1
|
Schol J, Huang IH, Carbone F, Fernandez LMB, Gourcerol G, Ho V, Kohn G, Lacy BE, Colombo AL, Miwa H, Moshiree B, Nguyen L, O'Grady G, Siah KTH, Stanghellini V, Tack J. Rome Foundation and international neurogastroenterology and motility societies' consensus on idiopathic gastroparesis. Lancet Gastroenterol Hepatol 2025; 10:68-81. [PMID: 39674226 DOI: 10.1016/s2468-1253(24)00284-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 12/16/2024]
Abstract
To establish a consensus on the definition and management of idiopathic gastroparesis, international experts (selected by neurogastroenterology and motility societies and initiated by the Rome Foundation) devised 144 statements using the Delphi method, with at least 80% agreement required. This consensus defined idiopathic gastroparesis as the presence of symptoms associated with delayed gastric emptying in the absence of mechanical obstruction. Nausea and vomiting were identified as cardinal symptoms. Frequently co-existing symptoms are early satiation and postprandial fullness. Diagnosis requires the presence of these symptoms alongside delayed gastric emptying, measured by a 4 h scintigraphy or gastric emptying breath test of a mixed composition meal in the absence of mechanical obstruction. Therapeutic options with proven efficacy were sparse. Dietary adjustments, nutritional support (per guidelines from the European Society for Clinical Nutrition and Metabolism for substantial weight loss or intractable vomiting), and opioid cessation were recommended by a consensus opinion. Antiemetic and prokinetic agents were also considered potentially beneficial. This consensus offers a global perspective on idiopathic gastroparesis.
Collapse
Affiliation(s)
- Jolien Schol
- Translational Research Center for Gastrointestinal Disorders, Leuven University, Leuven, Belgium; Division of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - I-Hsuan Huang
- Translational Research Center for Gastrointestinal Disorders, Leuven University, Leuven, Belgium; Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Florencia Carbone
- Division of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | | | - Guillaume Gourcerol
- Department of Physiology, UMR INSERM 1073 & CIC INSERM 1404, Rouen University Hospital, Rouen, France
| | - Vincent Ho
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Geoffrey Kohn
- Department of Surgery, Monash University, Melbourne, VIC, Australia
| | - Brian E Lacy
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | - Aurelio Lopez Colombo
- UMAE, Hospital de Especialidades, Centro Médico Nacional Manuel Avila Camacho, Puebla, Mexico
| | - Hiroto Miwa
- Department of Internal Medicine, Kawanishi City Medical Center, Hyogo, Japan
| | - Baha Moshiree
- Atrium Health, Division of Gastroenterology, Hepatology, and Nutrition, Wake Forest Medical University, Charlotte, NC, USA
| | - Linda Nguyen
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Greg O'Grady
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Kewin T H Siah
- Division of Gastroenterology and Hepatology, University Medicine Cluster, National University Hospital, Singapore; Department of Internal Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vincenzo Stanghellini
- Division of Internal Medicine, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, Leuven University, Leuven, Belgium; Division of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium; Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
2
|
Haseeb-Ul-Rasool M, Elhawary A, Saha U, Sethi A, Swaminathan G, Abosheaishaa H. Resolution of severe gastroparesis induced by parasympathetic surge following facial trauma: a case report. J Med Case Rep 2024; 18:248. [PMID: 38750592 PMCID: PMC11097562 DOI: 10.1186/s13256-024-04558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Gastroparesis is a condition that affects the motility of the gastrointestinal (GI) tract, causing a delay in the emptying process and leading to nausea, vomiting, bloating, and upper abdominal pain. Motility treatment along with symptom management can be done using antiemetics or prokinetics. This study highlights the diagnostic and therapeutic challenges of gastroparesis and suggests a potential link between facial trauma and symptom remission, indicating the need for further investigation. CASE PRESENTATION A 46-year-old Hispanic man with hypertension, type 2 diabetes (T2D), and hyperlipidemia on amlodipine 10 mg, lisinopril 5 mg, empagliflozin 25 mg, and insulin glargine presented with a diabetic foot ulcer with probable osteomyelitis. During hospitalization, the patient developed severe nausea and vomiting. The gastroenterology team advised continuing antiemetic medicine and trying very small sips of clear liquids. However, the patient didn't improve. Therefore, the gastroenterology team was contacted again. They advised having stomach emptying tests to rule out gastroparesis as the source of emesis. In addition, they recommended continuing metoclopramide, and starting erythromycin due to inadequate improvement. Studies found a 748-min stomach emptying time. Normal is 45-90 min. An uneventful upper GI scope was done. Severe gastroparesis was verified, and the gastroenterology team advised a percutaneous jejunostomy or gastric pacemaker for gastroparesis. Unfortunately, the patient suffered a mechanical fall resulting in facial trauma. After the fall, the patient's nausea eased, and emesis stopped. He passed an oral liquids trial after discontinuation of erythromycin and metoclopramide. CONCLUSION This case exemplifies the difficulties in diagnosing and treating gastroparesis. An interesting correlation between parasympathetic surges and recovery in gastroparesis may be suggested by the surprising remission of symptoms following face injuries.
