1
|
Oliveira J, Yildirir G, Corradi N. From Chaos Comes Order: Genetics and Genome Biology of Arbuscular Mycorrhizal Fungi. Annu Rev Microbiol 2024; 78:147-168. [PMID: 38985977 DOI: 10.1146/annurev-micro-041522-105143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate mutualists that can enhance nutrition and growth of their plant hosts while providing protection against pathogens. AMF produce spores and hyphal networks that can carry thousands of nuclei in a continuous cytoplasm, with no evidence of sexual reproduction. This review examines the impact of genomic technologies on our view of AMF genetics and evolution. We highlight how the genetics, nuclear dynamics, and epigenetics of these prominent symbionts follow trends preserved in distant multinucleate fungal relatives. We also propose new avenues of research to improve our understanding of their nuclear biology and their intricate genetic interactions with plant hosts.
Collapse
Affiliation(s)
- Jordana Oliveira
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada;
| | - Gokalp Yildirir
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada;
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada;
| |
Collapse
|
2
|
Wang W, Lin L, Zhang Q, Yang J, Kamili E, Chu J, Li X, Yang S, Xu Y. Heteroplasmy and Individual Mitogene Pools: Characteristics and Potential Roles in Ecological Studies. BIOLOGY 2023; 12:1452. [PMID: 37998051 PMCID: PMC10669347 DOI: 10.3390/biology12111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
The mitochondrial genome (mitogenome or mtDNA), the extrachromosomal genome, is a multicopy circular DNA with high mutation rates due to replication and repair errors. A mitochondrion, cell, tissue, organ, or an individual body may hold multiple variants, both inherited and developed over a lifetime, which make up individual mitogene pools. This phenomenon is also called mtDNA heteroplasmy. MtDNA variants influence cellular and tissular functions and are consequently subjected to selection. Although it has long been recognized that only inheritable germline heteroplasmies have evolutionary significance, non-inheritable somatic heteroplasmies have been overlooked since they directly affect individual fitness and thus indirectly affect the fate of heritable germline variants. This review focuses on the characteristics, dynamics, and functions of mtDNA heteroplasmy and proposes the concept of individual mitogene pools to discuss individual genetic diversity from multiple angles. We provide a unique perspective on the relationship between individual genetic diversity and heritable genetic diversity and guide how the individual mitogene pool with novel genetic markers can be applied to ecological research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuhui Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (W.W.); (L.L.); (Q.Z.); (J.Y.); (E.K.); (J.C.); (X.L.)
| | - Yanchun Xu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (W.W.); (L.L.); (Q.Z.); (J.Y.); (E.K.); (J.C.); (X.L.)
| |
Collapse
|
3
|
James TY. Sex Without Sexes: Can the Cost of Finding a Mate Explain Diversity in Fungal Mating Systems? Integr Comp Biol 2023; 63:922-935. [PMID: 37218718 DOI: 10.1093/icb/icad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023] Open
Abstract
Eukaryotes have evolved myriad ways of uniting gametes during sexual reproduction. A repeated pattern is the convergent evolution of a mating system with the fusion of larger gametes with smaller gametes (anisogamy) from that of fusion between morphologically identical gametes (isogamy). In anisogamous species, sexes are defined as individuals that produce only one gamete type. Although sexes abound throughout Eukarya, in fungi there are no biological sexes, because even in anisogamous species, individuals are hermaphroditic and produce both gamete types. For this reason, the term mating types is preferred over sexes, and, thus defined, only individuals of differing mating types can mate (homoallelic incompatibility). In anisogamous fungal species, there is scant evidence that there are more than two mating types, and this may be linked to genetic constraints, such as the use of mating types to determine the inheritance of cytoplasmic genomes. However, the mushroom fungi (Agaricomycetes) stand out as having both large numbers of mating types within a species, which will allow nearly all individuals to be compatible with each other, and reciprocal exchange of nuclei during mating, which will avoid cytoplasmic mixing and cyto-nuclear conflicts. Although the limitation of mating types to two in most fungi is consistent with the cyto-nuclear conflicts model, there are many facets of the Agaricomycete life cycle that also suggest they will demand a high outbreeding efficiency. Specifically, they are mostly obligately sexual and outcrossing, inhabit complex competitive niches, and display broadcast spore dispersal. Subsequently, the Agaricomycete individual pays a high cost to being choosy when encountering a mate. Here, I discuss the costs of mate finding and choice and demonstrate how most fungi have multiple ways of reducing these costs, which can explain why mating types are mostly limited to two per species. Nevertheless, it is perplexing that fungi have not evolved multiple mating types on more occasions nor evolved sexes. The few exceptions to these rules suggest that it is dictated by both molecular and evolutionary constraints.
Collapse
Affiliation(s)
- Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Rodriguez-Morelos VH, Calonne-Salmon M, Declerck S. Anastomosis within and between networks of Rhizophagus irregularis is differentially influenced by fungicides. MYCORRHIZA 2023; 33:15-21. [PMID: 36680651 PMCID: PMC9938072 DOI: 10.1007/s00572-023-01103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi play key roles in soil fertility of agroecosystems. They develop dense extraradical mycelial (ERM) networks via mechanisms such as hyphal anastomosis. These connections between hyphae can be affected by agricultural practices such as the use of fungicides, but how these compounds affect anastomosis formation within and more importantly between networks of the same AM fungal strain remains poorly unexplored. Here, the impact of azoxystrobin, pencycuron, flutolanil, and fenpropimorph at 0.02 and 2 mg L-1 were tested in vitro on the anastomosis formation within and between networks of Rhizophagus irregularis MUCL 41833. Azoxystrobin and fenpropimorph had a particularly detrimental impact, at the highest concentration (2 mg L-1), on the number of anastomoses within and between networks, and for fenpropimorph in particular at both concentrations (0.02 and 2 mg L-1) on the number of anastomoses per length of hyphae. Curiously fenpropimorph at 0.02 mg L-1 significantly stimulated spore production, while with azoxystrobin, the reverse was observed at 2 mg L-1. The two other fungicides, pencycuron and flutolanil, had no detrimental effects on spore production or anastomosis formation within and between networks. These results suggest that fungicides with different modes of action and concentrations differentially affect anastomosis possibly by altering the hyphal tips of AM fungi and may thus affect the capacity of AM fungi to develop large hyphal networks exploring and exploiting the soil at the service of plants.
