1
|
Wang L, Cao L, Yu Q, Liang M, Yang Z, Wang G, Zhao J, Chen W. Bifidobacterium bifidum CCFM1359 alleviates intestinal motility disorders through the BDNF-TrkB pathway. Food Funct 2024. [PMID: 39676620 DOI: 10.1039/d4fo03710c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Intestinal motility disorder is characterised by abnormal intestinal motility function, often resulting in symptoms such as diarrhoea and constipation. Probiotics are increasingly recognised as an effective treatment for gastrointestinal disorders, including intestinal motility disorders. In this study, we used senna extract to induce an animal model of intestinal dysfunction characterised by BDNF downregulation. By assessing relevant indicators of intestinal dyskinesia, we found that Bifidobacterium bifidum CCFM1359 effectively alleviated the dyskinesia. However, this alleviating effect was nullified when a TrkB receptor inhibitor was introduced, suggesting that Bifidobacterium bifidum CCFM1359 operates through the BDNF-TrkB pathway. Further analysis revealed that Bifidobacterium bifidum CCFM1359 likely exerts its beneficial effects by regulating intestinal microecology (increasing the relative abundance of Bifidobacterium bifidum and valeric acid content while decreasing Faecalibacterium and butyric acid content), reducing intestinal inflammation (upregulating the anti-inflammatory factor IL-10 and downregulating pro-inflammatory factors TNF-α and IL-1β), and remodelling intestinal nerves (upregulating S100β and the excitatory neurotransmitter ACh, while downregulating the inhibitory neurotransmitter nNOS). This study provides a theoretical basis for using probiotics to alleviate intestinal motility disorders.
Collapse
Affiliation(s)
- Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Liping Cao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiangqing Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mengxia Liang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhichao Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Singh A. Brain-derived neurotrophic factor - a key player in the gastrointestinal system. PRZEGLAD GASTROENTEROLOGICZNY 2023; 18:380-392. [PMID: 38572454 PMCID: PMC10985741 DOI: 10.5114/pg.2023.132957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/24/2023] [Indexed: 04/05/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) is highly expressed throughout the gastrointestinal (GI) tract and plays a critical role in the regulation of intestinal motility, secretion, sensation, immunity, and mucosal integrity. Dysregulation of BDNF signalling has been implicated in the pathophysiology of various GI disorders including inflammatory bowel disease, irritable bowel syndrome, functional dyspepsia, and diabetic gastroenteropathy. This review provides a comprehensive overview of BDNF localization, synthesis, receptors, and signalling mechanisms in the gut. In addition, current evidence on the diverse physiologic and pathophysiologic roles of BDNF in the control of intestinal peristalsis, mucosal transport processes, visceral sensation, neuroimmune interactions, gastrointestinal mucosal healing, and enteric nervous system homeostasis are discussed. Finally, the therapeutic potential of targeting BDNF for the treatment of functional GI diseases is explored. Advancing knowledge of BDNF biology and mechanisms of action may lead to new therapies based on harnessing the gut trophic effects of this neurotrophin.
Collapse
Affiliation(s)
- Arjun Singh
- Department of Medicine, Division of Gastroenterology and Hepatology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
- Molecular Pharmacology Program and Chemistry, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
3
|
Zhu Y, Li X, Chen T, Wang J, Zhou Y, Mu X, Du Y, Wang J, Tang J, Liu J. Personalised neoantigen-based therapy in colorectal cancer. Clin Transl Med 2023; 13:e1461. [PMID: 37921274 PMCID: PMC10623652 DOI: 10.1002/ctm2.1461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023] Open
Abstract
Colorectal cancer (CRC) has become one of the most common tumours with high morbidity, mortality and distinctive evolution mechanism. The neoantigens arising from the somatic mutations have become considerable treatment targets in the management of CRC. As cancer-specific aberrant peptides, neoantigens can trigger the robust host immune response and exert anti-tumour effects while minimising the emergence of adverse events commonly associated with alternative therapeutic regimens. In this review, we summarised the mechanism, generation, identification and prognostic significance of neoantigens, as well as therapeutic strategies challenges of neoantigen-based therapy in CRC. The evidence suggests that the establishment of personalised neoantigen-based therapy holds great promise as an effective treatment approach for patients with CRC.
