1
|
García-Domínguez M. Enkephalins and Pain Modulation: Mechanisms of Action and Therapeutic Perspectives. Biomolecules 2024; 14:926. [PMID: 39199314 PMCID: PMC11353043 DOI: 10.3390/biom14080926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Enkephalins, a subclass of endogenous opioid peptides, play a pivotal role in pain modulation. Enkephalins primarily exert their effects through opioid receptors located widely throughout both the central and peripheral nervous systems. This review will explore the mechanisms by which enkephalins produce analgesia, emotional regulation, neuroprotection, and other physiological effects. Furthermore, this review will analyze the involvement of enkephalins in the modulation of different pathologies characterized by severe pain. Understanding the complex role of enkephalins in pain processing provides valuable insight into potential therapeutic strategies for managing pain disorders.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Faculty of Education and Psychology, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Spain
| |
Collapse
|
2
|
Dual Inhibition of Phosphodiesterase and Ca++ Channels Explains the Medicinal Use of Balanites aegyptiaca (L.) in Hyperactive Gut Disorders. PLANTS 2022; 11:plants11091183. [PMID: 35567184 PMCID: PMC9105777 DOI: 10.3390/plants11091183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/03/2023]
Abstract
The present study attempted to evaluate and rationalize the medicinal use of the methanolic extract of the fruits of Balanites aegyptiaca (B. aegyptiaca) in the treatment of hyperactive gut disorders. The in vivo, castor oil-induced diarrhea model in mice was followed to test its antidiarrheal effect. To test the antispasmodic effect and to explore its pharmacodynamic details, isolated small intestines (ileum) obtained from rats were selected to provide physiological conditions for the ex vivo assays. In the in vivo assays, the orally administered extract of B. aegyptiaca protected mice from diarrheal drops with resultant percent inhibitions of 40% and 80% at the respective doses of 200 mg/kg and 400 mg/kg, while the highest protection (100%) was observed with a positive control drug, loperamide, at 10 mg/kg. In the ileum, B. aegyptiaca produced an antispasmodic effect in a concentration-dependent manner by inhibiting the carbachol (CCh; 1 µM) and high K+ (80 mM)-evoked spasms with resultant EC50 values of 1.44 mg/mL (1.08–1.78) and 1.27 mg/mL (0.98–1.66), respectively. Papaverine, a known phosphodiesterase enzyme (PDE) inhibitor and blocker of Ca++ channels (CCB), also inhibited both CCh and high K+ induced contractions at comparable EC50 values of 8.72 µM (7.92–9.24) and 8.14 µM (7.62–8.84), respectively. Contrary to the extract and papaverine, verapamil showed distinctly higher potency in regard to inhibiting high K+, compared to CCh-evoked spasms that had EC50 values of 0.16 µM (0.13–0.261) and 2.54 µM (2.28–2.92), respectively. The inhibitory effects of B. aegyptiaca on PDE were further confirmed when the pre-incubated extract shifted the isoprenaline-mediated relaxation curves (CRCs) towards the left, similar to papaverine, whereas the CCB-like effect was confirmed when the pre-incubated tissues with B. aegyptiaca caused deflection in the Ca++ CRCs towards the right, constructed in Ca++ free medium with suppression of the maximum response. Thus, this study provides detailed, mechanistic support for the medicinal use of B. aegyptiaca in the treatment of hyperactive gut disorders.
Collapse
|
3
|
Roth B, Myllyvainio J, D’Amato M, Larsson E, Ohlsson B. A Starch- and Sucrose-Reduced Diet in Irritable Bowel Syndrome Leads to Lower Circulating Levels of PAI-1 and Visfatin: A Randomized Controlled Study. Nutrients 2022; 14:nu14091688. [PMID: 35565656 PMCID: PMC9101041 DOI: 10.3390/nu14091688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/31/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Irritable bowel syndrome (IBS) is characterized by gastrointestinal symptoms. Overweight and increased risk of metabolic syndromes/diabetes are observed in IBS, conditions associated with plasminogen activator inhibitor-1 (PAI-1) and visfatin. The aim of this study was to measure blood levels of AXIN1, cholecystokinin (CCK), enkephalin, ghrelin, neuropeptide Y (NPY), PAI-1, and visfatin before and after a 4-week intervention with a starch- and sucrose-reduced diet (SSRD). A total of 105 IBS patients were randomized to either SSRD (n = 80) or ordinary diet (n = 25). Questionnaires were completed, and blood was analyzed for AXIN1 and hormones. AXIN1 (p = 0.001) and active ghrelin levels (p = 0.025) were lower in IBS than in healthy volunteers at baseline, whereas CCK and enkephalin levels were higher (p < 0.001). In the intervention group, total IBS-symptom severity score (IBS-SSS), specific gastrointestinal symptoms, psychological well-being, and the influence of intestinal symptoms on daily life were improved during the study, and weight decreased (p < 0.001 for all), whereas only constipation (p = 0.045) and bloating (p = 0.001) were improved in the control group. PAI-1 levels tended to be decreased in the intervention group (p = 0.066), with a difference in the decrease between groups (p = 0.022). Visfatin levels were decreased in the intervention group (p = 0.007). There were few correlations between hormonal levels and symptoms. Thus, this diet not only improves IBS symptoms but also seems to have a general health-promoting effect.
