1
|
Meerschaert KA, Chiu IM. The gut-brain axis and pain signalling mechanisms in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-01017-9. [PMID: 39578592 DOI: 10.1038/s41575-024-01017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Visceral pain is a major clinical problem and one of the most common reasons patients with gastrointestinal disorders seek medical help. Peripheral sensory neurons that innervate the gut can detect noxious stimuli and send signals to the central nervous system that are perceived as pain. There is a bidirectional communication network between the gastrointestinal tract and the nervous system that mediates pain through the gut-brain axis. Sensory neurons detect mechanical and chemical stimuli within the intestinal tissues, and receive signals from immune cells, epithelial cells and the gut microbiota, which results in peripheral sensitization and visceral pain. This Review focuses on molecular communication between these non-neuronal cell types and neurons in visceral pain. These bidirectional interactions can be dysregulated during gastrointestinal diseases to exacerbate visceral pain. We outline the anatomical pathways involved in pain processing in the gut and how cell-cell communication is integrated into this gut-brain axis. Understanding how bidirectional communication between the gut and nervous system is altered during disease could provide new therapeutic targets for treating visceral pain.
Collapse
Affiliation(s)
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Chi ZC. Recent studies on gut-brain axis and irritable bowel syndrome. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:468-483. [DOI: 10.11569/wcjd.v32.i7.468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
|
3
|
Minshall BL, Skipper RA, Riddle CA, Wasylyshyn CF, Claflin DI, Quinn JJ. Sex differences in acute early life stress-enhanced fear learning in adult rats. Dev Psychobiol 2024; 66:e22511. [PMID: 38837722 DOI: 10.1002/dev.22511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
Patients diagnosed with posttraumatic stress disorder (PTSD) present with a spectrum of debilitating anxiety symptoms resulting from exposure to trauma. Women are twice as likely to be diagnosed with anxiety and PTSD compared to men; however, the reason for this vulnerability remains unknown. We conducted four experiments where we first demonstrated a female vulnerability to stress-enhanced fear learning (SEFL) with a moderate, acute early life stress (aELS) exposure (4 footshocks in a single session), compared to a more intense aELS exposure (15 footshocks in a single session) where males and females demonstrated comparable SEFL. Next, we demonstrated that this female vulnerability does not result from differences in footshock reactivity or contextual fear conditioning during the aELS exposure. Finally, using gonadectomy or sham surgeries in adult male and female rats, we showed that circulating levels of gonadal steroid hormones at the time of adult fear conditioning do not explain the female vulnerability to SEFL. Additional research is needed to determine whether this vulnerability can be explained by organizational effects of gonadal steroid hormones or differences in sex chromosome gene expression. Doing so is critical for a better understanding of increased female vulnerability to certain psychiatric diseases.
Collapse
Affiliation(s)
- Brianna L Minshall
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio, USA
| | - Rachel A Skipper
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio, USA
| | - Collin A Riddle
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio, USA
| | - Catherine F Wasylyshyn
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio, USA
| | - Dragana I Claflin
- Department of Psychology, Wright State University, Dayton, Ohio, USA
| | - Jennifer J Quinn
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio, USA
| |
Collapse
|
4
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
5
|
Tiwari N, Qiao LY. Sex Differences in Visceral Pain and Comorbidities: Clinical Outcomes, Preclinical Models, and Cellular and Molecular Mechanisms. Cells 2024; 13:834. [PMID: 38786056 PMCID: PMC11119472 DOI: 10.3390/cells13100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Sexual dimorphism of visceral pain has been documented in clinics and experimental animal models. Aside from hormones, emerging evidence suggests the sex-differential intrinsic neural regulation of pain generation and maintenance. According to the International Association for the Study of Pain (IASP) and the American College of Gastroenterology (ACG), up to 25% of the population have visceral pain at any one time, and in the United States 10-15 percent of adults suffer from irritable bowel syndrome (IBS). Here we examine the preclinical and clinical evidence of sex differences in visceral pain focusing on IBS, other forms of bowel dysfunction and IBS-associated comorbidities. We summarize preclinical animal models that provide a means to investigate the underlying molecular mechanisms in the sexual dimorphism of visceral pain. Neurons and nonneuronal cells (glia and immune cells) in the peripheral and central nervous systems, and the communication of gut microbiota and neural systems all contribute to sex-dependent nociception and nociplasticity in visceral painful signal processing. Emotion is another factor in pain perception and appears to have sexual dimorphism.
Collapse
Affiliation(s)
- Namrata Tiwari
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Liya Y. Qiao
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
6
|
Baudat M, Simons SHP, Joosten EAJ. Repetitive neonatal procedural pain affects stress-induced plasma corticosterone increase in young adult females but not in male rats. Dev Psychobiol 2024; 66:e22478. [PMID: 38433425 DOI: 10.1002/dev.22478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/25/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Exposure to repetitive painful procedures in the neonatal intensive care unit results in long-lasting effects, especially visible after a "second hit" in adulthood. As the nociceptive system and the hypothalamic-pituitary-adrenal (HPA) axis interact and are vulnerable in early life, repetitive painful procedures in neonates may affect later-life HPA axis reactivity. The first aim of the present study was to investigate the effects of repetitive neonatal procedural pain on plasma corticosterone levels after mild acute stress (MAS) in young adult rats. Second, the study examined if MAS acts as a "second hit" and affects mechanical sensitivity. Fifty-two rats were either needle pricked four times a day, disturbed, or left undisturbed during the first neonatal week. At 8 weeks, the animals were subjected to MAS, and plasma was collected before (t0), after MAS (t20), and at recovery (t60). Corticosterone levels were analyzed using an enzyme-linked immunosorbent assay, and mechanical sensitivity was assessed with von Frey filaments. Results demonstrate that repetitive neonatal procedural pain reduces stress-induced plasma corticosterone increase after MAS only in young adult females and not in males. Furthermore, MAS does not affect mechanical sensitivity in young adult rats. Altogether, the results suggest an age- and sex-dependent effect of repetitive neonatal procedural pain on HPA axis reprogramming.
