1
|
Liu H, Yang G, Wang H. Oxytocin/Oxytocin Receptor Signalling in the Gastrointestinal System: Mechanisms and Therapeutic Potential. Int J Mol Sci 2024; 25:10935. [PMID: 39456718 PMCID: PMC11508134 DOI: 10.3390/ijms252010935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The neuropeptide hormone oxytocin (OT) is involved in various physiological and pathological processes via the oxytocin receptor (OTR). While OT is most widely known as a reproductive system hormone and a nervous system neurotransmitter, the OT/OTR system has gradually gained much attention for its role in the gastrointestinal (GI) system, such as the GI motility, secretion, and bowel inflammatory reactions. Its importance in GI cancers has also been reported in the past few decades. The promising clinical observations have revealed OT's anti-nociceptive effect, protective effect over gut injury, and the potential of using microbiota to naturally increase endogenous OT levels, which shed a light on the management of GI disorders with lower side effects. However, no current comprehensive review is available on the actions of OT/OTR in the GI tract. This review aims to present the lesser-known role of the OT/OTR system in the GI tract, and the most recent findings are discussed regarding the distribution and functional role of OTR signalling in regulating (patho)physiological functions of the GI tract. Special emphasis is placed on its therapeutic potential for clinical management of GI disorders, such as GI pain, inflammatory bowel disease (IBD), and irritable bowel syndrome (IBS). The recent characterisation of the OTR's crystal structure has advanced research for designing and identifying new OTR-specific molecules. Future in-depth basic and clinical research is needed to further elucidate the involvement and detailed mechanism of OT/OTR in GI disorders, and the development of OTR-specific ligands.
Collapse
Affiliation(s)
- Huiping Liu
- School of Pharmacy, Yantai University, Yantai 264005, China; (G.Y.); (H.W.)
| | | | | |
Collapse
|
2
|
Lu Q, Tang H. Overexpression of HSP27 accelerates stress-induced gastric ulcer healing via the CXCL12/CXCR4 axis. Clin Exp Pharmacol Physiol 2024; 51:e13857. [PMID: 38566371 DOI: 10.1111/1440-1681.13857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
Chronic stress often triggers gastrointestinal complications, including gastric injury and ulcers. Understanding the role of heat shock protein 27 (HSP27) in stress-induced gastric ulcers could unveil novel therapeutic targets. Here, we established a stress-induced gastric ulcer rat model using water immersion restraint stress and administered adenovirus-packaged HSP27 overexpression vector. Gastric ulcer severity was scored, and mucosal changes were assessed. Gastric epithelial and endothelial cells were treated with lipopolysaccharide and transfected with HSP27 overexpression vectors to evaluate cell viability, migration and angiogenesis. Expression levels of HSP27, C-X-C motif chemokine ligand 12 (CXCL12) and C-X-C motif chemokine receptor 4 (CXCR4) were measured in tissues and cells. HSP27 expression was initially low during stress-induced gastric ulceration but increased during ulcer healing. HSP27 overexpression accelerated ulcer healing in rats, promoting gastric epithelial cell proliferation and migration and gastric endothelial cell angiogenesis through the CXCL12/CXCR4 axis. Inhibitor IT1t reversed the effects of HSP27 overexpression on cell proliferation, migration and angiogenesis. In summary, HSP27 overexpression facilitated ulcer healing, which was partially mediated by the CXCL12/CXCR4 axis.
Collapse
Affiliation(s)
- Qiaoyan Lu
- Department of Digestive Endoscopy, Xi'an International Medical Center Hospital, China
| | - Hua Tang
- Department of Digestive Endoscopy, Xi'an International Medical Center Hospital, China
| |
Collapse
|
3
|
Li X, He F, Tuo X, Qiu Y, Guo J, Wu Y, Meng X, Yang Z. Electroacupuncture ameliorates peptic ulcer disease in association with gastroduodenal microbiota modulation in mice. Front Cell Infect Microbiol 2022; 12:935681. [PMID: 36061878 PMCID: PMC9437313 DOI: 10.3389/fcimb.2022.935681] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/28/2022] [Indexed: 02/02/2023] Open
Abstract
Peptic ulcer disease (PUD) is a common disease and frequently encountered in the clinic. Accumulating evidence suggests that PUD is associated with the gastrointestinal microbiota. Electroacupuncture (EA) is an improved version of acupuncture, which can improve the clinical effect by increasing the stimulation and delivering appropriate electrical pulses to needles. This method has been widely used in the treatment of peptic ulcer disease. However, its effect on gastrointestinal microbiota remains unclear. Therefore, in the present study, the ameliorative effect of EA was evaluated on the gastroduodenal mucosa, and the regulatory effect of the gastroduodenal microbiota was assessed in PUD mice. A total of 48 male Kun Ming mice were randomly divided into the following groups: normal control group (NC), PUD model group (PUD), Shousanli group (LI10), and Zusanli group (ST36) (n=12). The mice in groups LI10 and ST36 were treated with EA at LI10 and ST36, respectively. This intervention was continued for 7 days. Subsequently, we evaluated the morphological changes in the gastric and duodenal mucosa, and specific indices were measured, including the contents of serum dopamine (DA), the trefoil factor (TFF), and the vasoactive intestinal peptide (VIP). In addition, the gastric and duodenal microbiota were assessed via 16S ribosomal DNA sequencing. The results indicated that EA at LI10 or ST36 significantly reduced the injury of the gastroduodenal mucosa in PUD mice. The gastric microbial community structure of the groups LI10 and ST36 was similar to that of the NC group following comparison with the microbial community structure of the PUD model group. Moreover, the abundance of Firmicutes in the stomach was decreased, whereas that of Bacteroidetes was increased, and the abundance of Firmicutes in the duodenum was decreased. Furthermore, the microbial diversity and richness of the gastric microbiota in group LI10 were also significantly increased, and the serum dopamine and trefoil factor levels in group ST36 were significantly increased. Therefore, it is suggested that EA ameliorating PUD is in association with improving the levels of DA and TFF and regulating the relative abundances of Firmicutes and Bacteroidetes in the gastric microbiota.
