1
|
Louwies T, Mohammadi E, Greenwood-Van Meerveld B. Epigenetic mechanisms underlying stress-induced visceral pain: Resilience versus vulnerability in a two-hit model of early life stress and chronic adult stress. Neurogastroenterol Motil 2023; 35:e14558. [PMID: 36893055 DOI: 10.1111/nmo.14558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/16/2022] [Accepted: 02/19/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND Women with a history of early life stress (ELS) have a higher risk of developing irritable bowel syndrome (IBS). In addition, chronic stress in adulthood can exacerbate IBS symptoms such as abdominal pain due to visceral hypersensitivity. We previously showed that sex and the predictability of ELS determine whether rats develop visceral hypersensitivity in adulthood. In female rats, unpredictable ELS confers vulnerability and results in visceral hypersensitivity, whereas predictable ELS induces resilience and does not induce visceral hypersensitivity in adulthood. However, this resilience is lost after exposure to chronic stress in adulthood leading to an exacerbation of visceral hypersensitivity. Evidence suggests that changes in histone acetylation at the promoter regions of glucocorticoid receptor (GR) and corticotrophin-releasing factor (CRF) in the central nucleus of the amygdala (CeA) underlie stress-induced visceral hypersensitivity. Here, we aimed to investigate the role of histone acetylation in the CeA on visceral hypersensitivity in a two-hit model of ELS followed by chronic stress in adulthood. METHODS Male and female neonatal rats were exposed to unpredictable, predictable ELS, or odor only (no stress control) from postnatal days 8 to 12. In adulthood, rats underwent stereotaxic implantation of indwelling cannulas. Rats were exposed to chronic water avoidance stress (WAS, 1 h/day for 7 days) or SHAM stress and received infusions of vehicle, the histone deacetylase inhibitor trichostatin A (TSA) or the histone acetyltransferase inhibitor garcinol (GAR) after each WAS session. 24 h after the final infusion, visceral sensitivity was assessed and the CeA was removed for molecular experiments. RESULTS In the two-hit model (ELS + WAS), female rats previously exposed to predictable ELS, showed a significant reduction in histone 3 lysine 9 (H3K9) acetylation at the GR promoter and a significant increase in H3K9 acetylation at the CRF promoter. These epigenetic changes were associated with changes in GR and CRF mRNA expression in the CeA and an exacerbation of stress-induced visceral hypersensitivity in female animals. TSA infusions in the CeA attenuated the exacerbated stress-induced visceral hypersensitivity, whereas GAR infusions only partially ameliorated ELS+WAS induced visceral hypersensitivity. CONCLUSION The two-hit model of ELS followed by WAS in adulthood revealed that epigenetic dysregulation occurs after exposure to stress in two important periods of life and contributes to the development of visceral hypersensitivity. These aberrant underlying epigenetic changes may explain the exacerbation of stress-induced abdominal pain in IBS patients.
Collapse
Affiliation(s)
- Tijs Louwies
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Ehsan Mohammadi
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | | |
Collapse
|
2
|
Neto AC, Santos-Pereira M, Abreu-Mendes P, Neves D, Almeida H, Cruz F, Charrua A. The Unmet Needs for Studying Chronic Pelvic/Visceral Pain Using Animal Models. Biomedicines 2023; 11:biomedicines11030696. [PMID: 36979674 PMCID: PMC10045296 DOI: 10.3390/biomedicines11030696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
The different definitions of chronic pelvic/visceral pain used by international societies have changed over the years. These differences have a great impact on the way researchers study chronic pelvic/visceral pain. Recently, the role of systemic changes, including the role of the central nervous system, in the perpetuation and chronification of pelvic/visceral pain has gained weight. Consequently, researchers are using animal models that resemble those systemic changes rather than using models that are organ- or tissue-specific. In this review, we discuss the advantages and disadvantages of using bladder-centric and systemic models, enumerating some of the central nervous system changes and pain-related behaviors occurring in each model. We also present some drawbacks when using animal models and pain-related behavior tests and raise questions about possible, yet to be demonstrated, investigator-related bias. We also suggest new approaches to study chronic pelvic/visceral pain by refining existing animal models or using new ones.