Collapse
Affiliation(s)
- Mathilde Baudat
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Sinno H P Simons
- Deptartment of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus University Medical Centre Rotterdam - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Elbert A J Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
7
|
Boerner KE, Keogh E, Inkster AM, Nahman-Averbuch H, Oberlander TF. A developmental framework for understanding the influence of sex and gender on health: Pediatric pain as an exemplar. Neurosci Biobehav Rev 2024; 158:105546. [PMID: 38272336 DOI: 10.1016/j.neubiorev.2024.105546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/07/2023] [Accepted: 11/06/2023] [Indexed: 01/27/2024]
Abstract
Sex differences are a robust finding in many areas of adult health, including cardiovascular disease, psychiatric disorders, and chronic pain. However, many sex differences are not consistently observed until after the onset of puberty. This has led to the hypothesis that hormones are primary contributors to sex differences in health outcomes, largely ignoring the relative contributions of early developmental influences, emerging psychosocial factors, gender, and the interaction between these variables. In this paper, we argue that a comprehensive understanding of sex and gender contributions to health outcomes should start as early as conception and take an iterative biopsychosocial-developmental perspective that considers intersecting social positions. We present a conceptual framework, informed by a review of the literature in basic, clinical, and social science that captures how critical developmental stages for both sex and gender can affect children's health and longer-term outcomes. The literature on pediatric chronic pain is used as a worked example of how the framework can be applied to understanding different chronic conditions.
Collapse
Affiliation(s)
- Katelynn E Boerner
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, BC, Canada.
| | - Edmund Keogh
- Department of Psychology & Centre for Pain Research, University of Bath, Bath, United Kingdom
| | - Amy M Inkster
- Department of Medical Genetics, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Hadas Nahman-Averbuch
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Tim F Oberlander
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, BC, Canada; School of Population and Public Health, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
8
|
Murray GM, Sessle BJ. Pain-sensorimotor interactions: New perspectives and a new model. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100150. [PMID: 38327725 PMCID: PMC10847382 DOI: 10.1016/j.ynpai.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/25/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
How pain and sensorimotor behavior interact has been the subject of research and debate for many decades. This article reviews theories bearing on pain-sensorimotor interactions and considers their strengths and limitations in the light of findings from experimental and clinical studies of pain-sensorimotor interactions in the spinal and craniofacial sensorimotor systems. A strength of recent theories is that they have incorporated concepts and features missing from earlier theories to account for the role of the sensory-discriminative, motivational-affective, and cognitive-evaluative dimensions of pain in pain-sensorimotor interactions. Findings acquired since the formulation of these recent theories indicate that additional features need to be considered to provide a more comprehensive conceptualization of pain-sensorimotor interactions. These features include biopsychosocial influences that range from biological factors such as genetics and epigenetics to psychological factors and social factors encompassing environmental and cultural influences. Also needing consideration is a mechanistic framework that includes other biological factors reflecting nociceptive processes and glioplastic and neuroplastic changes in sensorimotor and related brain and spinal cord circuits in acute or chronic pain conditions. The literature reviewed and the limitations of previous theories bearing on pain-sensorimotor interactions have led us to provide new perspectives on these interactions, and this has prompted our development of a new concept, the Theory of Pain-Sensorimotor Interactions (TOPSMI) that we suggest gives a more comprehensive framework to consider the interactions and their complexity. This theory states that pain is associated with plastic changes in the central nervous system (CNS) that lead to an activation pattern of motor units that contributes to the individual's adaptive sensorimotor behavior. This activation pattern takes account of the biological, psychological, and social influences on the musculoskeletal tissues involved in sensorimotor behavior and on the plastic changes and the experience of pain in that individual. The pattern is normally optimized in terms of biomechanical advantage and metabolic cost related to the features of the individual's musculoskeletal tissues and aims to minimize pain and any associated sensorimotor changes, and thereby maintain homeostasis. However, adverse biopsychosocial factors and their interactions may result in plastic CNS changes leading to less optimal, even maladaptive, sensorimotor changes producing motor unit activation patterns associated with the development of further pain. This more comprehensive theory points towards customized treatment strategies, in line with the management approaches to pain proposed in the biopsychosocial model of pain.