Collapse
Affiliation(s)
- Victor Hugo Rodriguez-Morelos
- Université Catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, Box L7.05.06, 1348 Louvain-La-Neuve, Belgium
| | - Maryline Calonne-Salmon
- Université Catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, Box L7.05.06, 1348 Louvain-La-Neuve, Belgium
| | - Stéphane Declerck
- Université Catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, Box L7.05.06, 1348 Louvain-La-Neuve, Belgium.
| |
Collapse
|
5
|
van Creij J, Auxier B, An J, Wijfjes RY, Bergin C, Rosling A, Bisseling T, Pan Z, Limpens E. Stochastic nuclear organization and host-dependent allele contribution in Rhizophagus irregularis. BMC Genomics 2023; 24:53. [PMID: 36709253 PMCID: PMC9883914 DOI: 10.1186/s12864-023-09126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/10/2023] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Arbuscular mycorrhizal (AM) fungi are arguably the most important symbionts of plants, offering a range of benefits to their hosts. However, the provisioning of these benefits does not appear to be uniform among AM fungal individuals, with genetic variation between fungal symbionts having a substantial impact on plant performance. Interestingly, genetic variation has also been reported within fungal individuals, which contain millions of haploid nuclei sharing a common cytoplasm. In the model AM fungus, Rhizophagus irregularis, several isolates have been reported to be dikaryotes, containing two genetically distinct types of nuclei recognized based on their mating-type (MAT) locus identity. However, their extremely coenocytic nature and lack of a known single nucleus stage has raised questions on the origin, distribution and dynamics of this genetic variation. RESULTS Here we performed DNA and RNA sequencing at the mycelial individual, single spore and single nucleus levels to gain insight into the dynamic genetic make-up of the dikaryote-like R. irregularis C3 isolate and the effect of different host plants on its genetic variation. Our analyses reveal that parallel spore and root culture batches can have widely variable ratios of two main genotypes in C3. Additionally, numerous polymorphisms were found with frequencies that deviated significantly from the general genotype ratio, indicating a diverse population of slightly different nucleotypes. Changing host plants did not show consistent host effects on nucleotype ratio's after multiple rounds of subculturing. Instead, we found a major effect of host plant-identity on allele-specific expression in C3. CONCLUSION Our analyses indicate a highly dynamic/variable genetic organization in different isolates of R. irregularis. Seemingly random fluctuations in nucleotype ratio's upon spore formation, recombination events, high variability of non-tandemly repeated rDNA sequences and host-dependent allele expression all add levels of variation that may contribute to the evolutionary success of these widespread symbionts.
Collapse
Affiliation(s)
- Jelle van Creij
- grid.4818.50000 0001 0791 5666Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | - Ben Auxier
- grid.4818.50000 0001 0791 5666Laboratory of Genetics, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | - Jianyong An
- grid.4818.50000 0001 0791 5666Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands ,grid.411626.60000 0004 1798 6793Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206 China
| | - Raúl Y. Wijfjes
- grid.4818.50000 0001 0791 5666Laboratory of Bioinformatics, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands ,grid.5252.00000 0004 1936 973XCurrent affiliation: Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Claudia Bergin
- grid.8993.b0000 0004 1936 9457Department of Cell and Molecular Biology, Uppsala University, and Microbial Single Cell Genomics Facility, Science for Life Laboratory, Uppsala, Sweden
| | - Anna Rosling
- grid.8993.b0000 0004 1936 9457Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden
| | - Ton Bisseling
- grid.4818.50000 0001 0791 5666Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands ,grid.411626.60000 0004 1798 6793Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206 China
| | - Zhiyong Pan
- grid.35155.370000 0004 1790 4137Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Erik Limpens
- grid.4818.50000 0001 0791 5666Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| |
Collapse
|
6
|
The Potential Applications of Commercial Arbuscular Mycorrhizal Fungal Inoculants and Their Ecological Consequences. Microorganisms 2022; 10:microorganisms10101897. [PMID: 36296173 PMCID: PMC9609176 DOI: 10.3390/microorganisms10101897] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Arbuscular mycorrhizal fungal (AMF) inoculants are sustainable biological materials that can provide several benefits to plants, especially in disturbed agroecosystems and in the context of phytomanagement interventions. However, it is difficult to predict the effectiveness of AMF inoculants and their impacts on indigenous AMF communities under field conditions. In this review, we examined the literature on the possible outcomes following the introduction of AMF-based inoculants in the field, including their establishment in soil and plant roots, persistence, and effects on the indigenous AMF community. Most studies indicate that introduced AMF can persist in the target field from a few months to several years but with declining abundance (60%) or complete exclusion (30%). Further analysis shows that AMF inoculation exerts both positive and negative impacts on native AMF species, including suppression (33%), stimulation (38%), exclusion (19%), and neutral impacts (10% of examined cases). The factors influencing the ecological fates of AMF inoculants, such as the inherent properties of the inoculum, dosage and frequency of inoculation, and soil physical and biological factors, are further discussed. While it is important to monitor the success and downstream impacts of commercial inoculants in the field, the sampling method and the molecular tools employed to resolve and quantify AMF taxa need to be improved and standardized to eliminate bias towards certain AMF strains and reduce discrepancies among studies. Lastly, inoculant producers must focus on selecting strains with a higher chance of success in the field, and having little or negligible downstream impacts.
Collapse
|
7
|
Does Commercial Inoculation Promote Arbuscular Mycorrhizal Fungi Invasion? Microorganisms 2022; 10:microorganisms10020404. [PMID: 35208858 PMCID: PMC8879836 DOI: 10.3390/microorganisms10020404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/06/2022] [Accepted: 02/06/2022] [Indexed: 01/27/2023] Open
Abstract
Interventions with commercial inoculants have the potential to reduce the environmental footprint of agriculture, but their indiscriminate deployment has raised questions on the unintended consequences of microbial invasion. In the absence of explicit empirical reports on arbuscular mycorrhizal fungi (AMF) invasion, we examine the present framework used to define AMF invasion and offer perspectives on the steps needed to avoid the negative impacts of AMF invasion. Although commercial AMF isolates are potential invaders, invasions do not always constitute negative impacts on native community diversity and functions. Instead, the fates of the invading and resident communities are determined by ecological processes such as selection, drift, dispersal, and speciation. Nevertheless, we recommend strategies that reduce overdependence on introduced inoculants, such as adoption management practices that promote the diversity and richness of indigenous AMF communities, and the development of native propagules as a supplement to commercial AMF in applicable areas. Policies and regulations that monitor inoculant value chains from production to application must be put in place to check inoculant quality and composition, as well as the transport of inoculants between geographically distant regions.
