1
|
King JW, Bennett ASW, Wood HM, Baker CC, Alsaadi H, Topley M, Vanner SA, Reed DE, Lomax AE. Expression and function of transient receptor potential melastatin 3 in the spinal afferent innervation of the mouse colon. Am J Physiol Gastrointest Liver Physiol 2024; 326:G176-G186. [PMID: 38084411 DOI: 10.1152/ajpgi.00230.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
Abdominal pain is a cardinal symptom of inflammatory bowel disease (IBD). Transient receptor potential (TRP) channels contribute to abdominal pain in preclinical models of IBD, and TRP melastatin 3 (TRPM3) has recently been implicated in inflammatory bladder and joint pain in rodents. We hypothesized that TRPM3 is involved in colonic sensation and is sensitized during colitis. We used immunohistochemistry, ratiometric Ca2+ imaging, and colonic afferent nerve recordings in mice to evaluate TRPM3 protein expression in colon-projecting dorsal root ganglion (DRG) neurons, as well as functional activity in DRG neurons and colonic afferent nerves. Colitis was induced using dextran sulfate sodium (DSS) in drinking water. TRPM3 protein expression was observed in 76% of colon-projecting DRG neurons and was often colocalized with calcitonin gene-related peptide. The magnitudes of intracellular Ca2+ transients in DRG neurons in response to the TRPM3 agonists CIM-0216 and pregnenolone sulfate sodium were significantly greater in neurons from mice with colitis compared with controls. In addition, the percentage of DRG neurons from mice with colitis that responded to CIM-0216 was significantly increased. CIM-0216 also increased the firing rate of colonic afferent nerves from control and mice with colitis. The TRPM3 inhibitor isosakuranetin inhibited the mechanosensitive response to distension of wide dynamic range afferent nerve units from mice with colitis but had no effect in control mice. Thus, TRPM3 contributes to colonic sensory transduction and may be a potential target for treating pain in IBD.NEW & NOTEWORTHY This is the first study to characterize TRPM3 protein expression and function in colon-projecting DRG neurons. A TRPM3 agonist excited DRG neurons and colonic afferent nerves from healthy mice. TRPM3 agonist responses in DRG neurons were elevated during colitis. Inhibiting TRPM3 reduced the firing of wide dynamic range afferent nerves from mice with colitis but had no effect in control mice.
Collapse
Affiliation(s)
- James W King
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Aidan S W Bennett
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Hannah M Wood
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Corey C Baker
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Hanin Alsaadi
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Max Topley
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Stephen A Vanner
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - David E Reed
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Alan E Lomax
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
2
|
Xiao Z, Xu J, Tan J, Zhang S, Wang N, Wang R, Yang P, Bai T, Song J, Shi Z, Lyu W, Zhang L, Hou X. Zhizhu Kuanzhong, a traditional Chinese medicine, alleviates gastric hypersensitivity and motor dysfunction on a rat model of functional dyspepsia. Front Pharmacol 2022; 13:1026660. [PMID: 36467071 PMCID: PMC9712737 DOI: 10.3389/fphar.2022.1026660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/07/2022] [Indexed: 08/29/2023] Open
Abstract
Ethnopharmacological relevance: Zhizhu Kuanzhong (ZZKZ) is a traditional Chinese medicine modified from classic formula Zhizhu decoction in "Synopsis of Golden Chamber" (Han Dynasty in the 3rd century) and the Zhizhu pill in "Differentiation on Endogenous" in Jin Dynasty (1,115-1,234). ZZKZ contains four botanical drugs, including Citrus × Aurantium L [Rutaceae; Aurantii Fructus Immaturus], Atractylodes Macrocephala Koidz. [Compositae; Rhizoma Atractylodis Macrocephalae], Bupleurum Chinense DC [Apiaceae; Radix Bupleuri Chinensis], and Crataegus Pinnatifida Bunge [Rosaceae; Fructus Crataegi Pinnatifidae], which have been widely used in clinical therapy for functional dyspepsia (FD). Aim of the study: This study aimed to evaluate the pharmacological effects and mechanisms of action of ZZKZ on gastric hypersensitivity and motor dysfunction in a rat model of FD. Materials and methods: FD was induced in Sprague-Dawley rats by neonatal gastric irritation with 0.1% iodoacetamide. The FD rats were treated with ZZKZ (0.5 g/kg, 1.0 g/kg, or 1.5 g/kg respectively) by gavage for 7 days, while domperidone (3 mg/kg) acted as treatment control. Body weight gain, food intake, gastric emptying, and intestinal propulsion were also measured. Ex vivo gastric smooth muscle activity recordings and greater splanchnic afferent (GSN) firing recordings were employed to evaluate gastric motility and sensation. Particularly, the role of 5-HT in the action of ZZKZ in improving gastric dysmotility and hypersensitivity was explored. Results: ZZKZ promoted weight gain, food intake, gastric emptying, and intestinal propulsion in FD rats. ZZKZ promoted spontaneous and ACh-induced contractions of gastric smooth muscle strips in FD rats, alleviated spontaneous activity, and chemical (acid perfusion) and mechanical (intragastric distension) stimulated GSN firing in FD rats. ZZKZ ameliorated gastric smooth muscle contraction and GSN firing induced by 5-HT in FD rats. ZZKZ stimulated the release of serum 5-HT, with reduced 5-HT3 receptor and increased 5-HT4 receptor mRNA expression in the guts of FD rats. Conclusion: This study demonstrated that ZZKZ improves FD-related gastric hypersensitivity and motor dysfunction and should be an effective compound for relieving FD symptoms. The gastric 5-HT system with lower 5-HT3 activity and increased 5-HT4 distribution is involved in the mechanisms of ZZKZ underlying the treatment of FD.