Collapse
Affiliation(s)
- Greg M. Murray
- Discipline of Restorative and Reconstructive Dentistry, Sydney School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Darcy Road, Westmead, NSW 2145, Australia
| | - Barry J. Sessle
- Faculty of Dentistry and Temerty Faculty of Medicine Department of Physiology, and Centre for the Study of Pain, University of Toronto, 124 Edward St, Toronto, ON M5G 1G6, Canada
| |
Collapse
|
9
|
Wang X, Sun Z, Yang T, Lin F, Ye S, Yan J, Li T, Chen J. Sodium butyrate facilitates CRHR2 expression to alleviate HPA axis hyperactivity in autism-like rats induced by prenatal lipopolysaccharides through histone deacetylase inhibition. mSystems 2023; 8:e0041523. [PMID: 37358267 PMCID: PMC10469781 DOI: 10.1128/msystems.00415-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 06/27/2023] Open
Abstract
Short-chain fatty acids (SCFAs, especially butyric acid) have been demonstrated to play a promising role in the development of autism spectrum disorders (ASD). Recently, the hypothalamic-pituitary-adrenal (HPA) axis is also suggested to increase the risk of ASD. However, the mechanism underlying SCFAs and HPA axis in ASD development remains unknown. Here, we show that children with ASD exhibited lower SCFA concentrations and higher cortisol levels, which were recaptured in prenatal lipopolysaccharide (LPS)-exposed rat model of ASD. These offspring also showed decreased SCFA-producing bacteria and histone acetylation activity as well as impaired corticotropin-releasing hormone receptor 2 (CRHR2) expression. Sodium butyrate (NaB), which can act as histone deacetylases inhibitors, significantly increased histone acetylation at the CRHR2 promoter in vitro and normalized the corticosterone as well as CRHR2 expression level in vivo. Behavioral assays indicated ameliorative effects of NaB on anxiety and social deficit in LPS-exposed offspring. Our results imply that NaB treatment can improve ASD-like symptoms via epigenetic regulation of the HPA axis in offspring; thus, it may provide new insight into the SCFA treatment of neurodevelopmental disorders like ASD. IMPORTANCE Growing evidence suggests that microbiota can affect brain function and behavior through the "microbiome-gut-brain'' axis, but its mechanism remains poorly understood. Here, we show that both children with autism and LPS-exposed rat model of autism exhibited lower SCFA concentrations and overactivation of HPA axis. SCFA-producing bacteria, Lactobacillus, might be the key differential microbiota between the control and LPS-exposed offspring. Interestingly, NaB treatment contributed to the regulation of HPA axis (such as corticosterone as well as CRHR2) and improvement of anxiety and social deficit behaviors in LPS-exposed offspring. The potential underlying mechanism of the ameliorative effect of NaB may be mediated via increasing histone acetylation to the CRHR2 promoter. These results enhance our understanding of the relationship between the SCFAs and the HPA axis in the development of ASD. And gut microbiota-derived SCFAs may serve as a potential therapeutic agent to neurodevelopmental disorders like ASD.
Collapse
Affiliation(s)
- Xinyuan Wang
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Zhujun Sun
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Ting Yang
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Fang Lin
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Shasha Ye
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Junyan Yan
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Tingyu Li
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Jie Chen
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| |
Collapse
|
10
|
Nakamoto K, Tokuyama S. Stress-Induced Changes in the Endogenous Opioid System Cause Dysfunction of Pain and Emotion Regulation. Int J Mol Sci 2023; 24:11713. [PMID: 37511469 PMCID: PMC10380691 DOI: 10.3390/ijms241411713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Early life stress, such as child abuse and neglect, and psychosocial stress in adulthood are risk factors for psychiatric disorders, including depression and anxiety. Furthermore, exposure to these stresses affects the sensitivity to pain stimuli and is associated with the development of chronic pain. However, the mechanisms underlying the pathogenesis of stress-induced depression, anxiety, and pain control remain unclear. Endogenous opioid signaling is reportedly associated with analgesia, reward, addiction, and the regulation of stress responses and anxiety. Stress alters the expression of various opioid receptors in the central nervous system and sensitivity to opioid receptor agonists and antagonists. μ-opioid receptor-deficient mice exhibit attachment disorders and autism-like behavioral expression patterns, while those with δ-opioid receptor deficiency exhibit anxiety-like behavior. In contrast, deficiency and antagonists of the κ-opioid receptor suppress the stress response. These findings strongly suggest that the expression and dysfunction of the endogenous opioid signaling pathways are involved in the pathogenesis of stress-induced psychiatric disorders and chronic pain. In this review, we summarize the latest basic and clinical research studies on the effects of endogenous opioid signaling on early-life stress, psychosocial stress-induced psychiatric disorders, and chronic pain.
Collapse
Affiliation(s)
- Kazuo Nakamoto
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| |
Collapse
|
11
|
Dothel G, Barbaro MR, Di Vito A, Ravegnini G, Gorini F, Monesmith S, Coschina E, Benuzzi E, Fuschi D, Palombo M, Bonomini F, Morroni F, Hrelia P, Barbara G, Angelini S. New insights into irritable bowel syndrome pathophysiological mechanisms: contribution of epigenetics. J Gastroenterol 2023; 58:605-621. [PMID: 37160449 PMCID: PMC10307698 DOI: 10.1007/s00535-023-01997-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Irritable bowel syndrome (IBS) is a complex multifactorial condition including alterations of the gut-brain axis, intestinal permeability, mucosal neuro-immune interactions, and microbiota imbalance. Recent advances proposed epigenetic factors as possible regulators of several mechanisms involved in IBS pathophysiology. These epigenetic factors include biomolecular mechanisms inducing chromosome-related and heritable changes in gene expression regardless of DNA coding sequence. Accordingly, altered gut microbiota may increase the production of metabolites such as sodium butyrate, a prominent inhibitor of histone deacetylases. Patients with IBS showed an increased amount of butyrate-producing microbial phila as well as an altered profile of methylated genes and micro-RNAs (miRNAs). Importantly, gene acetylation as well as specific miRNA profiles are involved in different IBS mechanisms and may be applied for future diagnostic purposes, especially to detect increased gut permeability and visceromotor dysfunctions. In this review, we summarize current knowledge of the role of epigenetics in IBS pathophysiology.