Collapse
|
8
|
Zhang Y, Wang S, Li H, Liu C, Mi F, Wang R, Mo M, Xu J. Evidence for Persistent Heteroplasmy and Ancient Recombination in the Mitochondrial Genomes of the Edible Yellow Chanterelles From Southwestern China and Europe. Front Microbiol 2021; 12:699598. [PMID: 34335532 PMCID: PMC8317506 DOI: 10.3389/fmicb.2021.699598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial genes and genomes have patterns of inheritance that are distinctly different from those of nuclear genes and genomes. In nature, the mitochondrial genomes in eukaryotes are generally considered non-recombining and homoplasmic. If heteroplasmy and recombination exist, they are typically very limited in both space and time. Here we show that mitochondrial heteroplasmy and recombination may not be limited to a specific population nor exit only transiently in the basidiomycete Cantharellus cibarius and related species. These edible yellow chanterelles are an ecologically very important group of fungi and among the most prominent wild edible mushrooms in the Northern Hemisphere. At present, very little is known about the genetics and population biology of these fungia cross large geographical distances. Our study here analyzed a total of 363 specimens of edible yellow chanterelles from 24 geographic locations in Yunnan in southwestern China and six geographic locations in five countries in Europe. For each mushroom sample, we obtained the DNA sequences at two genes, one in the nuclear genome and one in the mitochondrial genome. Our analyses of the nuclear gene, translation elongation factor 1-alpha (tef-1) and the DNA barcode of C. cibarius and related species, suggested these samples belong to four known species and five potential new species. Interestingly, analyses of the mitochondrial ATP synthase subunit 6 (atp6) gene fragment revealed evidence of heteroplasmy in two geographic samples in Yunnan and recombination within the two new putative species in Yunnan. Specifically, all four possible haplotypes at two polymorphic nucleotide sites within the mitochondrial atp6 gene were found distributed across several geographic locations in Yunnan. Furthermore, these four haplotypes were broadly distributed across multiple phylogenetic clades constructed based on nuclear tef-1 sequences. Our results suggest that heteroplasmy and mitochondrial recombination might have happened repeatedly during the evolution of the yellow chanterelles. Together, our results suggest that the edible yellow chanterelles represent an excellent system from which to study the evolution of mitochondrial-nuclear genome relationships.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Shaojuan Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
- Qicai Yunnan Primary School Affiliated with Yunnan Normal University, Kunming, China
| | - Haixia Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Chunli Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- Kunming Edible Fungi Institute of All-China Federation of Supply and Marketing Cooperatives, Kunming, China
| | - Fei Mi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- Research Institute of Nutrition and Food Science, Kunming Medical University, Kunming, China
| | - Ruirui Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Meizi Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Jianping Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
9
|
Mayers CG, Harrington TC, Wai A, Hausner G. Recent and Ongoing Horizontal Transfer of Mitochondrial Introns Between Two Fungal Tree Pathogens. Front Microbiol 2021; 12:656609. [PMID: 34149643 PMCID: PMC8208691 DOI: 10.3389/fmicb.2021.656609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/09/2021] [Indexed: 11/23/2022] Open
Abstract
Two recently introduced fungal plant pathogens (Ceratocystis lukuohia and Ceratocystis huliohia) are responsible for Rapid ‘ōhi‘a Death (ROD) in Hawai‘i. Despite being sexually incompatible, the two pathogens often co-occur in diseased ‘ōhi‘a sapwood, where genetic interaction is possible. We sequenced and annotated 33 mitochondrial genomes of the two pathogens and related species, and investigated 35 total Ceratocystis mitogenomes. Ten mtDNA regions [one group I intron, seven group II introns, and two autonomous homing endonuclease (HE) genes] were heterogeneously present in C. lukuohia mitogenomes, which were otherwise identical. Molecular surveys with specific primers showed that the 10 regions had uneven geographic distribution amongst populations of C. lukuohia. Conversely, identical orthologs of each region were present in every studied isolate of C. huliohia regardless of geographical origin. Close relatives of C. lukuohia lacked or, rarely, had few and dissimilar orthologs of the 10 regions, whereas most relatives of C. huliohia had identical or nearly identical orthologs. Each region included or worked in tandem with HE genes or reverse transcriptase/maturases that could facilitate interspecific horizontal transfers from intron-minus to intron-plus alleles. These results suggest that the 10 regions originated in C. huliohia and are actively moving to populations of C. lukuohia, perhaps through transient cytoplasmic contact of hyphal tips (anastomosis) in the wound surface of ‘ōhi‘a trees. Such contact would allow for the transfer of mitochondria followed by mitochondrial fusion or cytoplasmic exchange of intron intermediaries, which suggests that further genomic interaction may also exist between the two pathogens.
Collapse
Affiliation(s)
- Chase G Mayers
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| | - Thomas C Harrington
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
10
|
Kokkoris V, Stefani F, Dalpé Y, Dettman J, Corradi N. Nuclear Dynamics in the Arbuscular Mycorrhizal Fungi. TRENDS IN PLANT SCIENCE 2020; 25:765-778. [PMID: 32534868 DOI: 10.1016/j.tplants.2020.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 05/09/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are plant root symbionts that continuously carry thousands of nuclei in their spores and hyphae. This unique cellular biology raises fundamental questions regarding their nuclear dynamics. This review aims to address these by synthesizing current knowledge of nuclear content and behavior in these ubiquitous soil fungi. Overall, we find that that nuclear counts, as well as the nuclei shape and organization, vary drastically both within and among species in this group. By comparing these features with those of other fungi, we highlight unique aspects of the AMF nuclear biology that require further attention. The potential implications of the observed nuclear variability for the biology and evolution of these widespread plant symbionts are discussed.
Collapse
Affiliation(s)
- Vasilis Kokkoris
- Department of Biology, University of Ottawa, ON, Ottawa, K1N 6N5, Canada; Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, ON, Ottawa, K1A 0C5, Canada.
| | - Franck Stefani
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, ON, Ottawa, K1A 0C5, Canada
| | - Yolande Dalpé
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, ON, Ottawa, K1A 0C5, Canada
| | - Jeremy Dettman
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, ON, Ottawa, K1A 0C5, Canada
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, ON, Ottawa, K1N 6N5, Canada.
| |
Collapse
|
11
|
Environmental factors driving arbuscular mycorrhizal fungal communities associated with endemic woody plant Picconiaazorica on native forest of Azores. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01535-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Purpose
Arbuscular mycorrhizal fungi (AMF) play important key roles in the soil ecosystems as they link plants to the root-inaccessible part of soil. The aims of this study were to investigate which environmental factors influence the spatial and temporal structuring of AMF communities associated to Picconia azorica in two Azorean islands (Terceira and São Miguel islands), and investigate the seasonal variation in AMF communities between the two islands.
