1
|
Ramírez W, Pillajo V, Ramírez E, Manzano I, Meza D. Exploring Components, Sensors, and Techniques for Cancer Detection via eNose Technology: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:7868. [PMID: 39686404 DOI: 10.3390/s24237868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
This paper offers a systematic review of advancements in electronic nose technologies for early cancer detection with a particular focus on the detection and analysis of volatile organic compounds present in biomarkers such as breath, urine, saliva, and blood. Our objective is to comprehensively explore how these biomarkers can serve as early indicators of various cancers, enhancing diagnostic precision and reducing invasiveness. A total of 120 studies published between 2018 and 2023 were examined through systematic mapping and literature review methodologies, employing the PICOS (Population, Intervention, Comparison, Outcome, and Study design) methodology to guide the analysis. Of these studies, 65.83% were ranked in Q1 journals, illustrating the scientific rigor of the included research. Our review synthesizes both technical and clinical perspectives, evaluating sensor-based devices such as gas chromatography-mass spectrometry and selected ion flow tube-mass spectrometry with reported incidences of 30 and 8 studies, respectively. Key analytical techniques including Support Vector Machine, Principal Component Analysis, and Artificial Neural Networks were identified as the most prevalent, appearing in 22, 24, and 13 studies, respectively. While substantial improvements in detection accuracy and sensitivity are noted, significant challenges persist in sensor optimization, data integration, and adaptation into clinical settings. This comprehensive analysis bridges existing research gaps and lays a foundation for the development of non-invasive diagnostic devices. By refining detection technologies and advancing clinical applications, this work has the potential to transform cancer diagnostics, offering higher precision and reduced reliance on invasive procedures. Our aim is to provide a robust knowledge base for researchers at all experience levels, presenting insights on sensor capabilities, metrics, analytical methodologies, and the transformative impact of emerging electronic nose technologies in clinical practice.
Collapse
Affiliation(s)
- Washington Ramírez
- Departamento de Ciencias de la Computación, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui S/N, Sangolquí 171104, Ecuador
| | - Verónica Pillajo
- Departamento de Informática, Universidad Politécnica Salesiana, Quito 170146, Ecuador
| | - Eileen Ramírez
- Facultad de Medicina, Pontificia Universidad Católica del Ecuador, Quito 170143, Ecuador
| | - Ibeth Manzano
- Departamento de Ciencias de la Computación, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui S/N, Sangolquí 171104, Ecuador
| | - Doris Meza
- Facultad de Ciencias Económicas, Universidad Central del Ecuador, Quito 170521, Ecuador
| |
Collapse
|
2
|
Szeitz A, Sutton AG, Hallam SJ. A matrix-centered view of mass spectrometry platform innovation for volatilome research. Front Mol Biosci 2024; 11:1421330. [PMID: 39539739 PMCID: PMC11557394 DOI: 10.3389/fmolb.2024.1421330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Volatile organic compounds (VOCs) are carbon-containing molecules with high vapor pressure and low water solubility that are released from biotic and abiotic matrices. Because they are in the gaseous phase, these compounds tend to remain undetected when using conventional metabolomic profiling methods. Despite this omission, efforts to profile VOCs can provide useful information related to metabolic status and identify potential signaling pathways or toxicological impacts in natural or engineered environments. Over the past several decades mass spectrometry (MS) platform innovation has instigated new opportunities for VOC detection from previously intractable matrices. In parallel, volatilome research linking VOC profiles to other forms of multi-omic information (DNA, RNA, protein, and other metabolites) has gained prominence in resolving genotype/phenotype relationships at different levels of biological organization. This review explores both on-line and off-line methods used in VOC profiling with MS from different matrices. On-line methods involve direct sample injection into the MS platform without any prior compound separation, while off-line methods involve chromatographic separation prior to sample injection and analyte detection. Attention is given to the technical evolution of platforms needed for increasingly resolved VOC profiles, tracing technical progress over time with particular emphasis on emerging microbiome and diagnostic applications.
Collapse
Affiliation(s)
- Andras Szeitz
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Annika G. Sutton
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Steven J. Hallam
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
- Bradshaw Research Institute for Minerals and Mining (BRIMM), University of British Columbia, Vancouver, BC, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Zheng W, Pang K, Min Y, Wu D. Prospect and Challenges of Volatile Organic Compound Breath Testing in Non-Cancer Gastrointestinal Disorders. Biomedicines 2024; 12:1815. [PMID: 39200279 PMCID: PMC11351786 DOI: 10.3390/biomedicines12081815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Breath analysis, despite being an overlooked biomatrix, has a rich history in disease diagnosis. However, volatile organic compounds (VOCs) have yet to establish themselves as clinically validated biomarkers for specific diseases. As focusing solely on late-stage or malignant disease biomarkers may have limited relevance in clinical practice, the objective of this review is to explore the potential of VOC breath tests for the diagnosis of non-cancer diseases: (1) Precancerous conditions like gastro-esophageal reflux disease (GERD) and Barrett's esophagus (BE), where breath tests can complement endoscopic screening; (2) endoluminal diseases associated with autoinflammation and dysbiosis, such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and coeliac disease, which currently rely on biopsy and symptom-based diagnosis; (3) chronic liver diseases like cirrhosis, hepatic encephalopathy, and non-alcoholic fatty liver disease, which lack non-invasive diagnostic tools for disease progression monitoring and prognostic assessment. A literature search was conducted through EMBASE, MEDLINE, and Cochrane databases, leading to an overview of 24 studies. The characteristics of these studies, including analytical platforms, disorder type and stage, group size, and performance evaluation parameters for diagnostic tests are discussed. Furthermore, how VOCs can be utilized as non-invasive diagnostic tools to complement existing gold standards is explored. By refining study designs, sampling procedures, and comparing VOCs in urine and blood, we can gain a deeper understanding of the metabolic pathways underlying VOCs. This will establish breath analysis as an effective non-invasive method for differential diagnosis and disease monitoring.