Collapse
Affiliation(s)
- Giovanni Dothel
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Connect By Circular Lab SRL, Madrid, Spain
| | | | - Aldo Di Vito
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Francesca Gorini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Sarah Monesmith
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Emma Coschina
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Eva Benuzzi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Marta Palombo
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Bonomini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Fabiana Morroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | - Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Inter-Departmental Center for Health Sciences & Technologies, CIRI-SDV, University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Agulló L, Muriel J, Margarit C, Escorial M, Garcia D, Herrero MJ, Hervás D, Sandoval J, Peiró AM. Sex Differences in Opioid Response Linked to OPRM1 and COMT genes DNA Methylation/Genotypes Changes in Patients with Chronic Pain. J Clin Med 2023; 12:jcm12103449. [PMID: 37240556 DOI: 10.3390/jcm12103449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Analgesic-response variability in chronic noncancer pain (CNCP) has been reported due to several biological and environmental factors. This study was undertaken to explore sex differences linked to OPRM1 and COMT DNA methylation changes and genetic variants in analgesic response. A retrospective study with 250 real-world CNCP outpatients was performed in which data from demographic, clinical, and pharmacological variables were collected. DNA methylation levels (CpG island) were evaluated by pyrosequencing, and their interaction with the OPRM1 (A118G) and COMT (G472A) gene polymorphisms was studied. A priori-planned statistical analyses were conducted to compare responses between females and males. Sex-differential OPRM1 DNA methylation was observed to be linked to lower opioid use disorder (OUD) cases for females (p = 0.006). Patients with lower OPRM1 DNA methylation and the presence of the mutant G-allele reduced opioid dose requirements (p = 0.001), equal for both sexes. Moreover, COMT DNA methylation levels were negatively related to pain relief (p = 0.020), quality of life (p = 0.046), and some adverse events (probability > 90%) such as constipation, insomnia, or nervousness. Females were, significantly, 5 years older with high anxiety levels and a different side-effects distribution than males. The analyses demonstrated significant differences between females and males related to OPRM1 signalling efficiency and OUD, with a genetic-epigenetic interaction in opioid requirements. These findings support the importance of sex as a biological variable to be factored into chronic pain-management studies.
Collapse
Affiliation(s)
- Laura Agulló
- Pharmacogenetic Unit, Alicante Institute for Health and Biomedical Research (ISABIAL), Dr. Balmis General University Hospital, Pintor Baeza, 12, 03010 Alicante, Spain
- Clinical Pharmacology, Toxicology and Chemical Safety Unit, Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Javier Muriel
- Pharmacogenetic Unit, Alicante Institute for Health and Biomedical Research (ISABIAL), Dr. Balmis General University Hospital, Pintor Baeza, 12, 03010 Alicante, Spain
| | - César Margarit
- Pain Unit, Department of Health of Alicante, Dr. Balmis General University Hospital, c/Pintor Baeza, 12, 03010 Alicante, Spain
| | - Mónica Escorial
- Pharmacogenetic Unit, Alicante Institute for Health and Biomedical Research (ISABIAL), Dr. Balmis General University Hospital, Pintor Baeza, 12, 03010 Alicante, Spain
- Clinical Pharmacology, Toxicology and Chemical Safety Unit, Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Diana Garcia
- Epigenomics Core Facility, La Fe Health Research Institute, Ave. Fernando Abril Martorell, 106, 46026 Valencia, Spain
| | - María José Herrero
- Pharmacogenetics Unit, La Fe Health Research Institute, Ave. Fernando Abril Martorell, 106, 46026 Valencia, Spain
| | - David Hervás
- Department of Applied Statistics and Operations Research and Quality, Universitat Politècnica de Valéncia, 46022 Valencia, Spain
| | - Juan Sandoval
- Epigenomics Core Facility, La Fe Health Research Institute, Ave. Fernando Abril Martorell, 106, 46026 Valencia, Spain
| | - Ana M Peiró
- Pharmacogenetic Unit, Alicante Institute for Health and Biomedical Research (ISABIAL), Dr. Balmis General University Hospital, Pintor Baeza, 12, 03010 Alicante, Spain
- Clinical Pharmacology, Toxicology and Chemical Safety Unit, Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202 Elche, Spain
| |
Collapse
|
13
|
Louwies T, Mohammadi E, Greenwood-Van Meerveld B. Epigenetic mechanisms underlying stress-induced visceral pain: Resilience versus vulnerability in a two-hit model of early life stress and chronic adult stress. Neurogastroenterol Motil 2023; 35:e14558. [PMID: 36893055 DOI: 10.1111/nmo.14558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/16/2022] [Accepted: 02/19/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND Women with a history of early life stress (ELS) have a higher risk of developing irritable bowel syndrome (IBS). In addition, chronic stress in adulthood can exacerbate IBS symptoms such as abdominal pain due to visceral hypersensitivity. We previously showed that sex and the predictability of ELS determine whether rats develop visceral hypersensitivity in adulthood. In female rats, unpredictable ELS confers vulnerability and results in visceral hypersensitivity, whereas predictable ELS induces resilience and does not induce visceral hypersensitivity in adulthood. However, this resilience is lost after exposure to chronic stress in adulthood leading to an exacerbation of visceral hypersensitivity. Evidence suggests that changes in histone acetylation at the promoter regions of glucocorticoid receptor (GR) and corticotrophin-releasing factor (CRF) in the central nucleus of the amygdala (CeA) underlie stress-induced visceral hypersensitivity. Here, we aimed to investigate the role of histone acetylation in the CeA on visceral hypersensitivity in a two-hit model of ELS followed by chronic stress in adulthood. METHODS Male and female neonatal rats were exposed to unpredictable, predictable ELS, or odor only (no stress control) from postnatal days 8 to 12. In adulthood, rats underwent stereotaxic implantation of indwelling cannulas. Rats were exposed to chronic water avoidance stress (WAS, 1 h/day for 7 days) or SHAM stress and received infusions of vehicle, the histone deacetylase inhibitor trichostatin A (TSA) or the histone acetyltransferase inhibitor garcinol (GAR) after each WAS session. 24 h after the final infusion, visceral sensitivity was assessed and the CeA was removed for molecular experiments. RESULTS In the two-hit model (ELS + WAS), female rats previously exposed to predictable ELS, showed a significant reduction in histone 3 lysine 9 (H3K9) acetylation at the GR promoter and a significant increase in H3K9 acetylation at the CRF promoter. These epigenetic changes were associated with changes in GR and CRF mRNA expression in the CeA and an exacerbation of stress-induced visceral hypersensitivity in female animals. TSA infusions in the CeA attenuated the exacerbated stress-induced visceral hypersensitivity, whereas GAR infusions only partially ameliorated ELS+WAS induced visceral hypersensitivity. CONCLUSION The two-hit model of ELS followed by WAS in adulthood revealed that epigenetic dysregulation occurs after exposure to stress in two important periods of life and contributes to the development of visceral hypersensitivity. These aberrant underlying epigenetic changes may explain the exacerbation of stress-induced abdominal pain in IBS patients.
