s)
- Claudio Ruffmann
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neurosciences, Academic Unit of Neuropathology, University of Oxford, Oxford, United Kingdom
| | - Laura Parkkinen
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neurosciences, Academic Unit of Neuropathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Gray MT, Gray DA, Woulfe JM. Reply to: alimentary, my dear Watson? The challenges of enteric α-synuclein as a Parkinson's disease biomarker. Mov Disord 2014; 29:1224-5. [PMID: 24930843 DOI: 10.1002/mds.25942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/11/2014] [Accepted: 05/13/2014] [Indexed: 11/05/2022] Open
Affiliation(s)
- Madison T Gray
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
9
|
Abstract
Anorectal medical disorders facing the elderly include fecal incontinence, fecal impaction with overflow fecal incontinence, chronic constipation, dyssynergic defecation, hemorrhoids, anal fissure, and pelvic floor disorders. This article discusses the latest advances in age-related changes in morphology and function of anal sphincter, changes in cellular and molecular biology, alterations in neurotransmitters and reflexes, and their impact on functional changes of the anorectum in the elderly. These biophysiologic changes have implications for the pathophysiology of anorectal disorders. A clear understanding and working knowledge of the functional anatomy and pathophysiology will enable appropriate diagnosis and treatment of these disorders.
Collapse
Affiliation(s)
- Siegfried W B Yu
- Division of Gastroenterology and Hepatology, Medical College of Georgia, Georgia Regents University, 1120 15th Street, Augusta, GA 30912, USA
| | | |
Collapse
|