Collapse
Affiliation(s)
- Ana Catarina Neto
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Mariana Santos-Pereira
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Pedro Abreu-Mendes
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Department of Urology, Centro Hospitalar de São João, 4200-319 Porto, Portugal
- Physiology and Surgery Department, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
| | - Delminda Neves
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Henrique Almeida
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Ginecologia-Obstetrícia, Hospital-CUF Porto, 4100-180 Porto, Portugal
| | - Francisco Cruz
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Department of Urology, Centro Hospitalar de São João, 4200-319 Porto, Portugal
- Physiology and Surgery Department, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
| | - Ana Charrua
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
3
|
Mechanisms of Action of Current Pharmacologic Options for the Treatment of Chronic Idiopathic Constipation and Irritable Bowel Syndrome With Constipation. Am J Gastroenterol 2022; 117:S6-S13. [PMID: 35354770 DOI: 10.14309/ajg.0000000000001687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022]
Abstract
Multiple therapeutic agents are currently available for the treatment of chronic idiopathic constipation and irritable bowel syndrome with constipation. A better understanding of the mechanism of action of each treatment provides important insights into expected responses and is key to optimizing treatment outcomes. Some constipation treatments, such as stimulant laxatives, may increase bowel movement frequency but are ineffective at relieving, and may even exacerbate, abdominal symptoms. On the contrary, prescription treatments, such as the guanylyl cyclase-C agonists, for example, may improve bowel symptoms and reduce visceral hypersensitivity. This review summarizes the mechanisms of action of commonly used over-the-counter and prescription therapies for chronic idiopathic constipation and irritable bowel syndrome with constipation, outlining how these mechanisms contribute to the efficacy and safety of each treatment option.
Collapse
|
4
|
Gao Y, Rodríguez LV. The Effect of Chronic Psychological Stress on Lower Urinary Tract Function: An Animal Model Perspective. Front Physiol 2022; 13:818993. [PMID: 35388285 PMCID: PMC8978557 DOI: 10.3389/fphys.2022.818993] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic psychological stress can affect urinary function and exacerbate lower urinary tract (LUT) dysfunction (LUTD), particularly in patients with overactive bladder (OAB) or interstitial cystitis–bladder pain syndrome (IC/BPS). An increasing amount of evidence has highlighted the close relationship between chronic stress and LUTD, while the exact mechanisms underlying it remain unknown. The application of stress-related animal models has provided powerful tools to explore the effect of chronic stress on LUT function. We systematically reviewed recent findings and identified stress-related animal models. Among them, the most widely used was water avoidance stress (WAS), followed by social stress, early life stress (ELS), repeated variable stress (RVS), chronic variable stress (CVS), intermittent restraint stress (IRS), and others. Different types of chronic stress condition the induction of relatively distinguished changes at multiple levels of the micturition pathway. The voiding phenotypes, underlying mechanisms, and possible treatments of stress-induced LUTD were discussed together. The advantages and disadvantages of each stress-related animal model were also summarized to determine the better choice. Through the present review, we hope to expand the current knowledge of the pathophysiological basis of stress-induced LUTD and inspire robust therapies with better outcomes.
Collapse
Affiliation(s)
- Yunliang Gao
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Larissa V. Rodríguez
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Larissa V. Rodríguez,
| |
Collapse
|
5
|
Brierley SM, Grundy L, Castro J, Harrington AM, Hannig G, Camilleri M. Guanylate cyclase-C agonists as peripherally acting treatments of chronic visceral pain. Trends Pharmacol Sci 2022; 43:110-122. [PMID: 34865885 PMCID: PMC8760167 DOI: 10.1016/j.tips.2021.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 02/03/2023]
Abstract
Irritable bowel syndrome (IBS) is a chronic gastrointestinal disorder characterized by abdominal pain and altered bowel habit that affects ~11% of the global population. Over the past decade, preclinical and clinical studies have revealed a variety of novel mechanisms relating to the visceral analgesic effects of guanylate cyclase-C (GC-C) agonists. Here we discuss the mechanisms by which GC-C agonists target the GC-C/cyclic guanosine-3',5'-monophosphate (cGMP) pathway, resulting in visceral analgesia as well as clinically relevant relief of abdominal pain and other sensations in IBS patients. Due to the preponderance of evidence we focus on linaclotide, a 14-amino acid GC-C agonist with very low oral bioavailability that acts within the gut. Collectively, the weight of experimental and clinical evidence supports the concept that GC-C agonists act as peripherally acting visceral analgesics.