Methods
Communities of AMF associated with P. azorica in native forest of two Azorean islands (Terceira and São Miguel) were characterised by spore morphology or molecular analysis.
Results
Forty-five AMF spore morphotypes were detected from the four fragments of P. azorica forest representing nine families of AMF. Acaulosporaceae (14) and Glomeraceae (9) were the most abundant families. AMF density and root colonisation varied significantly between islands and sampling sites. Root colonisation and spore density exhibited temporal patterns, which peaked in spring and were higher in Terceira than in São Miguel. The relative contribution of environmental factors showed that factors such as elevation, relative air humidity, soil pH, and soil available P, K, and Mg influenced AMF spore production and root colonisation.
Conclusion
Different sporulation patterns exhibited by the members of the commonest families suggested different life strategies. Adaptation to a particular climatic and soil condition and host phenology may explain seasonal differences in sporulation patterns. Cohorts of AMF associated to P. azorica are shaped by regional processes including environmental filters such as soil properties and natural disturbance.
Collapse
|
12
|
Kokkoris V, Hart M. In vitro Propagation of Arbuscular Mycorrhizal Fungi May Drive Fungal Evolution. Front Microbiol 2019; 10:2420. [PMID: 31695689 PMCID: PMC6817466 DOI: 10.3389/fmicb.2019.02420] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022] Open
Abstract
Transformed root cultures (TRC) are used to mass produce arbuscular mycorrhizal (AM) fungal propagules in vitro. These propagules are then used in research, agriculture, and ecological restoration. There are many examples from other microbial systems that long-term in vitro propagation leads to domesticated strains that differ genetically and functionally. Here, we discuss potential consequences of in TRC propagation on AM fungal traits, and how this may affect their functionality. We examine weather domestication of AM fungi has already happened and finally, we explore whether it is possible to overcome TRC-induced domestication.
Collapse
|
13
|
Does Inoculation with Arbuscular Mycorrhizal Fungi Reduce Trunk Disease in Grapevine Rootstocks? HORTICULTURAE 2019. [DOI: 10.3390/horticulturae5030061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ilyonectria is a weak pathogen known for causing black foot disease in young vines, infecting roots and vascular tissues at the basal end of the rootstock and restricting the movement of water and nutrients. This negatively impacts vine establishment during transplant into the vineyard. Arbuscular mycorrhizal (AM) fungi are symbiotic fungi that associate with most plants and have been shown to mitigate the infection and effect of pathogens. This greenhouse study was designed to determine if the mycorrhizal fungi could mitigate Ilyonectria infection and whether this was dependent on inoculation timing. ‘Riparia gloire’ grapevine rootstocks (Vitis riparia) were infected with Ilyonectria either after AM fungi, at the same time as AM fungi, or to roots that were not inoculated by AM fungi. We measured the abundance using specific markers for both the pathogen and AM fungi. Colonization by AM fungi did not suppress Ilyonectria, but instead increased the abundance of Ilyonectria. Further, mycorrhizal rootstocks did not have enhanced growth effects on physiological parameters when compared to non-mycorrhizal rootstocks. These findings stand in contrast to the general perception that AM fungi provide protection against root pathogens.
Collapse
|
14
|
Kokkoris V, Li Y, Hamel C, Hanson K, Hart M. Site specificity in establishment of a commercial arbuscular mycorrhizal fungal inoculant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:1135-1143. [PMID: 30743909 DOI: 10.1016/j.scitotenv.2019.01.100] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 05/02/2023]
Abstract
While establishment and persistence of arbuscular mycorrhizal (AM) fungal inoculants in agricultural fields are critical to their success, little is known about how farming practices can affect their establishment in field. We developed a probe assay specific to a commercial AM fungal inoculant (Rhizoglomus irregulare DAOM197198) and tested its establishment among different grain cropping practices in the field. Establishment of the fungus was not related to cropping, or inoculation practices. Instead, establishment was site specific over the two growing seasons. Our results show that it is not yet possible to predict inoculation success in the field and use of biofertilizers requires further research under field conditions to identify key factors involved in establishment and persistence.
Collapse
Affiliation(s)
- Vasilis Kokkoris
- Department of Biology, University of British Columbia, Okanagan campus, 3333 University Way, Kelowna, BC V1V 1V7, Canada.
| | - Yunliang Li
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road, Swift Current, SK S9H 3X2, Canada
| | - Chantal Hamel
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, 2560 Hochelaga, Boulevard, Quebec, QC G1 V 2J3, Canada
| | - Keith Hanson
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road, Swift Current, SK S9H 3X2, Canada
| | - Miranda Hart
- Department of Biology, University of British Columbia, Okanagan campus, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
15
|
Thomsen CN, Hart MM. Using invasion theory to predict the fate of arbuscular mycorrhizal fungal inoculants. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1746-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Sbrana C, Strani P, Pepe A, de Novais CB, Giovannetti M. Divergence of Funneliformis mosseae populations over 20 years of laboratory cultivation, as revealed by vegetative incompatibility and molecular analysis. MYCORRHIZA 2018; 28:329-341. [PMID: 29574495 DOI: 10.1007/s00572-018-0830-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are widespread, important plant symbionts. They absorb and translocate mineral nutrients from the soil to host plants through an extensive extraradical mycelium, consisting of indefinitely large networks of nonseptate, multinucleated hyphae which may be interconnected by hyphal fusions (anastomoses). This work investigated whether different lineages of the same isolate may lose the ability to establish successful anastomoses, becoming vegetatively incompatible, when grown separately. The occurrence of hyphal incompatibility among five lineages of Funneliformis mosseae, originated from the same ancestor isolate and grown in vivo for more than 20 years in different European locations, was assessed by systematic detection of anastomosis frequency and cytological studies. Anastomosis frequencies ranged from 60 to 80% within the same lineage and from 17 to 44% among different lineages. The consistent detection of protoplasm continuity and nuclei in perfect fusions showed active protoplasm flow both within and between lineages. In pairings between different lineages, post-fusion incompatible reactions occurred in 6-48% of hyphal contacts and pre-fusion incompatibility in 2-17%. Molecular fingerprinting profiles showed genetic divergence among lineages, with overall Jaccard similarity indices ranging from 0.85 to 0.95. Here, phenotypic divergence among the five F. mosseae lineages was demonstrated by the reduction of their ability to form anastomosis and the detection of high levels of vegetative incompatibility. Our data suggest that potential genetic divergence may occur in AMF over only 20 years and represent the basis for detailed studies on the relationship between genes regulating anastomosis formation and hyphal compatibility in AMF.