Collapse
Affiliation(s)
| | - Ahmed Elhawary
- Icahn School of Medicine at Mount Sinai, NYC Health+Hospitals Queens, New York, USA
| | - Utsow Saha
- Icahn School of Medicine at Mount Sinai, NYC Health+Hospitals Queens, New York, USA
| | - Arshia Sethi
- Icahn School of Medicine at Mount Sinai, NYC Health+Hospitals Queens, New York, USA
| | - Gowri Swaminathan
- Icahn School of Medicine at Mount Sinai, NYC Health+Hospitals Queens, New York, USA
| | - Hazem Abosheaishaa
- Icahn School of Medicine at Mount Sinai, NYC Health+Hospitals Queens, New York, USA.
| |
Collapse
|
3
|
Wang WJ, Foong D, Calder S, Schamberg G, Varghese C, Tack J, Xu W, Daker C, Carson D, Waite S, Hayes T, Du P, Abell TL, Parkman HP, Huang IH, Fernandes V, Andrews CN, Gharibans AA, Ho V, O’Grady G. Gastric Alimetry Expands Patient Phenotyping in Gastroduodenal Disorders Compared with Gastric Emptying Scintigraphy. Am J Gastroenterol 2024; 119:331-341. [PMID: 37782524 PMCID: PMC10872929 DOI: 10.14309/ajg.0000000000002528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/04/2023] [Indexed: 10/03/2023]
Abstract
INTRODUCTION Gastric emptying testing (GET) assesses gastric motility, however, is nonspecific and insensitive for neuromuscular disorders. Gastric Alimetry (GA) is a new medical device combining noninvasive gastric electrophysiological mapping and validated symptom profiling. This study assessed patient-specific phenotyping using GA compared with GET. METHODS Patients with chronic gastroduodenal symptoms underwent simultaneous GET and GA, comprising a 30-minute baseline, 99m TC-labelled egg meal, and 4-hour postprandial recording. Results were referenced to normative ranges. Symptoms were profiled in the validated GA App and phenotyped using rule-based criteria based on their relationships to the meal and gastric activity: (i) sensorimotor, (ii) continuous, and (iii) other. RESULTS Seventy-five patients were assessed, 77% female. Motility abnormality detection rates were as follows: GET 22.7% (14 delayed, 3 rapid), GA spectral analysis 33.3% (14 low rhythm stability/low amplitude, 5 high amplitude, and 6 abnormal frequency), and combined yield 42.7%. In patients with normal spectral analysis, GA symptom phenotypes included sensorimotor 17% (where symptoms strongly paired with gastric amplitude, median r = 0.61), continuous 30%, and other 53%. GA phenotypes showed superior correlations with Gastroparesis Cardinal Symptom Index, Patient Assessment of Upper Gastrointestinal Symptom Severity Index, and anxiety scales, whereas Rome IV Criteria did not correlate with psychometric scores ( P > 0.05). Delayed emptying was not predictive of specific GA phenotypes. DISCUSSION GA improves patient phenotyping in chronic gastroduodenal disorders in the presence and absence of motility abnormalities with increased correlation with symptoms and psychometrics compared with gastric emptying status and Rome IV criteria. These findings have implications for the diagnostic profiling and personalized management of gastroduodenal disorders.