Collapse
Affiliation(s)
- Zhuanglong Xiao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Xu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Chinese Medicine, Hubei College of Chinese Medicine, Jingzhou, China
| | - Jun Tan
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengyan Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nian Wang
- Department of Gastroenterology, The First Hospital of Wuhan (Wuhan Integrated TCM and Western Medicine Hospital), Wuhan, China
| | - Ruiyun Wang
- Department of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengcheng Yang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Bai
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Song
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohong Shi
- Department of Gastroenterology, The First Hospital of Wuhan (Wuhan Integrated TCM and Western Medicine Hospital), Wuhan, China
| | - Wenliang Lyu
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Lei Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Impaired visceral pain-related functions of the midbrain periaqueductal gray in rats with colitis. Brain Res Bull 2022; 182:12-25. [DOI: 10.1016/j.brainresbull.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 11/18/2022]
|
4
|
Gehwolf P, Renz O, Brenner E, Cardini B, Lorenz A, Wykypiel H. Laparoscopic fundoplication and new aspects of neural anatomy at the oesophagogastric junction. BJS Open 2020; 4:400-404. [PMID: 32134571 PMCID: PMC7260418 DOI: 10.1002/bjs5.50271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/03/2020] [Indexed: 11/23/2022] Open
Abstract
Background In fundoplication, mobilization of the distal oesophagus and proximal stomach is essential to obtain a sufficient tension‐free intra‐abdominal oesophageal length for creation of an efficient antireflux barrier. Most surgical literature and anatomical illustrations do not describe nerve branches running from the diaphragm to the stomach. After observing small nerve branches at laparoscopic fundoplication, penetrating the left crus of the diaphragm lateral to the hiatus and apparently running into the stomach, an anatomical cadaver study was undertaken to identify the origin and target organ of these nerves. Methods Fifty‐three human cadavers (23 men, 30 women; age range 35–103 years) were dissected with special attention to the nerves that penetrate the left crus of the diaphragm. The entire course of these nerves was documented with standardized drawings and photos. Results Small nerve branches penetrating the diaphragm lateral to the left crus of the hiatus were found in 17 (32 per cent) of the 53 cadavers. In 14 of these 17 cadavers, one or two splanchnic nerve branches were identified, and in ten of the 17 the nerve branches were found to be phrenic nerves. In seven of these 17 cadavers, two different nerve branches were found and assigned to both splanchnic and phrenic nerves. Conclusion Nerves penetrating the left crus with splanchnic origin or phrenic origin have been identified. Their function remains unclear and their relationship to postfundoplication symptoms remains to be determined.