Collapse
Affiliation(s)
- Tijs Louwies
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Ehsan Mohammadi
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | | |
Collapse
|
14
|
Guan L, Shi X, Tang Y, Yan Y, Chen L, Chen Y, Gao G, Lin C, Chen A. Contribution of Amygdala Histone Acetylation in Early Life Stress-Induced Visceral Hypersensitivity and Emotional Comorbidity. Front Neurosci 2022; 16:843396. [PMID: 35600618 PMCID: PMC9120649 DOI: 10.3389/fnins.2022.843396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/19/2022] [Indexed: 01/04/2023] Open
Abstract
Patients with irritable bowel syndrome (IBS) experience not only enhanced visceral pain but also emotional comorbidities, such as anxiety and depression. Early life stress (ELS) is a high-risk for the development of IBS. Literatures have reported an important epigenetic modulation in sustaining extrinsic phenotypes. The amygdala is closely related to the regulation of visceral functions and emotional experiences. In this study, we hypothesized that ELS-induced reprogramming inappropriate adaptation of histone acetylation modification in the amygdala may result in visceral hypersensitivity and anxiety-like behaviors in ELS rats. To test this hypothesis, the model of ELS rats was established by neonatal colorectal dilatation (CRD). Visceral hypersensitivity was assessed based on the electromyography response of the abdominal external oblique muscle to CRD. Emotional comorbidities were examined using the elevated plus maze test, open field test, and sucrose preference test. Trichostatin A (TSA) and C646 were microinjected into the central amygdala (CeA) individually to investigate the effects of different levels of histone acetylation modification on visceral hypersensitivity and emotion. We found neonatal CRD resulted in visceral hypersensitivity and anxiety-like behaviors after adulthood. Inhibiting histone deacetylases (HDACs) in the CeA by TSA enhanced visceral sensitivity but did not affect anxiety-like behaviors, whereas inhibiting HAT by C646 attenuated visceral hypersensitivity in ELS rats. Interestingly, CeA treatment with TSA induced visceral sensitivity and anxiety-like behaviors in the control rats. Western blot showed that the expressions of acetylated 9 residue of Histone 3 (H3K9) and protein kinase C zeta type (PKMζ) were higher in the ELS rats compared to those of the controls. The administration of the PKMζ inhibitor ZIP into the CeA attenuated visceral hypersensitivity of ELS rats. Furthermore, the expression of amygdala PKMζ was enhanced by TSA treatment in control rats. Finally, western blot and immunofluorescence results indicated the decrease of HDAC1 and HDAC2 expressions, but not HDAC3 expression, contributed to the enhancement of histone acetylation in ELS rats. Our results support our hypothesis that amygdala-enhanced histone acetylation induced by stress in early life results in visceral hypersensitivity and anxiety-like behaviors in ELS rats, and reversing the abnormal epigenetic mechanisms may be crucial to relieve chronic symptoms in ELS rats.