Collapse
Affiliation(s)
- Bodil Roth
- Department of Internal Medicine, Skåne University Hospital, SE-20502 Malmö, Sweden;
- Department of Clinical Sciences, Lund University, SE-22100 Lund, Sweden; (J.M.); (E.L.)
| | - Julia Myllyvainio
- Department of Clinical Sciences, Lund University, SE-22100 Lund, Sweden; (J.M.); (E.L.)
| | - Mauro D’Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE—BRTA, 48160 Derio, Spain; or
- Ikerbasque, Basque Foundation for Science, 48080 Bilbao, Spain
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
| | - Ewa Larsson
- Department of Clinical Sciences, Lund University, SE-22100 Lund, Sweden; (J.M.); (E.L.)
| | - Bodil Ohlsson
- Department of Internal Medicine, Skåne University Hospital, SE-20502 Malmö, Sweden;
- Department of Clinical Sciences, Lund University, SE-22100 Lund, Sweden; (J.M.); (E.L.)
- Correspondence:
| |
Collapse
|
4
|
Szymaszkiewicz A, Talar M, Włodarczyk J, Świerczyński M, Bartoszek A, Krajewska J, Mokrowiecka A, Małecka-Wojciesko E, Fichna J, Zielińska M. The Involvement of the Endogenous Opioid System in the Gastrointestinal Aging in Mice and Humans. Int J Mol Sci 2022; 23:ijms23073565. [PMID: 35408926 PMCID: PMC8998735 DOI: 10.3390/ijms23073565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
Nearly 20% of elderly patients suffer from constipation, but the age-related changes in the gastrointestinal (GI) tract remain insufficiently elucidated. In this study, the alterations within the endogenous opioid system (EOS) as a potential cause of constipation in the elderly were evaluated. The GI functions were assessed in vitro and in vivo and compared between 6-, 12- and 18-month old mice. Moreover, the effect of opioid receptor (MOP, DOP, KOP) agonists on the mouse GI tract functions and the EOS components expression in mouse tissues and colonic biopsies from patients with functional constipation were determined. In the oldest mice, the GI peristalsis was significantly impaired as compared to the younger groups. The tissue response to MOP and DOP, but not KOP, agonists weakened with age in vitro; for DOP, it was confirmed in vivo. In the mouse upper GI tract, Oprm1, Oprd1, Oprk1 expression decreased with age; in the colon, Oprm1 expression increased. There were no differences in the expression of these genes in the colonic biopsies from patients >50 years old as compared to the younger group. In conclusion, the age-related impairment of the GI peristalsis may result from reduced MOP and DOP response to the activation with opioid agonists or the alterations in the EOS expression.
Collapse
Affiliation(s)
- Agata Szymaszkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.S.); (M.T.); (J.W.); (M.Ś.); (A.B.); (J.K.); (J.F.)
| | - Marcin Talar
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.S.); (M.T.); (J.W.); (M.Ś.); (A.B.); (J.K.); (J.F.)
| | - Jakub Włodarczyk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.S.); (M.T.); (J.W.); (M.Ś.); (A.B.); (J.K.); (J.F.)
| | - Mikołaj Świerczyński
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.S.); (M.T.); (J.W.); (M.Ś.); (A.B.); (J.K.); (J.F.)
| | - Adrian Bartoszek
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.S.); (M.T.); (J.W.); (M.Ś.); (A.B.); (J.K.); (J.F.)
| | - Julia Krajewska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.S.); (M.T.); (J.W.); (M.Ś.); (A.B.); (J.K.); (J.F.)
| | - Anna Mokrowiecka
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland; (A.M.); (E.M.-W.)
| | - Ewa Małecka-Wojciesko
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland; (A.M.); (E.M.-W.)