Collapse
Affiliation(s)
- Stuart M. Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, 5042, AUSTRALIA.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, AUSTRALIA.,Discipline of Medicine, University of Adelaide, North Terrace, Adelaide, South Australia 5000, AUSTRALIA.,Corresponding Author: Prof. Stuart M. Brierley, Ph.D. Visceral Pain Research Group, Level 7, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, SA 5000, AUSTRALIA.
| | - Luke Grundy
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, 5042, AUSTRALIA.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, AUSTRALIA
| | - Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, 5042, AUSTRALIA.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, AUSTRALIA
| | - Andrea M. Harrington
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, 5042, AUSTRALIA.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, AUSTRALIA
| | | | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiologic Research Program, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
6
|
Role of Pelvic Organ Crosstalk in Dysfunction of the Bowel and Bladder. CURRENT BLADDER DYSFUNCTION REPORTS 2022. [DOI: 10.1007/s11884-022-00645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Voiding and storage symptoms in depression/anxiety. Auton Neurosci 2021; 237:102927. [PMID: 34923228 DOI: 10.1016/j.autneu.2021.102927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/27/2021] [Accepted: 12/05/2021] [Indexed: 12/11/2022]
Abstract
We here described the frequency and nature of voiding and storage bladder symptoms in depression/anxiety, for which we propose the name "bladder somatic symptom disorder (SSD)" because such symptoms most probably have brain mechanisms. SSD was formerly called as various terms including "somatoform disorder", "medically unexplained physical symptoms", "functional somatic syndrome" and "hysterical neurosis/hysteria". Bladder SSD has the following specific features that are distinguishable from "true" neurologic/organic bladder dysfunction: 1) situation-dependence (close association with life event in some), 2) urodynamically increased bladder sensation/hypersensitivity and 3) absence of neurologic/organic diseases, in addition to 4) other stress symptoms (insomnia, etc.), are key clues to the possibility of bladder SSD. Urodynamics in these patients showed, to a lesser extent, underactive bladder without post-void residual. These findings might reflect the biological changes of the depressive brain; e.g., decreases in serotonin and GABA, and possible increases in CRH. Treatment of bladder SSD can follow that of general depression/anxiety, with the potential addition of anticholinergic or selective beta3 bladder drugs.
Collapse
|
8
|
Nunez-Badinez P, De Leo B, Laux-Biehlmann A, Hoffmann A, Zollner TM, Saunders PT, Simitsidellis I, Charrua A, Cruz F, Gomez R, Tejada MA, McMahon SB, Lo Re L, Barthas F, Vincent K, Birch J, Meijlink J, Hummelshoj L, Sweeney PJ, Armstrong JD, Treede RD, Nagel J. Preclinical models of endometriosis and interstitial cystitis/bladder pain syndrome: an Innovative Medicines Initiative-PainCare initiative to improve their value for translational research in pelvic pain. Pain 2021; 162:2349-2365. [PMID: 34448751 PMCID: PMC8374713 DOI: 10.1097/j.pain.0000000000002248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 01/19/2023]
Abstract
ABSTRACT Endometriosis (ENDO) and interstitial cystitis/bladder pain syndrome (IC/BPS) are chronic pain conditions for which better treatments are urgently needed. Development of new therapies with proven clinical benefit has been slow. We have conducted a review of existing preclinical in vivo models for ENDO and IC/BPS in rodents, discussed to what extent they replicate the phenotype and pain experience of patients, as well as their relevance for translational research. In 1009 publications detailing ENDO models, 41% used autologous, 26% syngeneic, 18% xenograft, and 11% allogeneic tissue in transplantation models. Intraperitoneal injection of endometrial tissue was the subcategory with the highest construct validity score for translational research. From 1055 IC/BPS publications, most interventions were bladder centric (85%), followed by complex mechanisms (8%) and stress-induced models (7%). Within these categories, the most frequently used models were instillation of irritants (92%), autoimmune (43%), and water avoidance stress (39%), respectively. Notably, although pelvic pain is a hallmark of both conditions and a key endpoint for development of novel therapies, only a small proportion of the studies (models of ENDO: 0.5%-12% and models of IC/BPS: 20%-44%) examined endpoints associated with pain. Moreover, only 2% and 3% of publications using models of ENDO and IC/BPS investigated nonevoked pain endpoints. This analysis highlights the wide variety of models used, limiting reproducibility and translation of results. We recommend refining models so that they better reflect clinical reality, sharing protocols, and using standardized endpoints to improve reproducibility. We are addressing this in our project Innovative Medicines Initiative-PainCare/Translational Research in Pelvic Pain.