Collapse
Affiliation(s)
- Le Guan
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Pain Research Institute, Fujian Medical University, Fuzhou, China
| | - Xi Shi
- Department of Medical Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ying Tang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Pain Research Institute, Fujian Medical University, Fuzhou, China
| | - Yan Yan
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Pain Research Institute, Fujian Medical University, Fuzhou, China
| | - Liang Chen
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Pain Research Institute, Fujian Medical University, Fuzhou, China
| | - Yu Chen
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Pain Research Institute, Fujian Medical University, Fuzhou, China
| | - Guangcheng Gao
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Pain Research Institute, Fujian Medical University, Fuzhou, China
| | - Chun Lin
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Pain Research Institute, Fujian Medical University, Fuzhou, China
- Department of Pediatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- *Correspondence: Chun Lin,
| | - Aiqin Chen
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Pain Research Institute, Fujian Medical University, Fuzhou, China
- Department of Medical Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Aiqin Chen,
| |
Collapse
|
15
|
Spinieli RL, Cazuza RA, Sales AJ, Carolino ROG, Martinez D, Anselmo-Franci J, Tajerian M, Leite-Panissi CR. Persistent inflammatory pain is linked with anxiety-like behaviors, increased blood corticosterone, and reduced global DNA methylation in the rat amygdala. Mol Pain 2022; 18:17448069221121307. [PMID: 35974687 PMCID: PMC9393577 DOI: 10.1177/17448069221121307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chronic pain increases the risk of developing anxiety, with limbic areas being likely neurological substrates. Despite high clinical relevance, little is known about the precise behavioral, hormonal, and brain neuroplastic correlates of anxiety in the context of persistent pain. Previous studies have shown that decreased nociceptive thresholds in chronic pain models are paralleled by anxiety-like behavior in rats, but there are conflicting ideas regarding its effects on the stress response and circulating corticosterone levels. Even less is known about the molecular mechanisms through which the brain encodes pain-related anxiety. This study examines how persistent inflammatory pain in a rat model would impact anxiety-like behaviors and corticosterone release, and whether these changes would be reflected in levels of global DNA methylation in brain areas involved in stress regulation. Complete Freund's adjuvant (CFA) or saline was administered in the right hindpaw of adult male Wistar rats. Behavioral testing included the measurement of nociceptive thresholds (digital anesthesiometer), motor function (open field test), and anxiety-like behaviors (elevated plus maze and the dark-light box test). Corticosterone was measured via radioimmunoassay. Global DNA methylation (enzyme immunoassay) as well as DNMT3a levels (western blotting) were quantified in the amygdala, prefrontal cortex, and ventral hippocampus. CFA administration resulted in persistent reduction in nociceptive threshold in the absence of locomotor abnormalities. Increased anxiety-like behaviors were observed in the elevated plus maze and were accompanied by increased blood corticosterone levels 10 days after pain induction. Global DNA methylation was decreased in the amygdala, with no changes in DNMT3a abundance in any of the regions examined. Persistent inflammatory pain promotes anxiety -like behaviors, HPA axis activation, and epigenetic regulation through DNA methylation in the amygdala. These findings describe a molecular mechanism that links pain and stress in a well-characterized rodent model.
Collapse
Affiliation(s)
- Richard L Spinieli
- Department of Psychology, School of Philosophy, Science and Literature of Ribeirão Preto, 28133University of São Paulo, São Paulo, Brazil
| | - Rafael Alves Cazuza
- Department of Psychology, School of Philosophy, Science and Literature of Ribeirão Preto, 28133University of São Paulo, São Paulo, Brazil
| | - Amanda Juliana Sales
- Department of Pharmacology, Medical School of Ribeirão Preto, 28133University of São Paulo, São Paulo, Brazil
| | | | - Diana Martinez
- Department of Biomedical Sciences, 363994Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Janete Anselmo-Franci
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto, 28133University of São Paulo, São Paulo, Brazil
| | - Maral Tajerian
- Department of Biology, Queens College, City University of New York, Flushing, NY, USA.,The Graduate Center, City University of New York, New York, NY, USA
| | - Christie Ra Leite-Panissi
- Department of Psychology, School of Philosophy, Science and Literature of Ribeirão Preto, 28133University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Louwies T, Orock A, Greenwood-Van Meerveld B. Stress-induced visceral pain in female rats is associated with epigenetic remodeling in the central nucleus of the amygdala. Neurobiol Stress 2021; 15:100386. [PMID: 34584907 PMCID: PMC8456109 DOI: 10.1016/j.ynstr.2021.100386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 12/19/2022] Open
Abstract
Stress and anxiety contribute to the pathophysiology of irritable bowel syndrome (IBS), a female-predominant disorder of the gut-brain axis, characterized by abdominal pain due to heightened visceral sensitivity. In the current study, we aimed to evaluate in female rats whether epigenetic remodeling in the limbic brain, specifically in the central nucleus of the amygdala (CeA), is a contributing factor in stress-induced visceral hypersensitivity. Our results showed that 1 h exposure to water avoidance stress (WAS) for 7 consecutive days decreased histone acetylation at the GR promoter and increased histone acetylation at the CRH promoter in the CeA. Changes in histone acetylation were mediated by the histone deacetylase (HDAC) SIRT-6 and the histone acetyltransferase CBP, respectively. Administration of the HDAC inhibitor trichostatin A (TSA) into the CeA prevented stress-induced visceral hypersensitivity through blockade of SIRT-6 mediated histone acetylation at the GR promoter. In addition, HDAC inhibition within the CeA prevented stress-induced histone acetylation of the CRH promoter. Our results suggest that, in females, epigenetic modifications in the limbic brain regulating GR and CRH expression contribute to stress-induced visceral hypersensitivity and offer a potential explanation of how stress can trigger symptoms in IBS patients.