Collapse
Affiliation(s)
- Ya‐Juan Zhu
- Department of Biotherapy and Cancer CenterState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Xiong Li
- Department of GastroenterologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Ting‐Ting Chen
- The Second Clinical Medical College of Lanzhou UniversityLanzhouChina
| | - Jia‐Xiang Wang
- Department of Renal Cancer and MelanomaPeking University Cancer Hospital & InstituteBeijingChina
| | - Yi‐Xin Zhou
- Department of Biotherapy and Cancer CenterState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Xiao‐Li Mu
- Department of Biotherapy and Cancer CenterState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yang Du
- Department of Biotherapy and Cancer CenterState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jia‐Ling Wang
- Department of Biotherapy and Cancer CenterState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jie Tang
- Clinical Trial CenterWest China HospitalSichuan UniversityChengduChina
| | - Ji‐Yan Liu
- Department of Biotherapy and Cancer CenterState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
4
|
Protective effects of amoxicillin and probiotics on colon disorders in an experimental model of acute diverticulitis disease. Inflammopharmacology 2022; 30:2153-2165. [DOI: 10.1007/s10787-022-01093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
AbstractAcute diverticulitis disease is associated with inflammation and infection in the colon diverticula and may lead to severe morbidity. This study aimed to evaluate and compare the protective effects of amoxicillin antibiotic, either alone or in combination with probiotics (Lactobacillus acidophilus and Bifidobacterium lactis), in a rat model of acute diverticulitis disease. Acute diverticulitis was induced, in albino rats, by adding 3% weight/volume of dextran sulfate sodium (DSS) to the rats’ drinking water; daily for 7 days, in addition to injecting lipopolysaccharide (LPS) enema (4 mg/kg). The impact of treatments was assessed by measuring the physiological and immunological parameters and evaluating colon macroscopic and microscopic lesions. The results showed that both treatments (especially probiotics with amoxicillin) alleviated the adverse effects of DSS and LPS. This was obvious through the modulation of the rats’ body weight and the colon weight-to-length ratio. Also, there was a significant (p < 0.001) decrease in the colon macroscopic lesion score. The pro-inflammatory cytokines [(TNF)-α, (IL)-1β, (IFN)-γ, and (IL)-18]; in the colon tissue; were significantly (p < 0.001) decreased. Also, both treatments significantly ameliorated the elevation of myeloperoxidase activity and C-reactive protein levels, in addition to improving the histopathological alterations in the colon tissue. In conclusion, amoxicillin and probiotics–amoxicillin were effective in preventing the development of experimentally induced acute diverticulitis, through their anti-inflammatory and immunomodulatory effects. Furthermore, this study has explored the role of probiotics in preventing DSS/LPS-induced acute diverticulitis, so it can be applied as a promising treatment option for acute diverticulitis disease.
Collapse
|
5
|
Hu S, Zhao M, Li W, Wei P, Liu Q, Chen S, Zeng J, Ma X, Tang J. Preclinical evidence for quercetin against inflammatory bowel disease: a meta-analysis and systematic review. Inflammopharmacology 2022; 30:2035-2050. [PMID: 36227442 DOI: 10.1007/s10787-022-01079-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/08/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic, potentially cancerous disease with limited treatment options. Quercetin may be a novel treatment for IBD. However, its efficacy and safety are unknown. Our goal was to conduct a systematic evaluation to summarize the preclinical effects of quercetin, which may help guide future studies. METHODS The literature was drawn from three English databases (PubMed, Embase, and Web of Science), and the quality of the included literature was assessed using the SYRCLE list (10 items). The meta-analysis was performed using STATA 15.1 software. RESULTS A total of 11 animal studies with 199 animals were involved. The current meta-analysis showed that quercetin could reduce histological score (HS), Disease Activity Index (DAI), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), nitric oxide(NO), malondialdehyde (MDA), myeloperoxidase (MPO) activity and increase colon length (CL), weight change degree (WCD), interleukin-10 (IL-10), glutathione (GSH), superoxide dismutase (SOD) activity and catalase (CAT) activity, which may involve anti-inflammatory, anti-oxidative stress, cytoprotective, barrier protection, flora regulation. CONCLUSIONS In conclusion, preclinical evidence suggests that quercetin is an ideal agent for IBD treatment. However, the validity of the findings may be compromised by the low methodological quality and the small number of studies included. There may be some discrepancies between the results of the current analysis and the real situation. More rigorous experimental designs and more comprehensive studies are needed to test the protection of quercetin against IBD.
Collapse
Affiliation(s)
- Shuangyuan Hu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoyaun Zhao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Li
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pengfei Wei
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingsong Liu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuanglan Chen
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China. .,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
6
|
Pterostilbene improves CFA-induced arthritis and peripheral neuropathy through modulation of oxidative stress, inflammatory cytokines and neurotransmitters in Wistar rats. Inflammopharmacology 2022; 30:2285-2300. [PMID: 36138303 DOI: 10.1007/s10787-022-01069-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/03/2022] [Indexed: 11/05/2022]
Abstract
Pterostilbene is a stilbene flavonoid that occurs naturally in various plants as well as produced by genetic engineering. It exhibits anti-inflammatory, analgesic, anti-oxidant and neuroprotective activities. This research was aimed to determine the potential of pterostilbene against arthritis and peripheral neuropathy in Complete Freund's Adjuvant (CFA) induced arthritis. Rat hind paw was injected with 0.1 ml CFA to induce arthritis. Standard control animals received oral methotrexate (3 mg/kg/week). Pterostilbene at 12.5, 25 and 50 mg/kg was given orally to different groups of arthritic rats from day 7-28 for 21 days. Pterostilbene significantly reduced paw diameter and retarded the decrease in body weight of arthritic rats. It profoundly (p < 0.05-0.0001) reduced lipid peroxidation and nitrites, while increased superoxide dismutase (SOD) in the liver tissue. Pterostilbene treatment significantly (p < 0.0001) reduced TNF-α and IL-6 levels. Pterostilbene markedly improved (p < 0.05-0.001) motor activity and showed analgesic effect in arthritic rats at 25 and 50 mg/kg as compared to disease control rats. Furthermore, it notably (p < 0.05-0.0001) increased SOD activity, nitrites, noradrenaline and serotonin levels in the sciatic nerve of arthritic rats. Treatment with pterostilbene also ameliorated the CFA-induced pannus formation, cartilage damage and synovial hyperplasia in the arthritic rat paws. It is determined from the current study that pterostilbene was effective in reducing CFA-induced arthritis in rats through amelioration of oxidative stress and inflammatory mediators. It was also effective to treat peripheral neuropathy through modulation of oxidative stress and neurotransmitters in sciatic nerves.