Collapse
Affiliation(s)
- P Gehwolf
- Department of Visceral, Transplant and Thoracic Surgery, Centre for Operative Medicine, Innsbruck, Austria
| | - O Renz
- Department of Visceral, Transplant and Thoracic Surgery, Centre for Operative Medicine, Innsbruck, Austria
| | - E Brenner
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - B Cardini
- Department of Visceral, Transplant and Thoracic Surgery, Centre for Operative Medicine, Innsbruck, Austria
| | - A Lorenz
- Department of Visceral, Transplant and Thoracic Surgery, Centre for Operative Medicine, Innsbruck, Austria
| | - H Wykypiel
- Department of Visceral, Transplant and Thoracic Surgery, Centre for Operative Medicine, Innsbruck, Austria
| |
Collapse
|
5
|
Taylor TS, Konda P, John SS, Bulmer DC, Hockley JRF, Smith ESJ. Galanin suppresses visceral afferent responses to noxious mechanical and inflammatory stimuli. Physiol Rep 2020; 8:e14326. [PMID: 31960596 PMCID: PMC6971316 DOI: 10.14814/phy2.14326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Galanin is a neuropeptide expressed by sensory neurones innervating the gastrointestinal (GI) tract. Galanin displays inhibitory effects on vagal afferent signaling within the upper GI tract, and the goal of this study was to determine the actions of galanin on colonic spinal afferent function. Specifically, we sought to evaluate the effect of galanin on lumbar splanchnic nerve (LSN) mechanosensitivity to noxious distending pressures and the development of hypersensitivity in the presence of inflammatory stimuli and colitis. Using ex vivo electrophysiological recordings we show that galanin produces a dose-dependent suppression of colonic LSN responses to mechanical stimuli and prevents the development of hypersensitivity to acutely administered inflammatory mediators. Using galanin receptor (GalR) agonists, we show that GalR1 activation, but not GalR2/3 activation, suppresses mechanosensitivity. The effect of galanin on colonic afferent activity was not observed in tissue from mice with dextran sodium sulfate-induced colitis. We conclude that galanin has a marked suppressive effect on colonic mechanosensitivity at noxious distending pressures and prevents the acute development of mechanical hypersensitivity to inflammatory mediators, an effect not seen in the inflamed colon. These actions highlight a potential role for galanin in the regulation of mechanical nociception in the bowel and the therapeutic potential of targeting galaninergic signaling to treat visceral hypersensitivity.
Collapse
Affiliation(s)
- Toni S. Taylor
- Department of PharmacologyUniversity of CambridgeCambridgeUK
| | - Parvesh Konda
- Department of PharmacologyUniversity of CambridgeCambridgeUK
| | - Sarah S. John
- Department of PharmacologyUniversity of CambridgeCambridgeUK
| | - David C. Bulmer
- Department of PharmacologyUniversity of CambridgeCambridgeUK
| | - James R. F. Hockley
- Department of PharmacologyUniversity of CambridgeCambridgeUK
- GSKGSK Medicines Research CentreStevenageHertfordshireUK
| | | |
Collapse
|
6
|
Siri S, Maier F, Santos S, Pierce DM, Feng B. Load-bearing function of the colorectal submucosa and its relevance to visceral nociception elicited by mechanical stretch. Am J Physiol Gastrointest Liver Physiol 2019; 317:G349-G358. [PMID: 31268771 PMCID: PMC6774086 DOI: 10.1152/ajpgi.00127.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mechanical distension beyond a particular threshold evokes visceral pain from distal colon and rectum (colorectum), and thus biomechanics plays a central role in visceral nociception. In this study we focused on the layered structure of the colorectum through the wall thickness and determined the biomechanical properties of layer-separated colorectal tissue. We harvested the distal 30 mm of mouse colorectum and dissected this tissue into inner and outer composite layers. The inner composite consists of the mucosa and submucosa, whereas the outer composite includes the muscular layers and serosa. We divided each composite axially into three 10-mm-long segments and conducted biaxial mechanical extension tests and opening-angle measurements for each tissue segment. In addition, we quantified the thickness of the rich collagen network in the submucosa by nonlinear imaging via second-harmonic generation (SHG). Our results reveal that the inner composite is slightly stiffer in the axial direction, whereas the outer composite is stiffer circumferentially. The stiffness of the inner composite in the axial direction is about twice that in the circumferential direction, consistent with the orientations of collagen fibers in the submucosa approximately ±30° to the axial direction. Submucosal thickness measured by SHG showed no difference from proximal to distal colorectum under the load-free condition, which likely contributes to the comparable tension stiffness of the inner composite along the colorectum. This, in turn, strongly indicates the submucosa as the load-bearing structure of the colorectum. This further implies nociceptive roles for the colorectal afferent endings in the submucosa, which likely encode tissue-injurious mechanical distension.NEW & NOTEWORTHY Visceral pain from distal colon and rectum (colorectum) is usually elicited from mechanical distension/stretch, rather than from heating, cutting, or pinching, which usually evoke pain from the skin. We conducted layer-separated biomechanical tests on mouse colorectum and identified an unexpected role of submucosa as the load-bearing structure of the colorectum. Outcomes of this study will focus attention on sensory nerve endings in the submucosa that likely encode tissue-injurious distension/stretch to cause visceral pain.