Collapse
Affiliation(s)
- Cristiana Sbrana
- CNR-Institute of Agricultural Biology and Biotechnology, UOS Pisa, Pisa, Italy.
| | - Patrizia Strani
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Alessandra Pepe
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Candido Barreto de Novais
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- Forestry Institute, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
17
|
Voříšková A, Jansa J, Püschel D, Krüger M, Cajthaml T, Vosátka M, Janoušková M. Real-time PCR quantification of arbuscular mycorrhizal fungi: does the use of nuclear or mitochondrial markers make a difference? MYCORRHIZA 2017; 27:577-585. [PMID: 28569349 DOI: 10.1007/s00572-017-0777-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/15/2017] [Indexed: 05/14/2023]
Abstract
Root colonization by arbuscular mycorrhizal fungi (AMF) can be quantified by different approaches. We compared two approaches that enable discrimination of specific AMF taxa and are therefore emerging as alternative to most commonly performed microscopic quantification of AMF in roots: quantitative real-time PCR (qPCR) using markers in nuclear ribosomal DNA (nrDNA) and mitochondrial ribosomal DNA (mtDNA). In a greenhouse experiment, Medicago truncatula was inoculated with four isolates belonging to different AMF species (Rhizophagus irregularis, Claroideoglomus claroideum, Gigaspora margarita and Funneliformis mosseae). The AMF were quantified in the root samples by qPCR targeted to both markers, microscopy and contents of AMF-specific phospholipid fatty acids (PLFA). Copy numbers of nrDNA and mtDNA were closely related within all isolates; however, the slopes and intercepts of the linear relationships significantly differed among the isolates. Across all isolates, a large proportion of variance in nrDNA copy numbers was explained by root colonization intensity or contents of AMF-specific PLFA, while variance in mtDNA copy numbers was mainly explained by differences among AMF isolates. We propose that the encountered inter-isolate differences in the ratios of mtDNA and nrDNA copy numbers reflect different physiological states of the isolates. Our results suggest that nrDNA is a more suitable marker region than mtDNA for the quantification of multiple AMF taxa as its copy numbers are better related to fungal biomass across taxa than are copy numbers of mtDNA.
Collapse
Affiliation(s)
- Alena Voříšková
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic.
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague, 128 44, Czech Republic.
| | - Jan Jansa
- Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, Prague, 142 20, Czech Republic
| | - David Püschel
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
- Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, Prague, 142 20, Czech Republic
| | - Manuela Krüger
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
- Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, Prague, 165 02, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, Prague, 142 20, Czech Republic
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, Prague, 128 01, Czech Republic
| | - Miroslav Vosátka
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague, 128 44, Czech Republic
| | - Martina Janoušková
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
| |
Collapse
|
18
|
Mitochondrial DNA Based Molecular Markers in Arbuscular Mycorrhizal Fungi (AMF) Research. Fungal Biol 2017. [DOI: 10.1007/978-3-319-34106-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Krishnamoorthy R, Premalatha N, Karthik M, Anandham R, Senthilkumar M, Gopal NO, Selvakumar G, Sa T. Molecular Markers for the Identification and Diversity Analysis of Arbuscular Mycorrhizal Fungi (AMF). Fungal Biol 2017. [DOI: 10.1007/978-3-319-34106-4_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Badri A, Stefani FOP, Lachance G, Roy-Arcand L, Beaudet D, Vialle A, Hijri M. Molecular diagnostic toolkit for Rhizophagus irregularis isolate DAOM-197198 using quantitative PCR assay targeting the mitochondrial genome. MYCORRHIZA 2016; 26:721-33. [PMID: 27220880 DOI: 10.1007/s00572-016-0708-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/09/2016] [Indexed: 05/09/2023]
Abstract
Rhizophagus irregularis (previously named Glomus irregulare) is one of the most widespread and common arbuscular mycorrhizal fungal (AMF) species. It has been recovered worldwide in agricultural and natural soils, and the isolate DAOM-197198 has been utilized as a commercial inoculant for two decades. Despite the ecological and economical importance of this taxon, specific markers for quantification of propagules by quantitative real-time PCR (qPCR) are extremely limited and none have been rigorously validated for quality control of manufactured products such as biofertilizers. From the sequencing of 14 complete AMF mitochondrial (mt) genomes, a qPCR assay using a hydrolysis probe designed in the single copy cox3-rnl intergenic region was tested and validated to specifically and accurately quantify the spores of R. irregularis isolate DAOM-197198. Specificity tests were performed using standard PCR and qPCR, and results clearly showed that the primers specifically amplified the isolate DAOM-197198, yielding a PCR product of 106 bp. According to the qPCR analyses on spores produced in vitro, the average copy number of mt genomes per spore was 3172 ± 304 SE (n = 6). Quantification assays were successfully undertaken on known and unknown samples in liquid suspensions and commercial dry formulations to show the accuracy, precision, robustness, and reproducibility of the qPCR assay. This study provides a powerful molecular toolkit specifically designed to quantify spores of the model AMF isolate DAOM-197198. The approach of molecular toolkit used in our study could be applied to other AMF taxa and will be useful to research institutions and governmental and industrial laboratories running routine quality control of AMF-based products.