Collapse
|
7
|
Research progress of neoantigens in gynecologic cancers. Int Immunopharmacol 2022; 112:109236. [PMID: 36113318 DOI: 10.1016/j.intimp.2022.109236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/24/2022]
Abstract
The incidence and mortality of gynecological cancers have increased over the past decade. In the absence of effective treatment strategies, many advanced patients develop resistance to conventional therapies and have poor prognosis. Neoantigens have emerged as a novel tumor-specific antigen (TSA) that arises from genomic mutations in tumor cells. With higher immunogenicity than tumor-associated antigens (TAA), they have no risk of developing autoimmune response, leading them an attractive candidate for tumor therapeutic vaccines. With the development of next-generation sequencing (NGS) technology, the identification of neoantigens has been gradually improved, and the scope of application of neoantigen vaccines has continued to expand. Combined with other therapies such as immune-checkpoint inhibitors (ICIs) or adoptive cell therapy (ACT), the application of neoantigen in gynecological cancers has extended to clinical practice. Here, we reviewed the preclinical and clinical studies of neoantigens in gynecological cancers.
Collapse
|
8
|
Talukder S, Ahmed KS, Hossain H, Hasan T, Liya IJ, Amanat M, Nahar N, Shuvo MSR, Daula AFMSU. Fimbristylis aestivalis Vahl: a potential source of cyclooxygenase-2 (COX-2) inhibitors. Inflammopharmacology 2022; 30:2301-2315. [PMID: 36056995 DOI: 10.1007/s10787-022-01057-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/14/2022] [Indexed: 11/27/2022]
Abstract
Cyclooxygenase-2 (COX-2) is an inducible enzyme that accelerates the biosynthesis of PGs during inflammation and has emerged as an important therapeutic target for anti-inflammatory drugs. Natural compounds may serve as a source of inspiration for pharmaceutical chemists and a foundation for developing innovative COX-2 inhibitors with fewer side effects. Therefore, the objective of this study was to identify the potent COX-2 inhibitor and anti-inflammatory activity of the Fimbristylis aestivalis whole plant extract (FAWE). The plant extract was found dominant with rosmarinic acid followed by catechin hydrate, syringic acid, rutin hydrate, (-) epicatechin, quercetin, myricetin, and catechol. FAWE exhibited considerable dose-dependent analgesic efficacy in all analgesic test models. FAWE also showed promising anti-inflammatory potential in carrageenan-induced inflammations in mice. This result was corroborated by molecular docking, revealing that the aforesaid natural polyphenols adopt the same orientation as celecoxib in the COX-2 active site. On the other hand, molecular dynamics (MD) simulations were performed between the most abundant components (rosmarinic acid, catechin hydrate, and syringic acid) and COX-2. Based on hydrogen bonding, RMSD, RMSF, radius of gyration, PCA, and Gibbs free energy landscape analysis, the results demonstrated that these compounds are very stable in the active site of COX-2, indicating substantial COX-2 inhibitory activity.
Collapse
Affiliation(s)
- Saduddin Talukder
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Sonapur, 3814, Bangladesh
| | - Khondoker Shahin Ahmed
- Chemical Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Hemayet Hossain
- Chemical Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Tarek Hasan
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Sonapur, 3814, Bangladesh
| | - Israt Jahan Liya
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Sonapur, 3814, Bangladesh
| | - Muhammed Amanat
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Sonapur, 3814, Bangladesh
| | - Nurun Nahar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Sonapur, 3814, Bangladesh
| | - Md Sadikur Rahman Shuvo
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Sonapur, 3814, Bangladesh.
| | - A F M Shahid Ud Daula
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Sonapur, 3814, Bangladesh.