Collapse
Affiliation(s)
| | - Bianca De Leo
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany
| | | | - Anja Hoffmann
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany
| | | | - Philippa T.K. Saunders
- Centre for Inflammation Research, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Ioannis Simitsidellis
- Centre for Inflammation Research, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Ana Charrua
- I3S—Instituto de Investigação e Inovação em Saúde, and Faculty of Medicine of Porto, Porto, Portugal
| | - Francisco Cruz
- I3S—Instituto de Investigação e Inovação em Saúde, and Faculty of Medicine of Porto, Porto, Portugal
| | - Raul Gomez
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | | | - Stephen B. McMahon
- Neurorestoration Group, Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
| | - Laure Lo Re
- Neurorestoration Group, Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
| | | | - Katy Vincent
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Judy Birch
- Pelvic Pain Support Network, Poole, United Kingdom
| | - Jane Meijlink
- International Painful Bladder Foundation, Naarden, the Netherlands
| | | | | | - J. Douglas Armstrong
- Actual Analytics, Edinburgh, United Kingdom
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Centre for Biomedicine and Medical Technology Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jens Nagel
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany
| |
Collapse
|
9
|
Orock A, Louwies T, Ligon CO, Mohammadi E, Greenwood-Van Meerveld B. Environmental enrichment prevents stress-induced epigenetic changes in the expression of glucocorticoid receptor and corticotrophin releasing hormone in the central nucleus of the amygdala to inhibit visceral hypersensitivity. Exp Neurol 2021; 345:113841. [PMID: 34390704 DOI: 10.1016/j.expneurol.2021.113841] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Stress is a known trigger for the symptoms of irritable bowel syndrome (IBS), a gastrointestinal (GI) disorder that presents with abnormal bowel habits and abdominal pain due to visceral hypersensitivity. While behavioral therapies have been used to attenuate IBS symptoms, the underlying mechanisms by which these therapies interact with stress-induced pathology remains to be delineated. Here we use a rat model to test the hypothesis that exposure to environmental enrichment (EE) inhibits stress-induced changes within the brain-gut axis to prevent visceral and somatic hypersensitivity and colonic hyperpermeability. METHODS Female rats (n = 8/group) were housed in EE one week before and one week during exposure to water avoidance stress (WAS) while controls were housed in standard cages (SH). One day after the final WAS exposure, colonic and somatic sensitivity were assessed by the visceromotor response (VMR) to colorectal distension (CRD) and withdrawal threshold elicited by an electronic von Frey on the hind paw of the rats respectively. All rats were returned to SH for 3 weeks before colonic and somatic sensitivity were reassessed on day 28. The rats were then immediately euthanized and the spinal cord was collected to assess changes in neuronal activation (assessed via ERK phosphorylation) in response to noxious CRD. A separate cohort of animals (n = 8/group) that did not undergo behavioral assessments was euthanized the day after the final WAS exposure and the central nucleus of the amygdala (CeA) was collected to investigate WAS and EE induced epigenetic changes at the glucocorticoid receptor (GR) and corticotrophin releasing hormone (CRH) promoter. The colon from these rats was also collected to assess colonic permeability via changes in transepithelial electrical resistance (TEER) in vitro. RESULTS Exposure to stress persistently increased VMR to CRD (P < 0.01) and decreased