Collapse
Affiliation(s)
- Amine Badri
- Centre de recherche sur les biotechnologies marines, 2e Rue Est, Rimouski, QC, G5L 9H3, Canada
| | - Franck O P Stefani
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Geneviève Lachance
- Premier Tech, 1 avenue Premier, Campus Premier Tech, Rivière-du-Loup, QC, G5R 6C1, Canada
| | - Line Roy-Arcand
- Premier Tech, 1 avenue Premier, Campus Premier Tech, Rivière-du-Loup, QC, G5R 6C1, Canada
| | - Denis Beaudet
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Agathe Vialle
- Biopterre-Centre de développement des bioproduits, 1642, Rue de la Ferme, La Pocatière, Québec, G0R 1Z0, Canada
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC, H1X 2B2, Canada.
| |
Collapse
|
21
|
Nadimi M, Stefani FOP, Hijri M. The large (134.9 kb) mitochondrial genome of the glomeromycete Funneliformis mosseae. MYCORRHIZA 2016; 26:747-755. [PMID: 27246226 DOI: 10.1007/s00572-016-0710-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/23/2016] [Indexed: 06/05/2023]
Abstract
Funneliformis mosseae is among the most ecologically and economically important glomeromycete species and occurs both in natural and disturbed areas in a wide range of habitats and climates. In this study, we report the sequencing of the complete mitochondrial (mt) genome of F. mosseae isolate FL299 using 454 pyrosequencing and Illumina HiSeq technologies. This mt genome is a full-length circular chromosome of 134,925 bp, placing it among the largest mitochondrial DNAs (mtDNAs) in the fungal kingdom. A comparative analysis with publically available arbuscular mycorrhizal fungal mtDNAs revealed that the mtDNA of F. mosseae FL299 contained a very large number of insertions contributing to its expansion. The gene synteny was completely reshuffled compared to previously published glomeromycotan mtDNAs and several genes were oriented in an anti-sense direction. Furthermore, the presence of different types of introns and insertions in rnl (14 introns) made this gene very distinctive in Glomeromycota. The presence of alternative genetic codes in both initiation (GUG) and termination (UGA) codons was another new feature in this mtDNA compared to previously published glomeromycotan mt genomes. The phylogenetic analysis inferred from the analysis of 14 protein mt genes confirmed the position of the Glomeromycota clade as a sister group of Mortierellomycotina. This mt genome is the largest observed so far in Glomeromycota and the first mt genome within the Funneliformis clade, providing new opportunities to better understand their evolution and to develop molecular markers.
Collapse
Affiliation(s)
- Maryam Nadimi
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Franck O P Stefani
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC, H1X 2B2, Canada.
| |
Collapse
|
22
|
Vályi K, Mardhiah U, Rillig MC, Hempel S. Community assembly and coexistence in communities of arbuscular mycorrhizal fungi. THE ISME JOURNAL 2016; 10:2341-51. [PMID: 27093046 PMCID: PMC5030697 DOI: 10.1038/ismej.2016.46] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 02/04/2023]
Abstract
Arbuscular mycorrhizal fungi are asexual, obligately symbiotic fungi with unique morphology and genomic structure, which occupy a dual niche, that is, the soil and the host root. Consequently, the direct adoption of models for community assembly developed for other organism groups is not evident. In this paper we adapted modern coexistence and assembly theory to arbuscular mycorrhizal fungi. We review research on the elements of community assembly and coexistence of arbuscular mycorrhizal fungi, highlighting recent studies using molecular methods. By addressing several points from the individual to the community level where the application of modern community ecology terms runs into problems when arbuscular mycorrhizal fungi are concerned, we aim to account for these special circumstances from a mycocentric point of view. We suggest that hierarchical spatial structure of arbuscular mycorrhizal fungal communities should be explicitly taken into account in future studies. The conceptual framework we develop here for arbuscular mycorrhizal fungi is also adaptable for other host-associated microbial communities.
Collapse
Affiliation(s)
- Kriszta Vályi
- Department of Plant Ecology, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Ulfah Mardhiah
- Department of Plant Ecology, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Matthias C Rillig
- Department of Plant Ecology, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Stefan Hempel
- Department of Plant Ecology, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| |
Collapse
|
23
|
Nadimi M, Daubois L, Hijri M. Mitochondrial comparative genomics and phylogenetic signal assessment of mtDNA among arbuscular mycorrhizal fungi. Mol Phylogenet Evol 2016; 98:74-83. [DOI: 10.1016/j.ympev.2016.01.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 12/16/2015] [Accepted: 01/14/2016] [Indexed: 11/29/2022]
|
24
|
Daubois L, Beaudet D, Hijri M, de la Providencia I. Independent mitochondrial and nuclear exchanges arising in Rhizophagus irregularis crossed-isolates support the presence of a mitochondrial segregation mechanism. BMC Microbiol 2016; 16:11. [PMID: 26803293 PMCID: PMC4724407 DOI: 10.1186/s12866-016-0627-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Arbuscular mycorrhizal fungi (AMF) are members of the phylum Glomeromycota, an early divergent fungal lineage that forms symbiotic associations with the large majority of land plants. These organisms are asexual obligate biotrophs, meaning that they cannot complete their life cycle in the absence of a suitable host. These fungi can exchange genetic information through hyphal fusions (i.e. anastomosis) with genetically compatible isolates belonging to the same species. The occurrence of transient mitochondrial length-heteroplasmy through anastomosis between geographically distant Rhizophagus irregularis isolates was previously demonstrated in single spores resulting from crossing experiments. However, (1) the persistence of this phenomenon in monosporal culture lines from crossed parental isolates, (2) its correlation with nuclear exchanges and (3) the potential mechanisms responsible for mitochondrial inheritance are still unknown. Using the AMF model organism R. irregularis, we tested whether the presence of a heteroplasmic state in progeny spores was linked to the occurrence of nuclear exchanges and whether the previously observed heteroplasmic state persisted in monosporal in vitro crossed-culture lines. We also investigated the presence of a putative mitochondrial segregation apparatus in Glomeromycota by identifying proteins similar to those found in other fungal groups. RESULTS We observed the occurrence of biparental inheritance both for mitochondrial and nuclear markers tested in single spores obtained from crossed-isolates. However, only one parental mitochondrial DNA and nuclear genotype were recovered in each monosporal crossed-cultures, with an overrepresentation of certain mitochondrial haplotypes. These results strongly support the presence of a nuclear-independent mitochondrial segregation mechanism in R. irregularis. Furthermore, a nearly complete set of genes was identified with putative orthology to those found in other fungi and known to be associated with the mitochondrial segregation in Saccharomyces cerevisiae and filamentous fungi. CONCLUSIONS Our findings suggest that mitochondrial segregation might take place either during spore formation or colony development and that it might be independent of the nuclear segregation machinery. We present the basic building blocks for a better understanding of the mitochondrial inheritance process and segregation in these important symbiotic fungi. The comprehension of these processes is of great importance since it has been shown that different segregated lines of the same isolate can have variable effects on the host plant.
Collapse
Affiliation(s)
- Laurence Daubois
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, H1X 2B2, QC, Canada.
| | - Denis Beaudet
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, H1X 2B2, QC, Canada.