| |
Collapse
|
9
|
Khodakarami A, Adibfar S, Karpisheh V, Abolhasani S, Jalali P, Mohammadi H, Gholizadeh Navashenaq J, Hojjat-Farsangi M, Jadidi-Niaragh F. The molecular biology and therapeutic potential of Nrf2 in leukemia. Cancer Cell Int 2022; 22:241. [PMID: 35906617 PMCID: PMC9336077 DOI: 10.1186/s12935-022-02660-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
NF-E2-related factor 2 (Nrf2) transcription factor has contradictory roles in cancer, which can act as a tumor suppressor or a proto-oncogene in different cell conditions (depending on the cell type and the conditions of the cell environment). Nrf2 pathway regulates several cellular processes, including signaling, energy metabolism, autophagy, inflammation, redox homeostasis, and antioxidant regulation. As a result, it plays a crucial role in cell survival. Conversely, Nrf2 protects cancerous cells from apoptosis and increases proliferation, angiogenesis, and metastasis. It promotes resistance to chemotherapy and radiotherapy in various solid tumors and hematological malignancies, so we want to elucidate the role of Nrf2 in cancer and the positive point of its targeting. Also, in the past few years, many studies have shown that Nrf2 protects cancer cells, especially leukemic cells, from the effects of chemotherapeutic drugs. The present paper summarizes these studies to scrutinize whether targeting Nrf2 combined with chemotherapy would be a therapeutic approach for leukemia treatment. Also, we discussed how Nrf2 and NF-κB work together to control the cellular redox pathway. The role of these two factors in inflammation (antagonistic) and leukemia (synergistic) is also summarized.
Collapse
Affiliation(s)
- Atefeh Khodakarami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Adibfar
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Abolhasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pooya Jalali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.,Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Hasanvand A. The role of AMPK-dependent pathways in cellular and molecular mechanisms of metformin: a new perspective for treatment and prevention of diseases. Inflammopharmacology 2022; 30:775-788. [PMID: 35419709 PMCID: PMC9007580 DOI: 10.1007/s10787-022-00980-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/20/2022] [Indexed: 02/07/2023]
Abstract
Metformin can suppress gluconeogenesis and reduce blood sugar by activating adenosine monophosphate-activated protein kinase (AMPK) and inducing small heterodimer partner (SHP) expression in the liver cells. The main mechanism of metformin's action is related to its activation of the AMPK enzyme and regulation of the energy balance. AMPK is a heterothermic serine/threonine kinase made of a catalytic alpha subunit and two subunits of beta and a gamma regulator. This enzyme can measure the intracellular ratio of AMP/ATP. If this ratio is high, the amino acid threonine 172 available in its alpha chain would be activated by the phosphorylated liver kinase B1 (LKB1), leading to AMPK activation. Several studies have indicated that apart from its significant role in the reduction of blood glucose level, metformin activates the AMPK enzyme that in turn has various efficient impacts on the regulation of various processes, including controlling inflammatory conditions, altering the differentiation pathway of immune and non-immune cell pathways, and the amelioration of various cancers, liver diseases, inflammatory bowel disease (IBD), kidney diseases, neurological disorders, etc. Metformin's activation of AMPK enables it to control inflammatory conditions, improve oxidative status, regulate the differentiation pathways of various cells, change the pathological process in various diseases, and finally have positive therapeutic effects on them. Due to the activation of AMPK and its role in regulating several subcellular signalling pathways, metformin can be effective in altering the cells' proliferation and differentiation pathways and eventually in the prevention and treatment of certain diseases.
Collapse
Affiliation(s)
- Amin Hasanvand
- Department of Physiology and Pharmacology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
11
|
Liu W, Zheng L, Zhang R, Hou P, Wang J, Wu L, Li J. Circ-ZEB1 promotes PIK3CA expression by silencing miR-199a-3p and affects the proliferation and apoptosis of hepatocellular carcinoma. Mol Cancer 2022; 21:72. [PMID: 35277182 PMCID: PMC8915544 DOI: 10.1186/s12943-022-01529-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/01/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Although the prognostic outcomes of liver cancer (LC) cases have improved with the advancement in diagnostic technology and treatment methods, the transferability and recurrence of HCC and the 5-year and 10-year survival rates of patients have remained unsatisfactory. As a result, there is a need for more accurate diagnostic indicators that can detect liver cancer early, effectively improving the prognosis of patients. Whole-genome sequencing (WGS) revealed that circ-ZEB1 and PIK3CA are highly expressed in HCC tissues, whereas miR-199a-3p is significantly downregulated in HCC. Multiple databases search and biological analysis revealed that elevated expression of circ-ZEB1 and PIK3CA was related to poor prognosis of HCC. In vitro and in vivo studies revealed that upregulated levels of PIK3CA and circ-ZEB1 were closely associated with HCC proliferation and apoptosis. Based on these results, we believe that circ-ZEB1 and PIK3CA could be used as biomarkers to diagnose and treat patients with HCC. More importantly, circ-ZEB1 can promotes the expression of PIK3CA by silencing miR-199a-3p and affecting the progression of HCC. METHODS AND RESULTS Postoperative specimens from 56 patients with HCC who had not undergone chemotherapy from 2015 to 2018 were collected from the Department of Hepatobiliary Surgery, Second Affiliated Hospital of Nanchang University. WGS revealed differential expression of genes in HCC. Furthermore, RT-qPCR detected the expression of circ-ZEB1, miR-199a-3p, and PIK3CA in HCC