Collapse
Affiliation(s)
- Weiyang Zheng
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China;
| | - Ke Pang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China; (K.P.); (Y.M.)
| | - Yiyang Min
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China; (K.P.); (Y.M.)
| | - Dong Wu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China;
- Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
4
|
Vermeer E, Jagt JZ, Stewart TK, Covington JA, Struys EA, de Jonge R, de Boer NKH, de Meij TGJ. Faecal Volatile Organic Compound Analysis in De Novo Paediatric Inflammatory Bowel Disease by Gas Chromatography-Ion Mobility Spectrometry: A Case-Control Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:2727. [PMID: 38732837 PMCID: PMC11086370 DOI: 10.3390/s24092727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
The gut microbiota and its related metabolites differ between inflammatory bowel disease (IBD) patients and healthy controls. In this study, we compared faecal volatile organic compound (VOC) patterns of paediatric IBD patients and controls with gastrointestinal symptoms (CGIs). Additionally, we aimed to assess if baseline VOC profiles could predict treatment response in paediatric IBD patients. We collected faecal samples from a cohort of de novo therapy-naïve paediatric IBD patients and CGIs. VOCs were analysed using gas chromatography-ion mobility spectrometry (GC-IMS). Response was defined as a combination of clinical response based on disease activity scores, without requiring treatment escalation. We included 109 paediatric IBD patients and 75 CGIs, aged 4 to 17 years. Faecal VOC profiles of paediatric IBD patients were distinguishable from those of CGIs (AUC ± 95% CI, p-values: 0.71 (0.64-0.79), <0.001). This discrimination was observed in both Crohn's disease (CD) (0.75 (0.67-0.84), <0.001) and ulcerative colitis (UC) (0.67 (0.56-0.78), 0.01) patients. VOC profiles between CD and UC patients were not distinguishable (0.57 (0.45-0.69), 0.87). Baseline VOC profiles of responders did not differ from non-responders (0.70 (0.58-0.83), 0.1). In conclusion, faecal VOC profiles of paediatric IBD patients differ significantly from those of CGIs.
Collapse
Affiliation(s)
- Eva Vermeer
- Department of Paediatric Gastroenterology, Emma Children’s Hospital, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands; (J.Z.J.); (T.G.J.d.M.)
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands;
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - Jasmijn Z. Jagt
- Department of Paediatric Gastroenterology, Emma Children’s Hospital, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands; (J.Z.J.); (T.G.J.d.M.)
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands;
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - Trenton K. Stewart
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (T.K.S.); (J.A.C.)
| | - James A. Covington
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (T.K.S.); (J.A.C.)
| | - Eduard A. Struys
- Department of Laboratory Medicine, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands; (E.A.S.); (R.d.J.)
| | - Robert de Jonge
- Department of Laboratory Medicine, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands; (E.A.S.); (R.d.J.)
| | - Nanne K. H. de Boer
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands;
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - Tim G. J. de Meij
- Department of Paediatric Gastroenterology, Emma Children’s Hospital, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands; (J.Z.J.); (T.G.J.d.M.)
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands;
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
5
|
Sukaram T, Tansawat R, Phathong C, Rerknimitr R, Chaiteerakij R. Volatile organic compounds for diagnosis of early hepatocellular carcinoma in at-risk patients. Clin Chim Acta 2024; 556:117831. [PMID: 38378104 DOI: 10.1016/j.cca.2024.117831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Volatile organic compounds (VOCs) have been shown as promising biomarkers for hepatocellular carcinoma (HCC) diagnosis. We aimed to investigate the performance of VOCs for diagnosing early-stage HCC in patients at-risk for HCC. METHODS VOCs were identified in exhaled breath samples collected from 87 early-stage HCC patients, 90 cirrhotic patients, and 72 HBV-infected patients using thermal desorption-gas chromatography/field-asymmetric ion mobility spectrometry. The VOC levels were compared between the three groups. An association between VOCs and HCC was determined using logistic regression analysis. Diagnostic performance of VOCs was estimated using the AUROC and compared to serum alpha-fetoprotein (AFP). RESULTS The levels of acetone monomer, dimethyl sulfide, 1,4-pentadiene, isopropyl alcohol, and acetone dimer were significantly different between the three groups. After adjusting for liver function test and AFP, acetone dimer was significantly associated with HCC. Acetone dimer significantly outperformed AFP with 86.2 % vs. 61.2 % sensitivity, 87.6 % vs. 66.2 % specificity, 86.9 % vs. 63.5 % for accuracy, and AUROC of 0.908 vs. 0.665, p = 0.007, <0.001, <0.001, and 0.001, respectively, for differentiating between HCC and cirrhosis. CONCLUSION Acetone showed a better performance than AFP for diagnosing early HCC in at-risk patients. Further studies to validate the utility of VOCs as an HCC surveillance tool are needed.