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, H1X 2B2, QC, Canada.
| | - Ivan de la Providencia
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, H1X 2B2, QC, Canada.
| |
Collapse
|
25
|
Young JPW. Genome diversity in arbuscular mycorrhizal fungi. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:113-119. [PMID: 26190590 DOI: 10.1016/j.pbi.2015.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/28/2015] [Accepted: 06/06/2015] [Indexed: 06/04/2023]
Abstract
Arbuscular mycorrhizal fungi (Glomeromycota) are the most widespread and important symbionts of plants. They cannot be cultured without plants, are apparently asexual, and have multiple nuclei in a common cytoplasm. There is evidence for genetic variation among nuclei, and for segregation of this variation during growth, but these findings remain contentious. Recently, two papers have reported whole genome sequences for a strain of Rhizophagus irregularis; both suggest that genetic variation among nuclei is low. Genome assembly is very incomplete, though, so significant nuclear diversity cannot be excluded. While the diversity of nuclear genomes remains unresolved, multiple complete mitochondrial genomes are now available; there is virtually no variation within isolates, but significant variation between them.
Collapse
Affiliation(s)
- J Peter W Young
- Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
26
|
Boon E, Halary S, Bapteste E, Hijri M. Studying genome heterogeneity within the arbuscular mycorrhizal fungal cytoplasm. Genome Biol Evol 2015; 7:505-21. [PMID: 25573960 PMCID: PMC4350173 DOI: 10.1093/gbe/evv002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2015] [Indexed: 11/12/2022] Open
Abstract
Although heterokaryons have been reported in nature, multicellular organisms are generally assumed genetically homogeneous. Here, we investigate the case of arbuscular mycorrhizal fungi (AMF) that form symbiosis with plant roots. The growth advantages they confer to their hosts are of great potential benefit to sustainable agricultural practices. However, measuring genetic diversity for these coenocytes is a major challenge: Within the same cytoplasm, AMF contain thousands of nuclei and show extremely high levels of genetic variation for some loci. The extent and physical location of polymorphism within and between AMF genomes is unclear. We used two complementary strategies to estimate genetic diversity in AMF, investigating polymorphism both on a genome scale and in putative single copy loci. First, we used data from whole-genome pyrosequencing of four AMF isolates to describe genetic diversity, based on a conservative network-based clustering approach. AMF isolates showed marked differences in genome-wide diversity patterns in comparison to a panel of control fungal genomes. This clustering approach further allowed us to provide conservative estimates of Rhizophagus spp. genomes sizes. Second, we designed new putative single copy genomic markers, which we investigated by massive parallel amplicon sequencing for two Rhizophagus irregularis and one Rhizophagus sp. isolates. Most loci showed high polymorphism, with up to 103 alleles per marker. This polymorphism could be distributed within or between nuclei. However, we argue that the Rhizophagus isolates under study might be heterokaryotic, at least for the putative single copy markers we studied. Considering that genetic information is the main resource for identification of AMF, we suggest that special attention is warranted for the study of these ecologically important organisms.
Collapse
Affiliation(s)
- Eva Boon
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Quebec, Canada
| | - Sébastien Halary
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Quebec, Canada
| | - Eric Bapteste
- CNRS, UMR7138, Institut de Biologie Paris-Seine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), Paris, France
| | - Mohamed Hijri
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Quebec, Canada
| |
Collapse
|
27
|
Functional Significance of Anastomosis in Arbuscular Mycorrhizal Networks. ECOLOGICAL STUDIES 2015. [DOI: 10.1007/978-94-017-7395-9_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Nadimi M, Stefani FOP, Hijri M. The mitochondrial genome of the glomeromycete Rhizophagus sp. DAOM 213198 reveals an unusual organization consisting of two circular chromosomes. Genome Biol Evol 2014; 7:96-105. [PMID: 25527840 PMCID: PMC4316621 DOI: 10.1093/gbe/evu268] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2014] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial (mt) genomes are intensively studied in Ascomycota and Basidiomycota, but they are poorly documented in basal fungal lineages. In this study, we sequenced the complete mtDNA of Rhizophagus sp. DAOM 213198, a close relative to Rhizophagus irregularis, a widespread, ecologically and economical relevant species belonging to Glomeromycota. Unlike all other known taxonomically close relatives harboring a full-length circular chromosome, mtDNA of Rhizophagus sp. reveals an unusual organization with two circular chromosomes of 61,964 and 29,078 bp. The large chromosome contained nine protein-coding genes (atp9, nad5, cob, nad4, nad1, nad4L, cox1, cox2, and atp8), small subunit rRNA gene (rns), and harbored 20 tRNA-coding genes and 10 orfs, while the small chromosome contained five protein-coding genes (atp6, nad2, nad3, nad6, and cox3), large subunit rRNA gene (rnl) in addition to 5 tRNA-coding genes, and 8 plasmid-related DNA polymerases (dpo). Although structural variation of plant mt genomes is well documented, this study is the first report of the presence of two circular mt genomes in arbuscular mycorrhizal fungi. Interestingly, the presence of dpo at the breakage point in intergenes cox1-cox2 and rnl-atp6 for large and small mtDNAs, respectively, could be responsible for the conversion of Rhizophagus sp. mtDNA into two chromosomes. Using quantitative real-time polymerase chain reaction, we found that both mtDNAs have an equal abundance. This study reports a novel mtDNA organization in Glomeromycota and highlights the importance of studying early divergent fungal lineages to describe novel evolutionary pathways in the fungal kingdom.