tissues. MTT, EdU, and plate cloning experiments were conducted to detect cell proliferation, whereas flow cytometry analysis was used to detect apoptosis. FISH was used to co-localize circ-ZEB1 and miR-199a-3p, and biotin-coupled probe pull-down assay was used to detect the specific binding of circ-ZEB1 and miR-199a-3p. The dual-luciferase report assay detected the association of miR-199a-3p with PIK3CA. Western blotting was used to study the expression of PIK3CA protein. Circ-ZEB1 and PIK3CA were upregulated in HCC and predicted a poor prognosis. MiR-199a-3p showed low expression in HCC, whereas downregulation of circ-ZEB1 reduced HCC cell proliferation and promoted cell apoptosis. MiR-199a-3p blocked the effect of circ-ZEB1 on HCC. Circ-ZEB1 served as a biomarker of HCC. Circ-ZEB1 promoted the expression of PIK3CA by silencing miR-199a-3p to affect the progress of HCC. CONCLUSIONS Circ-ZEB1 promoted the expression of PIK3CA by depleting miR-199a-3p, thereby affecting HCC proliferation and apoptosis.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, 1 Mindle Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lu Zheng
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, 83 Xinqiao Main Street, Chongqing, 400000, People's Republic of China
| | - Rongguiyi Zhang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, 1 Mindle Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Ping Hou
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, 1 Mindle Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Jiakun Wang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, 1 Mindle Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Linquan Wu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, 1 Mindle Road, Nanchang, Jiangxi, 330006, People's Republic of China.
| | - Jing Li
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, 83 Xinqiao Main Street, Chongqing, 400000, People's Republic of China.
| |
Collapse
|
12
|
A 10-Year Scientometrics Analysis of Brain Tumors Treated with Gamma Knife Radiosurgery: Visualization, Characteristics, and Scientific Trends. J Cancer Epidemiol 2022; 2022:7136868. [PMID: 35308302 PMCID: PMC8930238 DOI: 10.1155/2022/7136868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/19/2022] [Indexed: 01/04/2023] Open
Abstract
Objective. To evaluate the scientometrics characteristics of the scientific production on the treatment of brain tumors with gamma knife radiosurgery in Scopus. Methods. The Scopus database (Elsevier) was used to collect all relevant studies for this bibliometric analysis. Data was obtained as a .csv file; it was downloaded from Scopus and was exported by SciVal to Microsoft Excel for a presentation using tables for more detailed analysis. The citations and the number of papers for the most productive institutions, authors, countries, and journals publishing scientific papers were analyzed on the use of gamma knife radiosurgery for brain tumors. Results. 458 metadata were obtained from scientific publications, on which inclusion and exclusion criteria were applied, leaving 248 studies. The maximum peak of publications was 2018 with 31 publications, and the minimum peak was 2015 with 18. The most related subtopics were neurology, surgery, and oncology, and most of the retrieved papers had only institutional collaboration. As for more productive journals, Journal of Neurosurgery is first with 23 publications; within the countries with the most scientific publications, we have the United States, Japan, and China. With the United States being the country with the highest number of productions, University of Texas MD Anderson Cancer Center was the main university with the highest scientific production and Sheehan and Trifiletti and American authors dominate the list with the highest number of documents. Conclusion. Scientific production regarding gamma knife surgery and brain tumors has been increasing during the last 10 years, with a high incidence during 2018, and the highest number of published articles was in the first quartile. Likewise, the United States is the country with the most publications, authors, and universities on the subject. Greater efforts are still lacking from all countries in the world to reach the quantity and quality of production of the United States.
Collapse
|
13
|
Wen W, Xu D, Piao Y, Li X. Prognostic value of maximum standard uptake value, metabolic tumour volume, and total lesion glycolysis of 18F-FDG PET/CT in patients with malignant pleural mesothelioma: a systematic review and meta-analysis. Cancer Cell Int 2022; 22:60. [PMID: 35114996 PMCID: PMC8811994 DOI: 10.1186/s12935-022-02482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/22/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Present work systematically reviewed relevant literature based on 18F-FDG PET parameters and conducted a meta-analysis to examine the prognostic value of maximal standard uptake value (SUVmax), total lesional glycolysis (TLG), and metabolic tumour volume (MTV) in the prognosis of malignant pleural mesothelioma (MPM). METHODS The relevant literature published in English were searched on PubMed, Cochrane Library, and EMBASE databases. We also evaluated the significance of SUVmax, TLG, and MTV in prognosis prediction using pooled hazard ratios (HRs). RESULTS The current study comprised 12 primary studies with a total of 1307 MPM cases. According to our results, the pooled HR (95% confidence interval [CI]) of increased SUVmax for overall survival (OS) was 1.30 (95% CI 1.13-1.49, P = 0.000), whereas the increased TLG was 1.81(95% CI 1.25-2.61, P = 0.089). The increased MTV was not significantly related to OS (1.14 [95% CI 0.87-1.50, P = 0.18]).However, study design-stratified subgroup analysis suggested that differences in OS of retrospective and prospective subgroups were statistically significant, and no significant heterogeneity among different studies was observed. CONCLUSION Based on the findings from the present work, PET/CT can significantly affect the prognosis prediction in MPM cases. Also, the increased SUVmax and TLG values predict an increased risk of mortality.