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.S.); (M.T.); (J.W.); (M.Ś.); (A.B.); (J.K.); (J.F.)
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.S.); (M.T.); (J.W.); (M.Ś.); (A.B.); (J.K.); (J.F.)
- Correspondence: ; Tel.: +42-272-57-07
| |
Collapse
|
5
|
Palmer CB, Meyrath M, Canals M, Kostenis E, Chevigné A, Szpakowska M. Atypical opioid receptors: unconventional biology and therapeutic opportunities. Pharmacol Ther 2021; 233:108014. [PMID: 34624426 DOI: 10.1016/j.pharmthera.2021.108014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
Endogenous opioid peptides and prescription opioid drugs modulate pain, anxiety and stress by activating four opioid receptors, namely μ (mu, MOP), δ (delta, DOP), κ (kappa, KOP) and the nociceptin/orphanin FQ receptor (NOP). Interestingly, several other receptors are also activated by endogenous opioid peptides and influence opioid-driven signaling and biology. However, they do not meet the criteria to be recognized as classical opioid receptors, as they are phylogenetically distant from them and are insensitive to classical non-selective opioid receptor antagonists (e.g. naloxone). Nevertheless, accumulating reports suggest that these receptors may be interesting alternative targets, especially for the development of safer analgesics. Five of these opioid peptide-binding receptors belong to the family of G protein-coupled receptors (GPCRs)-two are members of the Mas-related G protein-coupled receptor X family (MrgX1, MrgX2), two of the bradykinin receptor family (B1, B2), and one is an atypical chemokine receptor (ACKR3). Additionally, the ion channel N-methyl-d-aspartate receptors (NMDARs) are also activated by opioid peptides. In this review, we recapitulate the implication of these alternative receptors in opioid-related disorders and discuss their unconventional biology, with members displaying signaling to scavenging properties. We provide an overview of their established and emerging roles and pharmacology in the context of pain management, as well as their clinical relevance as alternative targets to overcome the hurdles of chronic opioid use. Given the involvement of these receptors in a wide variety of functions, including inflammation, chemotaxis, anaphylaxis or synaptic transmission and plasticity, we also discuss the challenges associated with the modulation of both their canonical and opioid-driven signaling.
Collapse
Affiliation(s)
- Christie B Palmer
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Max Meyrath
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, UK
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| |
Collapse
|
6
|
De bruyn M, Ceuleers H, Hanning N, Berg M, De Man JG, Hulpiau P, Hermans C, Stenman UH, Koistinen H, Lambeir AM, De Winter BY, De Meester I. Proteolytic Cleavage of Bioactive Peptides and Protease-Activated Receptors in Acute and Post-Colitis. Int J Mol Sci 2021; 22:10711. [PMID: 34639054 PMCID: PMC8509398 DOI: 10.3390/ijms221910711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022] Open
Abstract
The protease activity in inflammatory bowel disease (IBD) and irritable bowel syndrome has been studied extensively using synthetic fluorogenic substrates targeting specific sets of proteases. We explored activities in colonic tissue from a 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis rat model by investigating the cleavage of bioactive peptides. Pure trypsin- and elastase-like proteases on the one hand and colonic tissue from rats with TNBS-induced colitis in the acute or post-inflammatory phase on the other, were incubated with relevant peptides to identify their cleavage pattern by mass spectrometry. An increased cleavage of several peptides was observed in the colon from acute colitis rats. The tethered ligand (TL) sequences of peptides mimicking the N-terminus of protease-activated receptors (PAR) 1 and 4 were significantly unmasked by acute colitis samples and these cleavages were positively correlated with thrombin activity. Increased cleavage of β-endorphin and disarming of the TL-sequence of the PAR3-based peptide were observed in acute colitis and linked to chymotrypsin-like activity. Increased processing of the enkephalins points to the involvement of proteases with specificities different from trypsin- or chymotrypsin-like enzymes. In conclusion, our results suggest thrombin, chymotrypsin-like proteases and a set of proteases with different specificities as potential therapeutic targets in IBD.