Collapse
Affiliation(s)
- William Jiaen Wang
- Gastrointestinal Motility Disorders Unit, Western Sydney University, Australia
- Department of Gastroenterology and Hepatology, Campbelltown Hospital, Australia
- Gastroenterology and Hepatology, Princess Alexandra Hospital, Australia
| | - Daphne Foong
- Gastrointestinal Motility Disorders Unit, Western Sydney University, Australia
| | - Stefan Calder
- Department of Surgery, Auckland City Hospital, New Zealand
- Auckland Bioengineering Institute, University of Auckland, New Zealand
- Alimetry Ltd, Auckland, New Zealand
| | - Gabriel Schamberg
- Department of Surgery, Auckland City Hospital, New Zealand
- Alimetry Ltd, Auckland, New Zealand
| | - Chris Varghese
- Department of Surgery, Auckland City Hospital, New Zealand
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Belgium
| | - William Xu
- Department of Surgery, Auckland City Hospital, New Zealand
| | - Charlotte Daker
- Department of Gastroenterology, North Shore Hospital, Auckland, New Zealand
| | - Daniel Carson
- Department of Surgery, Auckland City Hospital, New Zealand
| | | | - Thomas Hayes
- Department of Surgery, Auckland City Hospital, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Thomas L. Abell
- Division of Gastroenterology, University of Louisville, KY, USA
| | - Henry P. Parkman
- Gastroenterology Section, Department of Medicine, Lewis Katz School of Medicine, Temple University, USA
| | - I-Hsuan Huang
- Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Belgium
| | | | | | - Armen A. Gharibans
- Department of Surgery, Auckland City Hospital, New Zealand
- Auckland Bioengineering Institute, University of Auckland, New Zealand
- Alimetry Ltd, Auckland, New Zealand
| | - Vincent Ho
- Gastrointestinal Motility Disorders Unit, Western Sydney University, Australia
- Department of Gastroenterology and Hepatology, Campbelltown Hospital, Australia
| | - Greg O’Grady
- Department of Surgery, Auckland City Hospital, New Zealand
- Auckland Bioengineering Institute, University of Auckland, New Zealand
- Alimetry Ltd, Auckland, New Zealand
| |
Collapse
|
4
|
Varghese C, Daker C, Lim A, Sebaratnam G, Xu W, Kean B, Cederwall C. Gastric Alimetry in the Management of Chronic Gastroduodenal Disorders: Impact to Diagnosis and Health Care Utilization. Clin Transl Gastroenterol 2023; 14:e00626. [PMID: 37589479 PMCID: PMC10684143 DOI: 10.14309/ctg.0000000000000626] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023] Open
Abstract
INTRODUCTION Chronic gastroduodenal symptoms are frequently overlapping within existing diagnostic paradigms, and current diagnostic tests are insensitive to underlying pathophysiologies. Gastric Alimetry has emerged as a new diagnostic test of gastric neuromuscular function with time-of-test symptom profiling. This study aimed to assess the impact to diagnosis and health care utilization after the introduction of Gastric Alimetry into clinical care. METHODS Consecutive data of patients from 2 tertiary centers with chronic gastroduodenal symptoms (Rome-IV defined or motility disorder) having integrated care and Gastric Alimetry testing were evaluated. Changes in diagnoses, interventions, and management were quantified. Pretest and posttest health care utilization was reported. A preliminary management framework was established through experiential learning. RESULTS Fifty participants (45 women; median age 30 years; 18 with gastroparesis, 24 with chronic nausea and vomiting syndrome, and 6 with functional dyspepsia) underwent Gastric Alimetry testing. One-third of patients had a spectral abnormality (18% dysrhythmic/low amplitude). Of the remaining patients, 9 had symptoms correlating to gastric amplitude, while 19 had symptoms unrelated to gastric activity. Gastric Alimetry aided management decisions in 84%, including changes in invasive nutritional support in 9/50 cases (18%; predominantly de-escalation). Health care utilization was significantly lower post-Gastric Alimetry testing when compared with the average utilization cost in the year before Gastric Alimetry testing (mean ± SD $39,724 ± 63,566 vs $19,937 ± 35,895, P = 0.037). DISCUSSION Gastric Alimetry aided diagnosis and management of patients with chronic gastroduodenal symptoms by enabling phenotype-informed care. The high majority of results aided management decisions, which was associated with reduced health care utilization.