Collapse
Affiliation(s)
- Saeed Siri
- 1Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - Franz Maier
- 2Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut
| | - Stephany Santos
- 1Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - David M. Pierce
- 1Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut,2Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut
| | - Bin Feng
- 1Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
7
|
Van Remoortel S, Ceuleers H, Arora R, Van Nassauw L, De Man JG, Buckinx R, De Winter BY, Timmermans JP. Mas-related G protein-coupled receptor C11 (Mrgprc11) induces visceral hypersensitivity in the mouse colon: A novel target in gut nociception? Neurogastroenterol Motil 2019; 31:e13623. [PMID: 31119828 DOI: 10.1111/nmo.13623] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Visceral hypersensitivity, an important cause of abdominal pain in disorders such as IBD and IBS, presents with a poorly understood pathophysiology and limited treatment options. Several members of the Mas-related G protein-coupled receptor family (Mrgprs) have become promising targets in pain research. The potential link between the murine Mrgpr C11 (Mrgprc11) and gut nociception is currently uninvestigated. Therefore, we explored the expression and functional role of Mrgprc11 in the gut nociceptive innervation. METHODS Mrgprc11 expression was evaluated in DRG neurons innervating the mouse colon using in situ hybridization and immunohistochemistry. Visceromotor responses to colorectal distension (CRD) assessed the effect of the Mrgprc11 agonist, BAM(8-22), on colonic pain sensitivity in healthy mice. Moreover, we determined pERK1/2-immunoreactivity in the thoracolumbar spinal cord after noxious CRD. Finally, from a translational point of view, we looked for expression of the human counterpart of Mrgprc11, MRGPRX1, in human thoracolumbar DRGs. KEY RESULTS In situ hybridization and immunohistochemistry revealed Mrgprc11 expression in colonic DRG neurons. Intracolonic administration of BAM(8-22) significantly increased colonic pain sensitivity in an Mrgprc11-dependent manner, and led to a significantly increased degree of neuronal activation in the splanchnic spinal cord upon noxious stimulation. Furthermore, MRGPRX1 expression was also detected in human thoracolumbar DRG neurons. CONCLUSIONS & INFERENCES: Our findings established a novel function for Mrgprc11 in the gut nociceptive innervation and propose the receptor as a new player in visceral hypersensitivity. Given the presence of MRGPRX1 in human DRG neurons, our study warrants future research on its therapeutic potential in abdominal pain disorders.
Collapse
Affiliation(s)
- Samuel Van Remoortel
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Hannah Ceuleers
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Rohit Arora
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Luc Van Nassauw
- Laboratory of Human Anatomy and Embryology, Division ASTARC, University of Antwerp, Antwerp, Belgium
| | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Roeland Buckinx
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
8
|
Nullens S, Deiteren A, Jiang W, Keating C, Ceuleers H, Francque S, Grundy D, De Man JG, De Winter BY. In Vitro Recording of Mesenteric Afferent Nerve Activity in Mouse Jejunal and Colonic Segments. J Vis Exp 2016. [PMID: 27805592 DOI: 10.3791/54576] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Afferent nerves not only convey information concerning normal physiology, but also signal disturbed homeostasis and pathophysiological processes of the different organ systems from the periphery towards the central nervous system. As such, the increased activity or 'sensitization' of mesenteric afferent nerves has been allocated an important role in the pathophysiology of visceral hypersensitivity and abdominal pain syndromes. Mesenteric afferent nerve activity can be measured in vitro in an isolated intestinal segment that is mounted in a purpose-built organ bath and from which the splanchnic nerve is isolated, allowing researchers to directly assess nerve activity adjacent to the gastrointestinal segment. Activity can be recorded at baseline in standardized conditions, during distension of the segment or following the addition of pharmacological compounds delivered intraluminally or serosally. This technique allows the researcher to easily study the effect of drugs targeting the peripheral nervous system in control specimens; besides, it provides crucial information on how neuronal activity is altered during disease. It should be noted however that measuring afferent neuronal firing activity only constitutes one relay station in the complex neuronal signaling cascade, and researchers should bear in mind not to overlook neuronal activity at other levels (e.g., dorsal root ganglia, spinal cord or central nervous system) in order to fully elucidate the complex neuronal physiology in health and disease. Commonly used applications include the study of neuronal activity in response to the administration of lipopolysaccharide, and the study of afferent nerve activity in animal models of irritable bowel syndrome. In a more translational approach, the isolated mouse intestinal segment can be exposed to colonic supernatants from IBS patients. Furthermore, a modification of this technique has been recently shown to be applicable in human colonic specimens.