Collapse
Affiliation(s)
- Michelle De bruyn
- Laboratory of Medical Biochemistry, University of Antwerp, 2610 Wilrijk, Belgium; (M.D.b.); (A.-M.L.)
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (H.C.); (N.H.); (M.B.); (J.G.D.M.); (B.Y.D.W.)
| | - Hannah Ceuleers
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (H.C.); (N.H.); (M.B.); (J.G.D.M.); (B.Y.D.W.)
- Laboratory of Experimental Medicine and Pediatrics (LEMP), University of Antwerp, 2610 Wilrijk, Belgium
| | - Nikita Hanning
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (H.C.); (N.H.); (M.B.); (J.G.D.M.); (B.Y.D.W.)
- Laboratory of Experimental Medicine and Pediatrics (LEMP), University of Antwerp, 2610 Wilrijk, Belgium
| | - Maya Berg
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (H.C.); (N.H.); (M.B.); (J.G.D.M.); (B.Y.D.W.)
| | - Joris G. De Man
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (H.C.); (N.H.); (M.B.); (J.G.D.M.); (B.Y.D.W.)
- Laboratory of Experimental Medicine and Pediatrics (LEMP), University of Antwerp, 2610 Wilrijk, Belgium
| | - Paco Hulpiau
- Bioinformatics Knowledge Center (BiKC), Howest University of Applied Sciences, 8000 Bruges, Belgium; (P.H.); (C.H.)
| | - Cedric Hermans
- Bioinformatics Knowledge Center (BiKC), Howest University of Applied Sciences, 8000 Bruges, Belgium; (P.H.); (C.H.)
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; (U.-H.S.); (H.K.)
| | - Hannu Koistinen
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; (U.-H.S.); (H.K.)
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, University of Antwerp, 2610 Wilrijk, Belgium; (M.D.b.); (A.-M.L.)
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (H.C.); (N.H.); (M.B.); (J.G.D.M.); (B.Y.D.W.)
| | - Benedicte Y. De Winter
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (H.C.); (N.H.); (M.B.); (J.G.D.M.); (B.Y.D.W.)
- Laboratory of Experimental Medicine and Pediatrics (LEMP), University of Antwerp, 2610 Wilrijk, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, University of Antwerp, 2610 Wilrijk, Belgium; (M.D.b.); (A.-M.L.)
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (H.C.); (N.H.); (M.B.); (J.G.D.M.); (B.Y.D.W.)
| |
Collapse
|
7
|
Asadi M, Mohammadi-Khanaposhtani M, Hosseini FS, Gholami M, Dehpour AR, Amanlou M. Design, synthesis, and evaluation of novel racecadotril-tetrazole-amino acid derivatives as new potent analgesic agents. Res Pharm Sci 2021; 16:341-357. [PMID: 34447443 PMCID: PMC8356715 DOI: 10.4103/1735-5362.319573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/01/2021] [Accepted: 06/16/2021] [Indexed: 11/04/2022] Open
Abstract
Background and purpose: Although pain is one of the most common symptoms of diseases, it is often mismanaged due to limited access to painkillers and ineffectiveness, unacceptable side effects, or the possibility of abuse. However, an alternative approach to existing analgesics is to indirectly increase endogenous pain relief pathways by neprilysin (an enkephalinase) inhibitors. This enzyme breaks down and inactivates enkephalin, dynorphin, endorphins, and their derivatives. Experimental approach: In this project, a new series of racecadotril-tetrazole-amino acid derivatives 15a-l was synthesized and characterized on the basis of IR, 1H and 13C NMR, mass spectrometry, and elemental analysis. The antinociceptive activity of synthesized compounds was assessed by a hot plate, tail-flick, and formalin assays in mice. Docking was used to identify the possible interactions between neprilysin and synthesized compounds. 15a-l was synthesized and characterized on the basis of IR, 1H and 13C NMR, mass spectrometry, and elemental analysis. The antinociceptive activity of synthesized compounds was assessed by a hot plate, tail-flick, and formalin assays in mice. Docking was used to identify the possible interactions between neprilysin and synthesized compounds. Findings/Results: Most of the synthesized compounds showed moderate to good analgesic effects in hot plat and tail-flick test in comparison to morphine and racecadotril. Compounds 15l and 15j were the most potent compounds. The synergistic analgesic effect of compounds 15l and 15j with morphine and the antagonistic effect of naloxone on the activity of these compounds confirm that the analgesic effect of compounds 15l and 15j could be mediated through the opioidergic system. The negative and high binding energy of docking simulation of the most potent compounds in the catalytic site of neprilysin was also in good agreement with the inhibitory activity of test compounds. Conclusion and implications: Racecadotril-tetrazole-amino acid derivatives, as potential antinociceptive agents, demonstrated moderate to good antinociceptive activities comparable with morphine and higher than racecadotril.