Collapse
Affiliation(s)
- Weibo Wen
- Department of Nuclear Medicine, Yanbian University Hospital, Yanji, Jilin Province, China.,Center of Morphological Experiment, Medical College of Yanbian University, Yanji, Jilin Province, China
| | - Dongyuan Xu
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, Jilin Province, China
| | - Yongnan Piao
- Department of Nuclear Medicine, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Xiangdan Li
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, Jilin Province, China.
| |
Collapse
|
14
|
Pan B, Wei X, Xu X. Patient-derived xenograft models in hepatopancreatobiliary cancer. Cancer Cell Int 2022; 22:41. [PMID: 35090441 PMCID: PMC8796540 DOI: 10.1186/s12935-022-02454-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/04/2022] [Indexed: 12/20/2022] Open
Abstract
Animal models are crucial tools for evaluating the biological progress of human cancers and for the preclinical investigation of anticancer drugs and cancer prevention. Various animals are widely used in hepatopancreatobiliary cancer research, and mouse models are the most popular. Generally, genetic tools, graft transplantation, and chemical and physical measures are adopted to generate sundry mouse models of hepatopancreatobiliary cancer. Graft transplantation is commonly used to study tumour progression. Over the past few decades, subcutaneous or orthotopic cell-derived tumour xenograft models (CDX models) have been developed to simulate distinct tumours in patients. However, two major limitations exist in CDX models. One model poorly simulates the microenvironment of tumours in humans, such as the vascular, lymphatic and immune environments. The other model loses genetic heterogeneity compared with the corresponding primary tumour. Increased efforts have focused on developing better models for hepatopancreatobiliary cancer research. Hepatopancreatobiliary cancer is considered a tumour with high molecular heterogeneity, making precision medicine challenging in cancer treatment. Developing a new animal model that can better mimic tumour tissue and more accurately predict the efficacy of anticancer treatments is urgent. For the past several years, the patient-derived xenograft model (PDX model) has emerged as a promising tool for translational research. It can retain the genetic and histological stability of their originating tumour at limited passages and shed light on precision cancer medicine. In this review, we summarize the methodology, advantages/disadvantages and applications of PDX models in hepatopancreatobiliary cancer research.
Collapse
|
15
|
Zhou J, Wang J, Zhang X, Tang Q. New Insights Into Cancer Chronotherapies. Front Pharmacol 2021; 12:741295. [PMID: 34966277 PMCID: PMC8710512 DOI: 10.3389/fphar.2021.741295] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/25/2021] [Indexed: 02/01/2023] Open
Abstract
Circadian clocks participate in the coordination of various metabolic and biological activities to maintain homeostasis. Disturbances in the circadian rhythm and cancers are closely related. Circadian clock genes are differentially expressed in many tumors, and accelerate the development and progression of tumors. In addition, tumor tissues exert varying biological activities compared to normal tissues due to resetting of altered rhythms. Thus, chronotherapeutics used for cancer treatment should exploit the timing of circadian rhythms to achieve higher efficacy and mild toxicity. Due to interpatient differences in circadian functions, our findings advocate an individualized precision approach to chronotherapy. Herein, we review the specific association between circadian clocks and cancers. In addition, we focus on chronotherapies in cancers and personalized biomarkers for the development of precision chronotherapy. The understanding of circadian clocks in cancer will provide a rationale for more effective clinical treatment of tumors.
Collapse
Affiliation(s)
- Jingxuan Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiechen Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xiaozhao Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
16
|
Yang P, Chen W, Xu H, Yang J, Jiang J, Jiang Y, Xu G. Correlation of CCL8 expression with immune cell infiltration of skin cutaneous melanoma: potential as a prognostic indicator and therapeutic pathway. Cancer Cell Int 2021; 21:635. [PMID: 34844613 PMCID: PMC8628426 DOI: 10.1186/s12935-021-02350-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/17/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The tumor microenvironment (TME) is critical in the progression and metastasis of skin cutaneous melanoma (SKCM). Differences in tumor-infiltrating immune cells (TICs) and their gene expression have been linked to cancer prognosis. Given that immunotherapy can be effective against SKCM, we aimed to identify key genes that regulate the immunological state of the TME in SKCM. METHODS Data from 471 SKCM patients in the The Cancer Genome Atlas were analyzed using ESTIMATE algorithms to generate an ImmuneScore, StromalScore, and EstimateScore for each patient. Patients were classified into low- or high-score groups based on median values, then compared in order to identify differentially expressed genes (DEGs). Then a protein-protein interaction (PPI) network was developed, and a prognostic model was created using uni- and multivariate Cox regression as well as the least absolute shrinkage and selection operator (LASSO). Key DEGs were identified using the web-based tool GEPIA. Profiles of TIC subpopulations in each patient were analyzed using CIBORSORT, and possible correlations between key DEG expression and TICs were explored. Levels of CCL8 were determined in SKCM and normal skin tissue using immunohistochemistry. RESULTS Two scores correlated positively with the prognosis of SKCM patients. Comparison of the low- and high-score groups revealed 1684 up-regulated and 18 down-regulated DEGs, all of which were enriched in immune-related functions. The prognostic model identified CCL8 as a key gene, which CIBERSORT found to correlate with M1 macrophages. Immunohistochemistry revealed strong expression in SKCM tissue, but failed to detect the protein in normal skin tissue. CONCLUSIONS CCL8 is a potential prognostic marker for SKCM, and it may become an effective target for melanoma in which M1 macrophages play an important role.