Collapse
Affiliation(s)
- Xiaoshuang Li
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Feiyu He
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Xuan Tuo
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Yuanming Qiu
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Jingjing Guo
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Yiming Wu
- Eye Institute, School of Medicine, Xiamen University, Xiamen, China
| | - Xianjun Meng
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Zongbao Yang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Liu XY, Zheng LF, Fan YY, Shen QY, Qi Y, Li GW, Sun Q, Zhang Y, Feng XY, Zhu JX. Activation of dopamine D 2 receptor promotes pepsinogen secretion by suppressing somatostatin release from the mouse gastric mucosa. Am J Physiol Cell Physiol 2022; 322:C327-C337. [PMID: 34986020 DOI: 10.1152/ajpcell.00385.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
In vivo administration of dopamine (DA) receptor (DR)-related drugs modulate gastric pepsinogen secretion. However, DRs on gastric pepsinogen-secreting chief cells and DA D2 receptor (D2R) on somatostatin-secreting D cells were subsequently acquired. In this study, we aimed to further investigate the local effect of DA on gastric pepsinogen secretion through DRs expressed on chief cells or potential D2Rs expressed on D cells. To elucidate the modulation of DRs in gastric pepsinogen secretion, immunofluorescence staining, ex vivo incubation of gastric mucosa isolated from normal and D2R-/- mice were conducted, accompanied by measurements of pepsinogen or somatostatin levels using biochemical assays or enzyme-linked immunosorbent assays. D1R, D2R, and D5R-immunoreactivity (IR) were observed on chief cells in mouse gastric mucosa. D2R-IR was widely distributed on D cells from the corpus to the antrum. Ex vivo incubation results showed that DA and the D1-like receptor agonist SKF38393 increased pepsinogen secretion, which was blocked by the D1-like receptor antagonist SCH23390. However, D2-like receptor agonist quinpirole also significantly increased pepsinogen secretion, and D2-like receptor antagonist sulpiride blocked the promotion of DA. Besides, D2-like receptors exerted an inhibitory effect on somatostatin secretion, in contrast to their effect on pepsinogen secretion. Furthermore, D2R-/- mice showed much lower basal pepsinogen secretion but significantly increased somatostatin release and an increased number of D cells in gastric mucosa. Only SKF38393, not quinpirole, increased pepsinogen secretion in D2R-/- mice. DA promotes gastric pepsinogen secretion directly through D1-like receptors on chief cells and indirectly through D2R-mediated suppression of somatostatin release.
Collapse
MESH Headings
- Animals
- Chief Cells, Gastric/drug effects
- Chief Cells, Gastric/metabolism
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Pepsinogen A/metabolism
- Quinpirole/pharmacology
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Secretory Pathway
- Somatostatin/metabolism
- Somatostatin-Secreting Cells/drug effects
- Somatostatin-Secreting Cells/metabolism
- Mice
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Li-Fei Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yan-Yan Fan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Qian-Ying Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yao Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Guang-Wen Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Qi Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yue Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Xiao-Yan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Jin-Xia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
5
|
Abstract
Modern lifestyle and adversities such as the COVID-19 pandemic pose challenges for our physical and mental health. Hence, it is of the utmost importance to identify mechanisms by which we can improve resilience to stress and quickly adapt to adversity. While there are several factors that improve stress resilience, social behavior—primarily in the form of social touch—is especially vital. This article provides an overview of how the somatosensory system plays a key role in translating the socio-emotional information of social touch into active coping with stress. Important future directions include evaluating in humans whether stress resilience can be modulated through the stimulation of low-threshold C-fiber mechanoreceptors and using this technology in the prevention of stress-related neuropsychiatric disorders such as major depressive disorder.