Collapse
Affiliation(s)
- Tijs Louwies
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Albert Orock
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Beverley Greenwood-Van Meerveld
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
17
|
Cao DY, Hu B, Xue Y, Hanson S, Dessem D, Dorsey SG, Traub RJ. Differential Activation of Colonic Afferents and Dorsal Horn Neurons Underlie Stress-Induced and Comorbid Visceral Hypersensitivity in Female Rats. THE JOURNAL OF PAIN 2021; 22:1283-1293. [PMID: 33887444 PMCID: PMC8500917 DOI: 10.1016/j.jpain.2021.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022]
Abstract
Chronic Overlapping Pain Conditions, including irritable bowel syndrome (IBS) and temporomandibular disorder (TMD), represent a group of idiopathic pain conditions that likely have peripheral and central mechanisms contributing to their pathology, but are poorly understood. These conditions are exacerbated by stress and have a female predominance. The presence of one condition predicts the presence or development of additional conditions, making this a significant pain management problem. The current study was designed to determine if the duration and magnitude of peripheral sensitization and spinal central sensitization differs between restraint stress-induced visceral hypersensitivity (SIH) and chronic comorbid pain hypersensitivity (CPH; stress during pre-existing orofacial pain). SIH in female rats, as determined by the visceromotor response, persisted at least four but resolved by seven weeks. In contrast, CPH persisted at least seven weeks. Surprisingly, colonic afferents in both SIH and CPH rats were sensitized at seven weeks. CPH rats also had referred pain through seven weeks, but locally anesthetizing the colon only attenuated the referred pain through four weeks, suggesting a transition to colonic afferent independent central sensitization. Different phenotypes of dorsal horn neurons were sensitized in the CPH rats seven weeks post stress compared to four weeks or SIH rats. The current study suggests differential processing of colonic afferent input to the lumbosacral spinal cord contributes to visceral hypersensitivity during comorbid chronic pain conditions. PERSPECTIVE: Chronic Overlapping Pain Conditions represent a unique challenge in pain management. The diverse nature of peripheral organs hinders a clear understanding of underlying mechanisms accounting for the comorbidity. This study highlights a mismatch between the condition-dependent behavior and peripheral and spinal mechanisms that contribute to visceral pain hypersensitivity.
Collapse
Affiliation(s)
- Dong-Yuan Cao
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, Maryland; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, P. R. China
| | - Bo Hu
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, Maryland; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, P. R. China
| | - Yang Xue
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, Maryland; Department of Prosthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, P. R. China
| | - Shelby Hanson
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, Maryland
| | - Dean Dessem
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, Maryland; UM Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Baltimore, Maryland
| | - Susan G Dorsey
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, Maryland; UM Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Baltimore, Maryland
| | - Richard J Traub
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, Maryland; UM Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Baltimore, Maryland.
| |
Collapse
|
18
|
The Role of Epigenomic Regulatory Pathways in the Gut-Brain Axis and Visceral Hyperalgesia. Cell Mol Neurobiol 2021; 42:361-376. [PMID: 34057682 DOI: 10.1007/s10571-021-01108-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/24/2021] [Indexed: 01/07/2023]
Abstract
The gut-brain axis (GBA) is broadly accepted to describe the bidirectional circuit that links the gastrointestinal tract with the central nervous system (CNS). Interest in the GBA has grown dramatically over past two decades along with advances in our understanding of the importance of the axis in the pathophysiology of numerous common clinical disorders including mood disorders, neurodegenerative disease, diabetes mellitus, non-alcohol fatty liver disease (NAFLD) and enhanced abdominal pain (visceral hyperalgesia). Paralleling the growing interest in the GBA, there have been seminal developments in our understanding of how environmental factors such as psychological stress and other extrinsic factors alter gene expression, primarily via epigenomic regulatory mechanisms. This process has been driven by advances in next-generation multi-omics methods and bioinformatics. Recent reviews address various components of GBA, but the role of epigenomic regulatory pathways in chronic stress-associated visceral hyperalgesia in relevant regions of the GBA including the amygdala, spinal cord, primary afferent (nociceptive) neurons, and the intestinal barrier has not been addressed. Rapidly developing evidence suggests that intestinal epithelial barrier dysfunction and microbial dysbiosis play a potentially significant role in chronic stress-associated visceral hyperalgesia in nociceptive neurons innervating the lower intestine via downregulation in intestinal epithelial cell tight junction protein expression and increase in paracellular permeability. These observations support an important role for the regulatory epigenome in the development of future diagnostics and therapeutic interventions in clinical disorders affecting the GBA.
Collapse
|
19
|
Davis SM, Zuke JT, Berchulski MR, Burman MA. Amygdalar Corticotropin-Releasing Factor Signaling Is Required for Later-Life Behavioral Dysfunction Following Neonatal Pain. Front Physiol 2021; 12:660792. [PMID: 34045975 PMCID: PMC8144524 DOI: 10.3389/fphys.2021.660792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Neonatal pain such as that experienced by infants in the neonatal intensive care unit is known to produce later-life dysfunction including heightened pain sensitivity and anxiety, although the mechanisms remain unclear. Both chronic pain and stress in adult organisms are known to influence the corticotropin-releasing factor (CRF) system in the Central Nucleus of the Amygdala, making this system a likely candidate for changes following neonatal trauma. To examine this, neonatal rats were subjected to daily pain, non-painful handling or left undisturbed for the first week of life. Beginning on postnatal day, 24 male and female rats were subjected to a 4-day fear conditioning and sensory testing protocol. Some subjects received intra-amygdalar administration of either Vehicle, the CRF receptor 1 (CRF1) receptor antagonist Antalarmin, or the CRF receptor 2 (CRF2) receptor antagonist Astressin 2B prior to fear conditioning and somatosensory testing, while others had tissue collected following fear conditioning and CRF expression in the CeA and BLA was assessed using fluorescent in situ hybridization. CRF1 antagonism attenuated fear-induced hypersensitivity in neonatal pain and handled rats, while CRF2 antagonism produced a general antinociception. In addition, neonatal pain and handling produced a lateralized sex-dependent decrease in CRF expression, with males showing a diminished number of CRF-expressing cells in the right CeA and females showing a similar reduction in the number of CRF-expressing cells in the left BLA compared to undisturbed controls. These data show that the amygdalar CRF system is a likely target for alleviating dysfunction produced by early life trauma and that this system continues to play a major role in the lasting effects of such trauma into the juvenile stage of development.