Collapse
Affiliation(s)
- Chris Varghese
- Department of Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Charlotte Daker
- Department of Gastroenterology, North Shore Hospital, Auckland, New Zealand
| | - Alexandria Lim
- Department of Surgery, Auckland City Hospital, Auckland, New Zealand
| | | | - William Xu
- Department of Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Bernard Kean
- Wellington Regional Hospital, Wellington, New Zealand
| | | |
Collapse
|
5
|
Foong D, Calder S, Varghese C, Schamberg G, Xu W, Daker C, Ho V, Andrews CN, Gharibans AA, O’Grady G. Gastric Alimetry ® Test Interpretation in Gastroduodenal Disorders: Review and Recommendations. J Clin Med 2023; 12:6436. [PMID: 37892572 PMCID: PMC10607701 DOI: 10.3390/jcm12206436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic gastroduodenal symptoms are prevalent worldwide, and there is a need for new diagnostic and treatment approaches. Several overlapping processes may contribute to these symptoms, including gastric dysmotility, hypersensitivity, gut-brain axis disorders, gastric outflow resistance, and duodenal inflammation. Gastric Alimetry® (Alimetry, New Zealand) is a non-invasive test for evaluating gastric function that combines body surface gastric mapping (high-resolution electrophysiology) with validated symptom profiling. Together, these complementary data streams enable important new clinical insights into gastric disorders and their symptom correlations, with emerging therapeutic implications. A comprehensive database has been established, currently comprising > 2000 Gastric Alimetry tests, including both controls and patients with various gastroduodenal disorders. From studies employing this database, this paper presents a systematic methodology for Gastric Alimetry test interpretation, together with an extensive supporting literature review. Reporting is grouped into four sections: Test Quality, Spectral Analysis, Symptoms, and Conclusions. This review compiles, assesses, and evaluates each of these aspects of test assessment, with discussion of relevant evidence, example cases, limitations, and areas for future work. The resultant interpretation methodology is recommended for use in clinical practice and research to assist clinicians in their use of Gastric Alimetry as a diagnostic aid and is expected to continue to evolve with further development.
Collapse
Affiliation(s)
- Daphne Foong
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Stefan Calder
- Department of Surgery, Auckland City Hospital, Auckland 1023, New Zealand
- Alimetry Ltd., Auckland 1010, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Chris Varghese
- Department of Surgery, Auckland City Hospital, Auckland 1023, New Zealand
| | - Gabriel Schamberg
- Alimetry Ltd., Auckland 1010, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - William Xu
- Department of Surgery, Auckland City Hospital, Auckland 1023, New Zealand
| | - Charlotte Daker
- Department of Gastroenterology, North Shore Hospital, Auckland 0620, New Zealand
| | - Vincent Ho
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- Department of Gastroenterology and Hepatology, Campbelltown Hospital, Sydney, NSW 2560, Australia
| | - Christopher N. Andrews
- Division of Gastroenterology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Armen A. Gharibans
- Department of Surgery, Auckland City Hospital, Auckland 1023, New Zealand
- Alimetry Ltd., Auckland 1010, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Greg O’Grady
- Department of Surgery, Auckland City Hospital, Auckland 1023, New Zealand
- Alimetry Ltd., Auckland 1010, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
6
|
O'Grady G, Varghese C, Schamberg G, Calder S, Du P, Xu W, Tack J, Daker C, Mousa H, Abell TL, Parkman HP, Ho V, Bradshaw LA, Hobson A, Andrews CN, Gharibans AA. Principles and clinical methods of body surface gastric mapping: Technical review. Neurogastroenterol Motil 2023; 35:e14556. [PMID: 36989183 PMCID: PMC10524901 DOI: 10.1111/nmo.14556] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/29/2023] [Accepted: 02/12/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND AND PURPOSE Chronic gastric symptoms are common, however differentiating specific contributing mechanisms in individual patients remains challenging. Abnormal gastric motility is present in a significant subgroup, but reliable methods for assessing gastric motor function in clinical practice are lacking. Body surface gastric mapping (BSGM) is a new diagnostic aid, employs multi-electrode arrays to measure and map gastric myoelectrical activity non-invasively