Collapse
Affiliation(s)
- Thanikan Sukaram
- Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross, Bangkok, Thailand
| | - Rossarin Tansawat
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, Chulalongkorn University, Bangkok, Thailand
| | - Chonlada Phathong
- Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross, Bangkok, Thailand
| | - Rungsun Rerknimitr
- Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross, Bangkok, Thailand; Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, Chulalongkorn University, Bangkok, Thailand
| | - Roongruedee Chaiteerakij
- Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross, Bangkok, Thailand; Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
6
|
Wolfschluckner V, Obermüller B, Horvath A, Rodriguez-Blanco G, Fuchs P, Miekisch W, Mittl B, Flucher C, Till H, Singer G. Metabolomic Alterations of Volatile Organic Compounds and Bile Acids as Biomarkers of Microbial Shifts in a Murine Model of Short Bowel Syndrome. Nutrients 2023; 15:4949. [PMID: 38068807 PMCID: PMC10708115 DOI: 10.3390/nu15234949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Pediatric short bowel syndrome (SBS) is a rare condition characterized by a massive loss of the small intestine, leading to the inability to meet nutritional requirements without the use of parenteral or enteral supplementation. SBS causes profound alterations in the intestinal microbiome and metabolome. The aim of this study was a detailed assessment of the intestinal microbiome and metabolome in a murine model of SBS. We performed a 60% proximal small bowel resection versus a sham operation in C57BL/6 mice. Four weeks postoperatively, the microbial communities of different intestinal segments (jejunum, ileum, colon) and stool were assessed by 16S rRNA gene sequencing. Bile acids in serum and stool and volatile organic compounds (VOCs) in the fecal headspace were assessed using LC-MS and GC-MS techniques. The α-diversity of the different intestinal segments did not significantly differ between the two groups. β-diversity significantly differed between sham and SBS mice. While in the jejunum, Faecalibaculum was significantly increased in SBS animals, a significant reduction in Lactobacillus and Sporosarcina was detected in the ileum of SBS mice. In the colon of SBS mice, a significant decrease in Ruminococcaceae and a significant increase in Proteobacteria such as Faecalibaculum and Escherichia-Shigella were found. Serum levels of deoxycholic, taurocholic and taurochenodeoxycholic acids were significantly higher in the SBS group. Of the 29 VOCs tested, hexane, isoflurane and pentane were significantly higher in the SBS group, and pyrrole was significantly lower. We were able to show that SBS causes shifts in the murine intestinal microbiome and metabolome including serum BAs and fecal VOCs.
Collapse
Affiliation(s)
- Vanessa Wolfschluckner
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| | - Beate Obermüller
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| | - Angela Horvath
- Division of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria;
| | - Giovanny Rodriguez-Blanco
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria;
| | - Patricia Fuchs
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany; (P.F.); (W.M.)
| | - Wolfram Miekisch
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany; (P.F.); (W.M.)
| | - Barbara Mittl
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| | - Christina Flucher
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| | - Holger Till
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| | - Georg Singer
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| |
Collapse
|
7
|
Kamal HY, Morneault-Gill K, Chadwick CB. What is new with irritable bowel syndrome. Curr Opin Pediatr 2023; 35:574-578. [PMID: 37540073 DOI: 10.1097/mop.0000000000001280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
PURPOSE OF REVIEW This review aims to summarize the most up-to-date criteria for diagnosis of pediatric irritable bowel syndrome (IBS) and treatment options. It also explores recent research that has been performed evaluating risk factors, pathophysiology, and treatment designed to improve quality of life for those who suffer from IBS. IBS is a common disorder in pediatrics and one of the most common causes of abdominal pain for children; thus, it can be quite debilitating for individuals to achieve a satisfactory quality of life on a routine basis. Reliable, available treatment is needed but can be challenging to find, given the variety of symptoms and triggers involved and lack of a clear understanding of how IBS develops. RECENT FINDINGS There are multiple pharmacologic and nonpharmacologic treatment options being explored and studied globally but further, larger, and well controlled studies are needed to confirm these outcomes. SUMMARY Because pediatric IBS is one of the most common functional disorders associated with abdominal pain and can be brought on by multiple factors, management often involves addressing these individual triggers with a multifaceted treatment plan, which could include dietary changes, probiotics, medication, or psychotherapy and should be tailored to each affected individual.
Collapse
Affiliation(s)
- Hebat Y Kamal
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Florida College of Medicine, Gainesville, Florida, USA
| | | | | |
Collapse
|