Collapse
|
6
|
Huang P, Tang W, Shen R, Ju X, Shao G, Xu X, Jiang A, Qian X, Chen M, Zhou Z, Ren C. Analysis of candidate biomarkers and related transcription factors involved in the development and restoration of stress-induced gastric ulcer by transcriptomics. Cell Stress Chaperones 2020; 25:265-275. [PMID: 32088906 PMCID: PMC7058781 DOI: 10.1007/s12192-020-01070-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 01/01/2023] Open
Abstract
Stress-induced gastric ulcer is one of the common complications affecting patients after trauma, mainly leading to gastrointestinal bleeding and perforation, and severe cases may be life-threatening. However, the molecular mechanism of stress-induced gastric ulcer remains unclear. In the present study, RNA-sequencing was performed on gastric tissues of normal rats (C), stress-induced gastric ulcer rats (T0), and rats recovered from gastric ulcer for 3 days (T3), and bioinformatics analysis was performed to determine changes in gene expression and biological pathways. The protein-protein interaction (PPI) networks of differentially expressed genes (DEGs) were constructed by STRING and visualized by the Cytoscape software. The associated transcriptional factor (TFs)-gene regulatory network of the hub DEGs was also constructed. Pairwise comparisons obtained 103 (T0_C), 127 (T3_T0), and 13 (T3_C) DEGs, respectively. Gene ontology (GO) enrichment analysis indicated DEGs in T0_C and T3_T0 were significantly enriched in response to oxygen-containing compound, response to organic substance, and response to external stimulus. Pathway analysis suggested that DEGs were enriched in TNF signaling pathway, PPAR signaling pathway, apoptosis, and IL-17 signaling pathway. Seven hub genes (Fos, Jun, Nfkbia, Dusp1, Pim3, Junb, and Fosb) were obtained from the PPI networks of T0_C and T3_T0. Key TFs with close interactions, such as Fos, Jun, Nfkbia, Junb, Egr1, and Fosb, were screened This study used RNA-sequencing and bioinformatics analysis to screen out genes associated with gastric ulcer, which can help reveal the molecular mechanism of gastric ulcer development and restoration, and provide reference for the treatment of human gastric ulcers.
Collapse
Affiliation(s)
- Pan Huang
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu People’s Republic of China
| | - Weihong Tang
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu People’s Republic of China
| | - Rong Shen
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu People’s Republic of China
| | - Xiaoli Ju
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu People’s Republic of China
| | - Genbao Shao
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu People’s Republic of China
| | - Xiao Xu
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu People’s Republic of China
| | - Anqi Jiang
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu People’s Republic of China
| | - Xiaobin Qian
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu People’s Republic of China
| | - Miao Chen
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu People’s Republic of China
| | - Zhengrong Zhou
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu People’s Republic of China
| | - Caifang Ren
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu People’s Republic of China
| |
Collapse
|
7
|
Fan XY, Shi G, Zhao P. Methylation in Syn and Psd95 genes underlie the inhibitory effect of oxytocin on oxycodone-induced conditioned place preference. Eur Neuropsychopharmacol 2019; 29:1464-1475. [PMID: 31735530 DOI: 10.1016/j.euroneuro.2019.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/02/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022]
Abstract
Oxycodone (Oxy) is one of the most effective analgesics in medicine, but is associated with the development of dependence. Recent studies demonstrating epigenetic changes in the brain after exposure to opiates have provided an insight into possible mechanisms underlying addiction. Oxytocin (OT), an endogenous neuropeptide well known for preventing drug abuse, is a promising pharmacotherapy to counteract addiction. Therefore, we explored the mechanism of Oxy addiction and the role of OT in Oxy-induced epigenetic alterations. In this study, drug-induced changes in conditioned place preference (CPP), i.e. the expression of synaptic proteins and synaptic density in the ventral tegmental area (VTA) were measured. We also sought to identify DNA methyltransferases (DNMTs), ten-eleven translocations (TETs), global 5-methylcytosine (5-mC), and DNA methylation of two genes implicated in plasticity (Synaptophysin, Syn; Post-synaptic density protein 95, Psd95). Oxy (3.0 mg/kg, i.p.) induced CPP acquisition in Sprague-Dawley rats. Oxy down-regulated DNMT1 and up-regulated TET1-3, leading to a decrease in global 5-mC levels and differential demethylation at exon 1 of Syn and exon 2 of Psd95. These changes in DNA methylation of Syn and Psd95 elevated the expression of synaptic proteins (SYN, PSD95) and synaptic density in the VTA. Pretreatment with OT (2.5 µg, i.c.v.) via its receptor specifically blocked Oxy CPP, normalized synaptic density, and regulated DNMT1 and TET2-3 causing reverse of DNA demethylation of Syn and Psd95. DNA methylation is an important gene regulation mechanism underlying Oxy CPP, and OT - via its receptor - could specifically inhibit Oxy addiction.
Collapse
Affiliation(s)
- Xin-Yu Fan
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, 110004, Shenyang, China
| | - Guang Shi
- Department of Neurology, Liaoning Provincial People's Hospital, Shenyang, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, 110004, Shenyang, China.
| |
Collapse
|