Collapse
Affiliation(s)
- Peipei Yang
- Department of Dermatology, Jingmen No. 2 People's Hospital, No. 39 Xiangshan Road Dongbao Zone, Jingmen, 448000, Hubei, China
| | - Wanrong Chen
- Graduate School, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Hua Xu
- Department of Pathology, Jingmen No. 2 People's Hospital, No. 39 Xiangshan Road Dongbao Zone, Jingmen, 448000, Hubei, China
| | - Junhan Yang
- Department of Dermatology, Jingmen No. 2 People's Hospital, No. 39 Xiangshan Road Dongbao Zone, Jingmen, 448000, Hubei, China
| | - Jinghang Jiang
- Graduate School, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- The Reproductive Medicine Center, Jingmen No. 2 People's Hospital, Jingmen, Hubei, China
| | - Yunhui Jiang
- Department of Pathology, Jingmen No. 2 People's Hospital, No. 39 Xiangshan Road Dongbao Zone, Jingmen, 448000, Hubei, China.
| | - Ganglin Xu
- Department of Dermatology, Jingmen No. 2 People's Hospital, No. 39 Xiangshan Road Dongbao Zone, Jingmen, 448000, Hubei, China.
| |
Collapse
|
17
|
He Y, Chen J, Peng X, Xia Y, Su Y. Clinicopathological and prognostic significance of speckle-type POZ protein in cancers: a systematic review and meta-analysis. Cancer Cell Int 2021; 21:626. [PMID: 34838022 PMCID: PMC8627083 DOI: 10.1186/s12935-021-02329-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Controversial findings have been reported in the impact of speckle-type POZ protein (SPOP) on clinicopathological features and prognosis in diverse cancers. We conducted this meta-analysis to confirm whether SPOP was an effective biomarker to predict clinical stage, cancer differentiation and survival. METHODS We searched studies published before June 2021 through Medline, Embase, the Cochrane library register of controlled trials and Wanfang databases. The corrections of SPOP expression with expression disparity, tumor differentiation, clinical stage and survival were analyzed. RESULTS Our meta-analysis found that higher expression of SPOP was significantly associated with earlier clinical stage, well differentiation and better overall survival. Subgroup analysis showed that the SPOP expression of adjacent tissue was significantly higher than that in cancer tissues of prostate and liver. However, renal cancer presented improved expression of SPOP in cancer tissue. CONCLUSIONS SPOP has the potential function to act as a novel and effective biomarker for cancer diagnosis and prognostic stratification.
Collapse
Affiliation(s)
- Yan He
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jun Chen
- Department of Ophalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yanli Xia
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Yonglin Su
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
18
|
Liu R, Wan Q, Zhao R, Xiao H, Cen Y, Xu X. Risk of non-melanoma skin cancer with biological therapy in common inflammatory diseases: a systemic review and meta-analysis. Cancer Cell Int 2021; 21:614. [PMID: 34809619 PMCID: PMC8607648 DOI: 10.1186/s12935-021-02325-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Most previous studies compared the risk for non-melanoma skin cancer (NMSC) in biologic-treated common inflammatory diseases with the general population. Whether the increased NMSC risk is caused by the disease itself, the biologics, or both remains unknown. METHODS We systematically searched PubMed, Embase, Medline, Web of Science, and Cochrane Library from inception to May 2021. Studies were included if they assessed the risk of NMSC for rheumatoid arthritis (RA), inflammatory bowel disease (IBD), or psoriasis patients treated with biologics compared with patients not receiving biologics. Pooled relative risks (RRs) and 95% confidence intervals (CIs) were calculated using the fixed- or random-effects model. RESULTS The current meta-analysis included 12 studies. Compared with patients with the inflammatory disease without biologics, patients receiving biological therapy were associated with an increased risk for NMSC (RR 1.25, 95% CI 1.14 to 1.37), especially in patients with RA (RR 1.24, 95% CI 1.13 to 1.36) and psoriasis (RR 1.28, 95% CI 1.07 to 1.52), but not in patients with IBD (RR 1.49, 95% CI 0.46 to 4.91). The risks for squamous cell skin cancer and basal cell skin cancer were both increased for patients receiving biologics. However, the risk of NMSC did not increase in patients treated with biologics less than 2 years. CONCLUSIONS Current evidence suggests that increased risk of NMSC was identified in RA and psoriasis treated with biologics compared with patients not receiving biologics, but not in patients with IBD. The inner cause for the increased risk of NMSC in IBD patients should be further discussed.