in high resolution. Clinical adoption of BSGM is currently expanding following studies demonstrating the ability to achieve specific patient subgrouping, and subsequent regulatory clearances. An international working group was formed in order to standardize clinical BSGM methods, encompassing a technical group developing BSGM methods and a clinical advisory group. The working group performed a technical literature review and synthesis focusing on the rationale, principles, methods, and clinical applications of BSGM, with secondary review by the clinical group. The principles and validation of BSGM were evaluated, including key advances achieved over legacy electrogastrography (EGG). Methods for BSGM were reviewed, including device design considerations, patient preparation, test conduct, and data processing steps. Recent advances in BSGM test metrics and reference intervals are discussed, including four novel metrics, being the 'principal gastric frequency', BMI-adjusted amplitude, Gastric Alimetry Rhythm Index™, and fed: fasted amplitude ratio. An additional essential element of BSGM has been the introduction of validated digital tools for standardized symptom profiling, performed simultaneously during testing. Specific phenotypes identifiable by BSGM and the associated symptom profiles were codified with reference to pathophysiology. Finally, knowledge gaps and priority areas for future BSGM research were also identified by the working group.
Collapse
Affiliation(s)
- Gregory O'Grady
- Department of Surgery, The University of Auckland, Auckland, New Zealand
- Alimetry Ltd, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Chris Varghese
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - Gabriel Schamberg
- Department of Surgery, The University of Auckland, Auckland, New Zealand
- Alimetry Ltd, Auckland, New Zealand
| | | | - Peng Du
- Alimetry Ltd, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - William Xu
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - Jan Tack
- Department of Gastroenterology, University Hospitals, Leuven, Belgium
| | | | - Hayat Mousa
- Division of Gastroenterology, Lustgarten Motility Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Thomas L Abell
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, Kentucky, USA
| | - Henry P Parkman
- Department of Medicine, Temple University Hospital, Philadelphia, Pennsylvania, USA
| | - Vincent Ho
- Western Sydney University, Sydney, New South Wales, Australia
| | | | | | - Christopher N Andrews
- Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta, Canada
| | - Armen A Gharibans
- Department of Surgery, The University of Auckland, Auckland, New Zealand
- Alimetry Ltd, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Schamberg G, Calder S, Varghese C, Xu W, Wang WJ, Ho V, Daker C, Andrews CN, O'Grady G, Gharibans AA. Comparison of Gastric Alimetry ® body surface gastric mapping versus electrogastrography spectral analysis. Sci Rep 2023; 13:14987. [PMID: 37696955 PMCID: PMC10495352 DOI: 10.1038/s41598-023-41645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023] Open
Abstract
Electrogastrography (EGG) non-invasively evaluates gastric motility but is viewed as lacking clinical utility. Gastric Alimetry® is a new diagnostic test that combines high-resolution body surface gastric mapping (BSGM) with validated symptom profiling, with the goal of overcoming EGG's limitations. This study directly compared EGG and BSGM to define performance differences in spectral analysis. Comparisons between Gastric Alimetry BSGM and EGG were conducted by protocolized retrospective evaluation of 178 subjects [110 controls; 68 nausea and vomiting (NVS) and/or type 1 diabetes (T1D)]. Comparisons followed standard methodologies for each test (pre-processing, post-processing, analysis), with statistical evaluations for group-level differences, symptom correlations, and patient-level classifications. BSGM showed substantially tighter frequency ranges vs EGG in controls. Both tests detected rhythm instability in NVS, but EGG showed opposite frequency effects in T1D. BSGM showed an 8× increase in the number of significant correlations with symptoms. BSGM accuracy for patient-level classification was 0.78 for patients vs controls and 0.96 as compared to blinded consensus panel; EGG accuracy was 0.54 and 0.43. EGG detected group-level differences in patients, but lacked symptom correlations and showed poor accuracy for patient-level classification, explaining EGG's limited clinical utility. BSGM demonstrated substantial performance improvements across all domains.