Collapse
Affiliation(s)
- Mehdi Asadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R. Iran
| | - Faezeh Sadat Hosseini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Mahdi Gholami
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Toxicology and Poisoning Research Center, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, I.R. Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, I.R. Iran
| |
Collapse
|
8
|
Guion-Firmin J, Tessier S, Lepelley M, Faillie JL, Montastruc JL. Diarrhoea with the angiotensin receptor neprilysin inhibitor sacubitril + valsartan: A pharmacovigilance study. Fundam Clin Pharmacol 2021; 36:378-389. [PMID: 34260768 DOI: 10.1111/fcp.12717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 11/27/2022]
Abstract
Diarrhoea is an adverse drug reaction of the angiotensin receptor neprilysin inhibitor (ARNI) sacubitril + valsartan. It was also described with olmesartan and more recently with other angiotensin receptor blockers. The study was performed to compare diarrhoea reports in pharmacovigilance databases with sacubitril + valsartan and valsartan. The study used reports of diarrhoea with the ARNI sacubitril + valsartan registered: first in the French PharmacoVigilance Database (FPVD) and second in Vigibase®, the WHO Global Individual Case Safety Report database. After description of the main characteristics, disproportionality analyses were performed. Results are reported as reporting odds ratios (ROR) with 95% confidence interval. We found 29 reports of diarrhoea with sacubitril + valsartan in the FPVD and 686 in Vigibase®. With sacubitril + valsartan, diarrhoea occurred more frequently in males around 70 years with a median delay of 3 days. With valsartan, diarrhoea occurred more frequently in females around 68 years with a median delay of 0.5 days. In the FPVD, a significant association was found with sacubitril + valsartan in comparison with valsartan alone before (ROR = 8.78 [5.19-14.85]) and after (ROR = 11.19 [5.89-21.25]) exclusion of concomitant drugs known to be associated with diarrhoea. A significant association was also found in Vigibase® after adjustment on age, sex, reporter and its location (ROR = 1.31 [1.14-1.50]). Diarrhoea reported with sacubitril + valsartan has marked differences in gender, delay of occurrence and frequency of reporting in comparison with diarrhoea with valsartan. From a pharmacodynamic point of view, these results suggest a specific role of sacubitril in diarrhoea.
Collapse
Affiliation(s)
- Julia Guion-Firmin
- Service de Pharmacologie Médicale et Clinique, Centre de Pharmacovigilance de Pharmacoépidemiologie et d'Informations sur le Médicament, CIC INSERM 1436, Centre Hospitalier Universitaire-Faculté de Médecine, Toulouse, France
| | - Samuel Tessier
- Service de Pharmacologie Médicale et Clinique, Centre de Pharmacovigilance de Pharmacoépidemiologie et d'Informations sur le Médicament, CIC INSERM 1436, Centre Hospitalier Universitaire-Faculté de Médecine, Toulouse, France
| | - Marion Lepelley
- Centre de Pharmacovigilance, Centre Hospitalier Universitaire, Université de Grenoble, Grenoble, France
| | - Jean-Luc Faillie
- Centre de Pharmacovigilance, Centre Hospitalier Universitaire, Université de Montpellier, Montpellier, France
| | - Jean-Louis Montastruc
- Service de Pharmacologie Médicale et Clinique, Centre de Pharmacovigilance de Pharmacoépidemiologie et d'Informations sur le Médicament, CIC INSERM 1436, Centre Hospitalier Universitaire-Faculté de Médecine, Toulouse, France
| |
Collapse
|
9
|
Pessoa MLDS, Silva LMO, Araruna MEC, Serafim CADL, Júnior EBA, Silva AO, Pessoa MMB, Neto HD, Lima EDO, Batista LM. Antifungal activity and antidiarrheal activity via antimotility mechanisms of (-)-fenchone in experimental models. World J Gastroenterol 2020; 26:6795-6809. [PMID: 33268962 PMCID: PMC7684460 DOI: 10.3748/wjg.v26.i43.6795] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/12/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND (-)-Fenchone is a bicyclic monoterpene present in essential oils of plant species, such as Foeniculum vulgare and Peumus boldus, used to treatment of gastrointestinal diseases. Pharmacological studies report its anti-inflammatory, antioxidant, and antinociceptive activity.