Collapse
Affiliation(s)
- Sara Nullens
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp
| | - Annemie Deiteren
- Visceral Pain Group, Discipline of Medicine, University of Adelaide
| | - Wen Jiang
- Department of Biomedical Sciences, University of Sheffield
| | - Christopher Keating
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, University of Hertfordshire
| | - Hannah Ceuleers
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital
| | - David Grundy
- Department of Biomedical Sciences, University of Sheffield
| | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp;
| |
Collapse
|
9
|
De Winter BY, Deiteren A, De Man JG. Novel nervous system mechanisms in visceral pain. Neurogastroenterol Motil 2016; 28:309-15. [PMID: 26891060 DOI: 10.1111/nmo.12785] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 01/04/2016] [Indexed: 12/19/2022]
Abstract
Visceral hypersensitivity is an important factor underlying abdominal pain in functional gastrointestinal disorders such as irritable bowel syndrome (IBS) and can result from aberrant signaling from the gut to the brain or vice versa. Over the last two decades, research has identified several selective, intertwining pathways that underlie IBS-related visceral nociception, including specific receptors on afferent and efferent nerve fibers such as transient receptor potential channels (TRP) channels, opioid, and cannabinoid receptors. In this issue of Neurogastroenterology and Motility Gil et al. demonstrate that in an animal model with reduced descending inhibitory control, the sympathetic nervous system outflow is enhanced, contributing to visceral and somatic hypersensitivity. They also provide evidence that interfering with the activation of adrenergic receptors on sensory nerves can be an interesting new strategy to treat visceral pain in IBS. This mini-review places these findings in a broader perspective by providing an overview of promising novel mechanisms to alter the nervous control of visceral pain interfering with afferent or efferent neuronal signaling.
Collapse
Affiliation(s)
- B Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
| | - A Deiteren
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
| | - J G De Man
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Deiteren A, De Man JG, Keating C, Jiang W, De Schepper HU, Pelckmans PA, Francque SM, De Winter BY. Mechanisms contributing to visceral hypersensitivity: focus on splanchnic afferent nerve signaling. Neurogastroenterol Motil 2015; 27:1709-20. [PMID: 26337498 DOI: 10.1111/nmo.12667] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/04/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND Visceral hypersensitivity is a main characteristic of functional bowel disorders and is mediated by both peripheral and central factors. We investigated whether enhanced splanchnic afferent signaling in vitro is associated with visceral hypersensitivity in vivo in an acute and postinflammatory rat model of colitis. METHODS Trinitrobenzene sulfonic acid (TNBS)-colitis was monitored individually by colonoscopy to confirm colitis and follow convalescence and endoscopic healing in each rat. Experiments were performed in controls, rats with acute colitis and in postcolitis rats. Colonic afferent mechanosensitivity was assessed in vivo by quantifying visceromotor responses (VMRs), and by making extracellular afferent recordings from splanchnic nerve bundles in vitro. Multiunit afferent activity was classified into single units identified as low threshold (LT), wide dynamic range (WDR), high threshold (HT), and mechanically insensitive afferents (MIA). KEY RESULTS During acute TNBS-colitis, VMRs were significantly increased and splanchnic nerve recordings showed proportionally less MIA and increased WDR and HT afferents. Acute colitis gave rise to an enhanced spontaneous activity of both LT and MIA and augmented afferent mechanosensitivity in LT, WDR and HT afferents. Postcolitis, VMRs remained significantly increased, whereas splanchnic nerve recordings showed that the proportion of LT, WDR, HT and MIA had normalized to control values. However, LT and MIA continued to show increased spontaneous activity and WDR and HT remained sensitized to colorectal distension. CONCLUSIONS & INFERENCES Visceral hypersensitivity in vivo is associated with sensitized splanchnic afferent responses both during acute colitis and in the postinflammatory phase. However, splanchnic afferent subpopulations are affected differentially at both time points.
Collapse
Affiliation(s)
- A Deiteren
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - J G De Man
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - C Keating
- Department of Biomedical Sciences, University of Sheffield, Sheffield, UK
| | - W Jiang
- Department of Biomedical Sciences, University of Sheffield, Sheffield, UK
| | - H U De Schepper
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | - P A Pelckmans
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | - S M Francque
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | - B Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|