Collapse
Affiliation(s)
- Gabriel Schamberg
- Department of Surgery, The University of Auckland, Auckland, New Zealand
- Alimetry Ltd, Auckland, New Zealand
| | - Stefan Calder
- Department of Surgery, The University of Auckland, Auckland, New Zealand
- Alimetry Ltd, Auckland, New Zealand
| | - Chris Varghese
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - William Xu
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - William Jiaen Wang
- School of Medicine, Western Sydney University, Sydney, Australia
- Department of Gastroenterology and Hepatology, Campbelltown Hospital, Sydney, Australia
- Department of Gastroenterology and Hepatology, Townsville University Hospital, Townsville, Australia
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Australia
| | - Vincent Ho
- School of Medicine, Western Sydney University, Sydney, Australia
- Department of Gastroenterology and Hepatology, Campbelltown Hospital, Sydney, Australia
| | - Charlotte Daker
- Department of Gastroenterology, North Shore Hospital, Auckland, New Zealand
| | | | - Greg O'Grady
- Department of Surgery, The University of Auckland, Auckland, New Zealand
- Alimetry Ltd, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Armen A Gharibans
- Department of Surgery, The University of Auckland, Auckland, New Zealand.
- Alimetry Ltd, Auckland, New Zealand.
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
- Perelman School of Medicine, University of Pennsylvania, Pennsylvania, United States.
| |
Collapse
|
8
|
Wang WJ, Foong D, Calder S, Schamberg G, Varghese C, Tack J, Xu W, Daker C, Carson D, Waite S, Hayes T, Du P, Abell TL, Parkman HP, Huang IH, Fernandes V, Andrews CN, Gharibans AA, Ho V, O'Grady G. Gastric Alimetry ® improves patient phenotyping in gastroduodenal disorders compared to gastric emptying scintigraphy alone. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.18.23290134. [PMID: 37292604 PMCID: PMC10246136 DOI: 10.1101/2023.05.18.23290134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Objectives Gastric emptying testing (GET) assesses gastric motility, however is non-specific and insensitive for neuromuscular disorders. Gastric Alimetry® (GA) is a new medical device combining non-invasive gastric electrophysiological mapping and validated symptom profiling. This study assessed patient-specific phenotyping using GA compared to GET. Methods Patients with chronic gastroduodenal symptoms underwent simultaneous GET and GA, comprising a 30-minute baseline, 99m TC-labelled egg meal, and 4-hour postprandial recording. Results were referenced to normative ranges. Symptoms were profiled in the validated GA App and phenotyped using rule-based criteria based on their relationships to the meal and gastric activity: i) sensorimotor; ii) continuous; and iii) other. Results 75 patients were assessed; 77% female. Motility abnormality detection rates were: GET 22.7% (14 delayed, 3 rapid); GA spectral analysis 33.3% (14 low rhythm stability / low amplitude; 5 high amplitude; 6 abnormal frequency); combined yield 42.7%. In patients with normal spectral analysis, GA symptom phenotypes included: sensorimotor 17% (where symptoms strongly paired with gastric amplitude; median r=0.61); continuous 30%; other 53%. GA phenotypes showed superior correlations with GCSI, PAGI-SYM, and anxiety scales, whereas Rome IV Criteria did not correlate with psychometric scores (p>0.05). Delayed emptying was not predictive of specific GA phenotypes. Conclusions GA improves patient phenotyping in chronic gastroduodenal disorders in the presence and absence of motility abnormalities with improved correlation with symptoms and psychometrics compared to gastric emptying status and Rome IV criteria. These findings have implications for the diagnostic profiling and personalized management of gastroduodenal disorders. Study Highlights 1) WHAT IS KNOWN Chronic gastroduodenal symptoms are common, costly and greatly impact on quality of lifeThere is a poor correlation between gastric emptying testing (GET) and symptomsGastric Alimetry® is a new medical device combining non-invasive gastric electrophysiological mapping and validated symptom profiling 2) WHAT IS NEW HERE Gastric Alimetry generates a 1.5x higher yield for motility abnormalities than GETWith symptom profiling, Gastric Alimetry identified 2.7x more specific patient categories than GETGastric Alimetry improves clinical phenotyping, with improved correlation with symptoms and psychometrics compared to GET.
Collapse
|