the hind paw withdrawal threshold (P < 0.001) in female rats. WAS also decreased TEER in the colon tissue of female rats (p = 0.05). In the CeA, WAS induced a decrease in histone acetylation at the GR promoter but increased histone acetylation at the CRH promoter and reduced GR-CRH interactions in the CeA. Analysis of the spinal cord showed that WAS increased CRD-evoked ERK phosphorylation in the dorsal horn. Exposure to EE prevented WAS-induced changes in the CeA, dorsal horn and colon respectively to prevent visceral and somatic hypersensitivity. CONCLUSION Our data reveals that behavioral therapies can produce long lasting molecular and epigenetic changes that can prevent stress-induced pathologies even after completion of the therapy. These results highlight the potential mechanisms by which behavioral therapies may ameliorate visceral pain associated stress-related pathologies such as the irritable bowel syndrome.
Collapse
Affiliation(s)
- A Orock
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America.
| | - T Louwies
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - C O Ligon
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - E Mohammadi
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - B Greenwood-Van Meerveld
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America; Department of Veterans Affairs Health Care System, Oklahoma City, OK, United States of America
| |
Collapse
|
10
|
Ligon CO, Hannig G, Greenwood-Van Meerveld B. Peripheral Guanylate Cyclase-C modulation of corticolimbic activation and corticotropin-releasing factor signaling in a rat model of stress-induced colonic hypersensitivity. Neurogastroenterol Motil 2021; 33:e14076. [PMID: 33373484 DOI: 10.1111/nmo.14076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/05/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Psychological stress is a risk factor for irritable bowel syndrome, a functional gastrointestinal pain disorder featuring abnormal brain-gut connectivity. The guanylate cyclase-C (GC-C) agonist linaclotide has been shown to relieve abdominal pain in IBS-C and exhibits antinociceptive effects in rodent models of post-inflammatory visceral hypersensitivity. However, the role GC-C signaling plays in psychological stress-induced visceral hypersensitivity is unknown. Here, we test the hypothesis that GC-C agonism reverses stress-induced colonic hypersensitivity via inhibition of nociceptive afferent signaling resulting in normalization of stress-altered corticotropin-releasing factor (CRF) expression in brain regions involved in pain perception and modulation. METHODS Adult female rats were exposed to water avoidance stress or sham stress for 10 days, and the effects of linaclotide on stress-induced changes in colonic sensitivity, corticolimbic phospho-extracellular signal-regulated kinase (pERK), and CRF expression were measured using a combination of behavioral assessments, immunohistochemistry, and qRT-PCR. KEY RESULTS Stressed rats exhibited colonic hypersensitivity and elevated corticolimbic pERK on day 11, which was inhibited by linaclotide. qRT-PCR analysis revealed dysregulated CRF expression in the medial prefrontal cortex, paraventricular nucleus of the hypothalamus, and central nucleus of the amygdala on day 28. Dysregulated CRF expression was not affected by linaclotide treatment. CONCLUSIONS AND INFERENCES Our results demonstrate that exposure to repeated stress induces chronic colonic hypersensitivity in conjunction with altered corticolimbic activation and CRF expression. GC-C agonism attenuated stress-induced colonic hypersensitivity and ERK phosphorylation, but had no effect on CRF expression, suggesting the analgesic effects of linaclotide occur independent of stress-driven CRF gene expression in corticolimbic circuitry.