Collapse
Affiliation(s)
- Ruolin Liu
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, No 37 Wainan Guoxue Road, Chengdu, 610041, China
| | - Qianyi Wan
- Department of Gastrointestinal Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Rui Zhao
- Department of Gastrointestinal Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Haitao Xiao
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, No 37 Wainan Guoxue Road, Chengdu, 610041, China
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, No 37 Wainan Guoxue Road, Chengdu, 610041, China.
| | - Xuewen Xu
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, No 37 Wainan Guoxue Road, Chengdu, 610041, China.
| |
Collapse
|
19
|
Guo J, Zheng J, Zhang H, Tong J. RNA m6A methylation regulators in ovarian cancer. Cancer Cell Int 2021; 21:609. [PMID: 34794452 PMCID: PMC8600856 DOI: 10.1186/s12935-021-02318-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification of mammalian mRNAs and plays a vital role in many diseases, especially tumours. In recent years, m6A has become the topic of intense discussion in epigenetics. M6A modification is dynamically regulated by methyltransferases, demethylases and RNA-binding proteins. Ovarian cancer (OC) is a common but highly fatal malignancy in female. Increasing evidence shows that changes in m6A levels and the dysregulation of m6A regulators are associated with the occurrence, development or prognosis of OC. In this review, the latest studies on m6A and its regulators in OC have been summarized, and we focus on the key role of m6A modification in the development and progression of OC. Additionally, we also discuss the potential use of m6A modification and its regulators in the diagnosis and treatment of OC.
Collapse
Affiliation(s)
- Jialu Guo
- Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang Province, People's Republic of China.,Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), 310008, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jianfeng Zheng
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), 310008, Hangzhou, Zhejiang Province, People's Republic of China.,Department of Obstetrics and Gynecology, Affiliated Hangzhou Hospital, Nanjing Medical University, 310008, Hangzhou, Zhejiang Province, People's Republic of China
| | - Huizhi Zhang
- Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jinyi Tong
- Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang Province, People's Republic of China. .,Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), 310008, Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
20
|
Singh A, Rattan S. BDNF rescues aging-associated internal anal sphincter dysfunction. Am J Physiol Gastrointest Liver Physiol 2021; 321:G87-G97. [PMID: 34075793 PMCID: PMC8321795 DOI: 10.1152/ajpgi.00090.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aging can lead to rectoanal incontinence due to internal anal sphincter (IAS) dysfunction, which is characterized by a decrease in IAS tone and contractility and an increase in nonadrenergic noncholinergic (NANC) relaxation. We aimed to determine whether brain-derived neurotropic factor (BDNF) rescues this aging-associated IAS dysfunction (AAID). To do so, we studied the effects of BDNF on the basal and G protein-coupled receptors (GPCR)-stimulated IAS smooth muscle tone and on NANC relaxation in Fischer 344 rats representing different age groups [26-mo-old (aging) vs. 6-mo-old (young)], before and after tyrosine kinase receptor B (TrkB) antagonist K252a. We also used isolated smooth muscle cells (SMCs) to determine the effects of BDNF before and after different agonists. For some studies, we monitored NO release using smooth muscle perfusates. BDNF reversed AAID by rescuing the basal IAS tone and agonists [thromboxane A2 analog (U46619) and angiotensin II (ANG II)]-induced contractility, and NANC relaxation. These rescue effects of BDNF were selective as K252a attenuated the changes in the IAS without modifying the effects of K+depolarization. Because of the direct association between the basal and GPCR-stimulated IAS tone and RhoA/ROCK activation, we speculate that this pathway in the rescue effects of BDNF. Conversely, our data suggest that aging-associated increased NANC relaxation is reversed by decreased release of NO and decrease in the sensitivity of the released inhibitory neurotransmitter. In summary, BDNF rescue of AAID involves RhoA/ROCK and inhibitory neurotransmission. These data have direct implications for the role of BDNF in the pathophysiology and therapeutic targeting of aging-associated rectoanal motility disorders.NEW & NOTEWORTHY These studies demonstrate that brain-derived neurotropic factor (BDNF) rescues the aging-associated internal anal sphincter (IAS) dysfunction, characterized by a decrease in IAS tone, and increase in non-adrenergic noncholinergic relaxation. We determined the effects of BDNF on the basal and GPCR (TXA2 and ANG II)-stimulated IAS tone, and on NANC relaxation, before and after TrkB inhibitor K252a. BDNF may have an important role in the pathophysiology and therapeutic targeting of certain rectoanal motility disorders.
Collapse
Affiliation(s)
- Arjun Singh
- Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Satish Rattan
- Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|