AIM To investigate antidiarrheal activity related to gastrointestinal motility, intestinal secretion and antimicrobial activity.
METHODS A castor oil-induced diarrhea model was used to evaluate antidiarrheal activity. Intestinal transit and gastric emptying protocols were used to assess a possible antimotility effect. Muscarinic receptors, presynaptic α2-adrenergic and tissue adrenergic receptors, KATP channels, nitric oxide were investigated to uncover antimotility mechanisms of action and castor oil-induced enteropooling to elucidate antisecretory mechanisms. The antimicrobial activity was evaluated in the minimum inhibitory concentration model, the fractional inhibitory concentration index using the (-)-fenchone association method with standard antifungal agents.
RESULTS (-)-Fenchone (75, 150 and 300 mg/kg) showed antidiarrheal activity, with a significant decrease in the evacuation index. This activity is possibly related to a percentage of reduced intestinal transit (75, 150 and 300 mg/kg). The antimotility effect of (-)-fenchone decreased in the presence of pilocarpine, yohimbine, propranolol, L-NG-nitroarginine methyl ester or glibenclamide. In the enteropooling model, no reduction in intestinal fluid weight was observed. (-)- Fenchone did not show antibacterial activity; on the other hand, inhibits the growth of strains of fungi with a minimum fungicide concentration of 32 μg/mL. However, when it was associated with amphotericin B, no synergism was observed.
CONCLUSION The antidiarrheal effect of (-)-fenchone in this study involves antimotility effect and not involve antisecretory mechanisms. (-)-Fenchone presents antifungal activity; however, it did not show antibacterial activity.
Collapse
Affiliation(s)
- Michelle Liz de Souza Pessoa
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil
| | | | - Maria Elaine Cristina Araruna
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil
| | | | - Edvaldo Balbino Alves Júnior
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil
| | - Alessa Oliveira Silva
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil
| | | | - Hermes Diniz Neto
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil
| | - Edeltrudes de Oliveira Lima
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil
| | - Leônia Maria Batista
- Postgraduate Program in Natural and Synthetic Bioactive Products, Universidade Federal da Paraiba, João Pessoa 58051-900, Brazil
| |
Collapse
|
10
|
Carbone SE, Poole DP. Inflammation without pain: Immune-derived opioids hold the key. Neurogastroenterol Motil 2020; 32:e13787. [PMID: 31999404 DOI: 10.1111/nmo.13787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/11/2023]
Abstract
Visceral pain is commonly associated with acute or remitting inflammatory bowel disease (IBD). In marked contrast, chronic IBD is often painless, even in the presence of active inflammation. This suggests that inflammation in itself is insufficient to sustain altered nociceptive signaling and raises the possibility that there is an endogenous analgesic system in effect in chronic disease. A new study by Basso et al. published in this issue of Neurogastroenterology & Motility provides additional support for an immune-mediated mechanism that suppresses visceral hypersensitivity. The authors examined visceral pain in the IL-10-piroxicam model of chronic colitis, which differs from other experimental IBD models in that it involves immune suppression. During active inflammation, responses by these mice to graded increases in colorectal distension were equivalent to healthy controls, consistent with normal afferent signaling. However, treatment with a peripherally restricted opioid receptor antagonist resulted in marked visceral hypersensitivity to the same stimuli. This effect was attributed to the production of endogenous opioids by colitogenic CD4+ T cells present in the mucosa. This mini-review provides a brief overview of analgesia by immune-derived opioids under inflammatory conditions and highlights how the work of Basso et al. contributes to this area of research. Potential pharmacological approaches to harness or mimic this system are provided. These strategies may prove to be an effective means through which targeted and sustained relief of IBD pain may be achieved.
Collapse
Affiliation(s)
- Simona E Carbone
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia.,ARC CoE in Convergent Bio-Nano Science & Technology, Parkville, Vic, Australia
| | - Daniel P Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia.,ARC CoE in Convergent Bio-Nano Science & Technology, Parkville, Vic, Australia
| |
Collapse
|