Collapse
Affiliation(s)
- Seth M Davis
- Department of Psychology, University of New England, Biddeford, ME, United States.,Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States
| | - Jared T Zuke
- Department of Psychology, University of New England, Biddeford, ME, United States.,Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States
| | - Mariah R Berchulski
- Department of Psychology, University of New England, Biddeford, ME, United States.,Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States
| | - Michael A Burman
- Department of Psychology, University of New England, Biddeford, ME, United States.,Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States
| |
Collapse
|
20
|
Ligon CO, Hannig G, Greenwood-Van Meerveld B. Peripheral Guanylate Cyclase-C modulation of corticolimbic activation and corticotropin-releasing factor signaling in a rat model of stress-induced colonic hypersensitivity. Neurogastroenterol Motil 2021; 33:e14076. [PMID: 33373484 DOI: 10.1111/nmo.14076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/05/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Psychological stress is a risk factor for irritable bowel syndrome, a functional gastrointestinal pain disorder featuring abnormal brain-gut connectivity. The guanylate cyclase-C (GC-C) agonist linaclotide has been shown to relieve abdominal pain in IBS-C and exhibits antinociceptive effects in rodent models of post-inflammatory visceral hypersensitivity. However, the role GC-C signaling plays in psychological stress-induced visceral hypersensitivity is unknown. Here, we test the hypothesis that GC-C agonism reverses stress-induced colonic hypersensitivity via inhibition of nociceptive afferent signaling resulting in normalization of stress-altered corticotropin-releasing factor (CRF) expression in brain regions involved in pain perception and modulation. METHODS Adult female rats were exposed to water avoidance stress or sham stress for 10 days, and the effects of linaclotide on stress-induced changes in colonic sensitivity, corticolimbic phospho-extracellular signal-regulated kinase (pERK), and CRF expression were measured using a combination of behavioral assessments, immunohistochemistry, and qRT-PCR. KEY RESULTS Stressed rats exhibited colonic hypersensitivity and elevated corticolimbic pERK on day 11, which was inhibited by linaclotide. qRT-PCR analysis revealed dysregulated CRF expression in the medial prefrontal cortex, paraventricular nucleus of the hypothalamus, and central nucleus of the amygdala on day 28. Dysregulated CRF expression was not affected by linaclotide treatment. CONCLUSIONS AND INFERENCES Our results demonstrate that exposure to repeated stress induces chronic colonic hypersensitivity in conjunction with altered corticolimbic activation and CRF expression. GC-C agonism attenuated stress-induced colonic hypersensitivity and ERK phosphorylation, but had no effect on CRF expression, suggesting the analgesic effects of linaclotide occur independent of stress-driven CRF gene expression in corticolimbic circuitry.
Collapse
Affiliation(s)
- Casey O Ligon
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
21
|
Yuan T, Greenwood-Van Meerveld B. Abdominal and Pelvic Pain: Current Challenges and Future Opportunities. FRONTIERS IN PAIN RESEARCH 2021; 2:634804. [PMID: 35295470 PMCID: PMC8915637 DOI: 10.3389/fpain.2021.634804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Tian Yuan
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Beverley Greenwood-Van Meerveld
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- VA Health Care System, Oklahoma City, OK, United States
- *Correspondence: Beverley Greenwood-Van Meerveld
| |
Collapse
|
22
|
Xu X, Li YC, Wu YY, Xu YC, Weng RX, Wang CL, Zhang PA, Zhang Y, Xu GY. Upregulation of spinal ASIC1 by miR-485 mediates enterodynia in adult offspring rats with prenatal maternal stress. CNS Neurosci Ther 2020; 27:244-255. [PMID: 33314662 PMCID: PMC7816206 DOI: 10.1111/cns.13542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/31/2020] [Accepted: 11/14/2020] [Indexed: 12/28/2022] Open
Abstract
Aims Irritable bowel syndrome (IBS) is a common functional gastrointestinal disease characterized by abdominal pain. Our recent study has shown that the acid‐sensitive ion channel 1 (ASIC1) in dorsal root ganglion (DRG) is involved in stomachache of adult offspring rats subjected with prenatal maternal stress (PMS). MiR‐485 is predicted to target the expression of ASIC1. The aim of the present study was designed to determine whether miR‐485/ASIC1 signaling participates in enterodynia in the spinal dorsal horn of adult offspring rats with PMS. Methods Enterodynia was measured by colorectal distension (CRD). Western blotting, qPCR, and in situ hybridization were performed to detect the expression of ASICs and related miRNAs. Spinal synaptic transmission was also recorded by patch clamping. Results PMS offspring rats showed that spinal ASIC1 protein expression and synaptic transmission were significantly enhanced. Administration of ASICs antagonist amiloride suppressed the synaptic transmission and enterodynia. Besides, PMS induced a significant reduction in the expression of miR‐485. Upregulating the expression markedly attenuated enterodynia, reversed the increase in ASIC1 protein and synaptic transmission. Furthermore, ASIC1 and miR‐485 were co‐expressed in NeuN‐positive spinal dorsal horn neurons. Conclusions Overall, these data suggested that miR‐485 participated in enterodynia in PMS offspring, which is likely mediated by the enhanced ASIC1 activities.
Collapse
Affiliation(s)
- Xue Xu
- The People's Hospital of Suzhou New District, Suzhou, China.,Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yong-Chang Li
- Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yan-Yan Wu
- Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yu-Cheng Xu
- Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Rui-Xia Weng
- The People's Hospital of Suzhou New District, Suzhou, China.,Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Cai-Lin Wang
- The People's Hospital of Suzhou New District, Suzhou, China.,Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ping-An Zhang
- Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ying Zhang
- The People's Hospital of Suzhou New District, Suzhou, China
| | - Guang-Yin Xu
- Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|