Collapse
Affiliation(s)
- Casey O Ligon
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
11
|
Chey WD, Sayuk GS, Bartolini W, Reasner DS, Fox SM, Bochenek W, Boinpally R, Shea E, Tripp K, Borgstein N. Randomized Trial of 2 Delayed-Release Formulations of Linaclotide in Patients With Irritable Bowel Syndrome With Constipation. Am J Gastroenterol 2021; 116:354-361. [PMID: 33065589 PMCID: PMC8279899 DOI: 10.14309/ajg.0000000000000967] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Immediate-release (IR) formulation of linaclotide 290 μg improves abdominal pain and constipation (APC) in patients with irritable bowel syndrome (IBS) with constipation. Delayed-release (DR) formulations were developed on the premise that targeting the ileum (delayed-release formulation 1 [DR1]) or ileocecal junction and cecum (MD-7246, formerly DR2) would modulate linaclotide's secretory effects while preserving pain relief effects. METHODS This phase 2b study randomized patients with IBS with constipation to placebo or 1 of 7 once-daily linaclotide doses (DR1 30, 100, or 300 μg; MD-7246 30, 100, or 300 μg; or IR 290 μg) for 12 weeks. Key efficacy endpoints were change from baseline in abdominal pain and complete spontaneous bowel movement frequency, and 6/12-week combined APC+1 responder rate. RESULTS Overall, 532 patients were randomized; mean age was 45.1 years, and most were women (83.3%) and White (64.7%). All linaclotide DR1 and MD-7246 groups experienced greater improvements in abdominal pain from baseline and vs placebo throughout treatment. Linaclotide DR1 and IR led to numerically greater improvements from baseline in complete spontaneous bowel movement frequency and higher APC+1 responder rates compared with placebo; MD-7246 results were similar to placebo. Diarrhea was the most common adverse event with DR1 and IR; rates were similar between MD-7246 and placebo. DISCUSSION Altering the site of drug delivery in the intestine might uncouple linaclotide's pain relief from secretory effects. Persistent, modest abdominal pain improvement with limited impact on bowel symptom parameters, as seen across MD-7246 doses, warrants further study of MD-7246 as a novel treatment for abdominal pain, regardless of IBS subtype.
Collapse
Affiliation(s)
- William D. Chey
- Division of Gastroenterology and Hepatology, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Gregory S. Sayuk
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | - Elizabeth Shea
- Ironwood Pharmaceuticals, Inc., Boston, Massachusetts, USA
| | - Kenneth Tripp
- Cyclerion Therapeutics, Cambridge, Massachusetts, USA
| | | |
Collapse
|
12
|
Rao SS, Xiang X, Yan Y, Rattanakovit K, Patcharatrakul T, Parr R, Ayyala D, Sharma A. Randomised clinical trial: linaclotide vs placebo-a study of bi-directional gut and brain axis. Aliment Pharmacol Ther 2020; 51:1332-1341. [PMID: 32406112 PMCID: PMC7384154 DOI: 10.1111/apt.15772] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/13/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Linaclotide, a guanylate cyclase C agonist relieves irritable bowel syndrome with predominant constipation (IBS-C) symptoms, but how it improves pain in humans is unknown. AIMS To investigate the effects of linaclotide and placebo on the afferent and efferent gut-brain-gut signalling in IBS-C patients, in a randomised clinical trial. METHODS Patients with IBS-C (Rome III) and rectal hypersensitivity were randomised (2:1) to receive linaclotide (290 µg) or placebo for 10 weeks and undergo bi-directional gut and brain axis assessment using anorectal electrical stimulations and transcranial/transspinal-anorectal magnetic stimulations. Rectal sensations were examined by balloon distention. Assessments included abdominal pain, bowel symptoms and quality of life (QOL) scores. Primary outcomes were latencies of recto-cortical and cortico-rectal evoked potentials. RESULTS Thirty-nine patients participated; 26 received linaclotide and 13 received placebo. Rectal cortical evoked potentials latencies (milliseconds) were significantly prolonged with linaclotide compared to baseline (P1:Δ 19 ± 6, P < 0.005; N1:Δ 20 ± 7, P < 0.02) but not with placebo (P1:Δ 3 ± 5; N1:Δ 4.7 ± 5,P = 0.3) or between groups. The efferent cortico-anorectal and spino-anorectal latencies were unchanged. The maximum tolerable rectal volume (cc) increased significantly with linaclotide compared to baseline (P < 0.001) and placebo (Δ 29 ± 10 vs 4 ± 20, (P < 0.03). Abdominal pain decreased (P < 0.001) with linaclotide but not between groups. Complete spontaneous bowel movement frequency increased (P < 0.001), and IBS-QOL scores improved (P = 0.01) with linaclotide compared to baseline and placebo. There was no difference in overall responders between linaclotide and placebo (54% vs 23%, P = 0.13). CONCLUSIONS Linaclotide prolongs afferent gut-brain signalling from baseline but both afferent and efferent signalling were unaffected compared to placebo. Linaclotide significantly improves rectal hypersensitivity, IBS-C symptoms and QOL compared to placebo. These mechanisms may explain the effects of linaclotide on pain relief in IBS-C patients. ClinicalTrials.Gov: Registered at Clinical trials.gov no NCT02078323.
Collapse
Affiliation(s)
- Satish S.C. Rao
- Division of Neurogastroenterology/MotilityMedical College of GeorgiaAugusta UniversityAugustaGAUSA
| | - Xuelian Xiang
- Division of Neurogastroenterology/MotilityMedical College of GeorgiaAugusta UniversityAugustaGAUSA
| | - Yun Yan
- Division of Neurogastroenterology/MotilityMedical College of GeorgiaAugusta UniversityAugustaGAUSA
| | - Kulthep Rattanakovit
- Division of Neurogastroenterology/MotilityMedical College of GeorgiaAugusta UniversityAugustaGAUSA
| | - Tanisa Patcharatrakul
- Division of Neurogastroenterology/MotilityMedical College of GeorgiaAugusta UniversityAugustaGAUSA
| | - Rachael Parr
- Division of Neurogastroenterology/MotilityMedical College of GeorgiaAugusta UniversityAugustaGAUSA
| | - Deepak Ayyala
- Division of Neurogastroenterology/MotilityMedical College of GeorgiaAugusta UniversityAugustaGAUSA
| | - Amol Sharma
- Division of Neurogastroenterology/MotilityMedical College of GeorgiaAugusta UniversityAugustaGAUSA
| |
Collapse
|
13
|
Accarie A, Vanuytsel T. Animal Models for Functional Gastrointestinal Disorders. Front Psychiatry 2020; 11:509681. [PMID: 33262709 PMCID: PMC7685985 DOI: 10.3389/fpsyt.2020.509681] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Functional gastrointestinal disorders (FGID), such as functional dyspepsia (FD) and irritable bowel syndrome (IBS) are characterized by chronic abdominal symptoms in the absence of an organic, metabolic or systemic cause that readily explains these complaints. Their pathophysiology is still not fully elucidated and animal models have been of great value to improve the understanding of the complex biological mechanisms. Over the last decades, many animal models have been developed to further unravel FGID pathophysiology and test drug efficacy. In the first part of this review, we focus on stress-related models, starting with the different perinatal stress models, including the stress of the dam, followed by a discussion on neonatal stress such as the maternal separation model. We also describe the most commonly used stress models in adult animals which brought valuable insights on the brain-gut axis in stress-related disorders. In the second part, we focus more on models studying peripheral, i.e., gastrointestinal, mechanisms, either induced by an infection or another inflammatory trigger. In this section, we also introduce more recent models developed around food-related metabolic disorders or food hypersensitivity and allergy. Finally, we introduce models mimicking FGID as a secondary effect of medical interventions and spontaneous models sharing characteristics of GI and anxiety-related disorders. The latter are powerful models for brain-gut axis dysfunction and bring new insights about FGID and their comorbidities such as anxiety and depression.
Collapse
Affiliation(s)
- Alison Accarie
- Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Linaclotide treatment reduces endometriosis-associated vaginal hyperalgesia and mechanical allodynia through viscerovisceral cross-talk. Pain 2019; 160:2566-2579. [DOI: 10.1097/j.pain.0000000000001657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|