Collapse
Affiliation(s)
- Maryam Nadimi
- Département de Sciences Biologiques, Université de Montréal, Institut de Recherche en Biologie Végétale (IRBV), Quebec, Canada
| | - Franck O P Stefani
- Département de Sciences Biologiques, Université de Montréal, Institut de Recherche en Biologie Végétale (IRBV), Quebec, Canada
| | - Mohamed Hijri
- Département de Sciences Biologiques, Université de Montréal, Institut de Recherche en Biologie Végétale (IRBV), Quebec, Canada
| |
Collapse
|
29
|
Beaudet D, de la Providencia IE, Labridy M, Roy-Bolduc A, Daubois L, Hijri M. Intraisolate mitochondrial genetic polymorphism and gene variants coexpression in arbuscular mycorrhizal fungi. Genome Biol Evol 2014; 7:218-27. [PMID: 25527836 PMCID: PMC4316628 DOI: 10.1093/gbe/evu275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2014] [Indexed: 11/13/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are multinucleated and coenocytic organisms, in which the extent of the intraisolate nuclear genetic variation has been a source of debate. Conversely, their mitochondrial genomes (mtDNAs) have appeared to be homogeneous within isolates in all next generation sequencing (NGS)-based studies. Although several lines of evidence have challenged mtDNA homogeneity in AMF, extensive survey to investigate intraisolate allelic diversity has not previously been undertaken. In this study, we used a conventional polymerase chain reaction -based approach on selected mitochondrial regions with a high-fidelity DNA polymerase, followed by cloning and Sanger sequencing. Two isolates of Rhizophagus irregularis were used, one cultivated in vitro for several generations (DAOM-197198) and the other recently isolated from the field (DAOM-242422). At different loci in both isolates, we found intraisolate allelic variation within the mtDNA and in a single copy nuclear marker, which highlighted the presence of several nonsynonymous mutations in protein coding genes. We confirmed that some of this variation persisted in the transcriptome, giving rise to at least four distinct nad4 transcripts in DAOM-197198. We also detected the presence of numerous mitochondrial DNA copies within nuclear genomes (numts), providing insights to understand this important evolutionary process in AMF. Our study reveals that genetic variation in Glomeromycota is higher than what had been previously assumed and also suggests that it could have been grossly underestimated in most NGS-based AMF studies, both in mitochondrial and nuclear genomes, due to the presence of low-level mutations.
Collapse
Affiliation(s)
- Denis Beaudet
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada
| | - Ivan Enrique de la Providencia
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada
| | - Manuel Labridy
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada
| | - Alice Roy-Bolduc
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada
| | - Laurence Daubois
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada
| | - Mohamed Hijri
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada
| |
Collapse
|
30
|
Abstract
Trade-offs between individual fitness and the collective performance of crop and below-ground symbiont communities are common in agriculture. Plant competitiveness for light and soil resources is key to individual fitness, but higher investments in stems and roots by a plant community to compete for those resources ultimately reduce crop yields. Similarly, rhizobia and mycorrhizal fungi may increase their individual fitness by diverting resources to their own reproduction, even if they could have benefited collectively by providing their shared crop host with more nitrogen and phosphorus, respectively. Past selection for inclusive fitness (benefits to others, weighted by their relatedness) is unlikely to have favoured community performance over individual fitness. The limited evidence for kin recognition in plants and microbes changes this conclusion only slightly. We therefore argue that there is still ample opportunity for human-imposed selection to improve cooperation among crop plants and their symbionts so that they use limited resources more efficiently. This evolutionarily informed approach will require a better understanding of how interactions among crops, and interactions with their symbionts, affected their inclusive fitness in the past and what that implies for current interactions.
Collapse
Affiliation(s)
- E. Toby Kiers
- Institute of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - R. Ford Denison
- Ecology Evolution and Behavior, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
31
|
Borriello R, Bianciotto V, Orgiazzi A, Lumini E, Bergero R. Sequencing and comparison of the mitochondrial COI gene from isolates of Arbuscular Mycorrhizal Fungi belonging to Gigasporaceae and Glomeraceae families. Mol Phylogenet Evol 2014; 75:1-10. [PMID: 24569015 DOI: 10.1016/j.ympev.2014.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 12/16/2022]
Abstract
Arbuscular Mycorrhizal Fungi (AMF) are well known for their ecological importance and their positive influence on plants. The genetics and phylogeny of this group of fungi have long been debated. Nuclear markers are the main tools used for phylogenetic analyses, but they have sometimes proved difficult to use because of their extreme variability. Therefore, the attention of researchers has been moving towards other genomic markers, in particular those from the mitochondrial DNA. In this study, 46 sequences of different AMF isolates belonging to two main clades Gigasporaceae and Glomeraceae have been obtained from the mitochondrial gene coding for the Cytochrome c Oxidase I (COI), representing the largest dataset to date of AMF COI sequences. A very low level of divergence was recorded in the COI sequences from the Gigasporaceae, which could reflect either a slow rate of evolution or a more recent evolutionary divergence of this group. On the other hand, the COI sequence divergence between Gigasporaceae and Glomeraceae was high, with synonymous divergence reaching saturated levels. This work also showed the difficulty in developing valuable mitochondrial markers able to effectively distinguish all Glomeromycota species, especially those belonging to Gigasporaceae, yet it represents a first step towards the development of a full mtDNA-based dataset which can be used for further phylogenetic investigations of this fungal phylum.
Collapse
Affiliation(s)
- Roberto Borriello
- Plant Protection Institute (IPP)-Turin UOS, National Research Council (CNR), c/o Department of Life Science and Systems Biology, University of Turin, Viale P.A. Mattioli 25, Turin 10125, Italy
| | - Valeria Bianciotto
- Plant Protection Institute (IPP)-Turin UOS, National Research Council (CNR), c/o Department of Life Science and Systems Biology, University of Turin, Viale P.A. Mattioli 25, Turin 10125, Italy
| | - Alberto Orgiazzi
- European Commission, Joint Research Centre, Institute for Environment and Sustainability, Via E. Fermi, 2749, Ispra, VA I-21027, Italy
| | - Erica Lumini
- Plant Protection Institute (IPP)-Turin UOS, National Research Council (CNR), c/o Department of Life Science and Systems Biology, University of Turin, Viale P.A. Mattioli 25, Turin 10125, Italy.
| | - Roberta Bergero
- Institute of Evolutionary Biology, Ashworth Laboratories, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, United Kingdom.
| |
Collapse
|
32
|
Boon E, Zimmerman E, St-Arnaud M, Hijri M. Allelic differences within and among sister spores of the arbuscular mycorrhizal fungus Glomus etunicatum suggest segregation at sporulation. PLoS One 2013; 8:e83301. [PMID: 24386173 PMCID: PMC3873462 DOI: 10.1371/journal.pone.0083301] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/10/2013] [Indexed: 01/08/2023] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are root-inhabiting fungi that form mutualistic symbioses with their host plants. AMF are made up of coenocytic networks of hyphae through which nuclei and organelles can freely migrate. In this study, we investigated the possibility of a genetic bottleneck and segregation of allelic variation at sporulation for a low-copy Polymerase1-like gene, PLS. Specifically, our objectives were (1) to estimate what allelic diversity is passed on to a single spore (2) to determine whether this diversity is less than the total amount of variation found in all spores (3) to investigate whether there is any differential segregation of allelic variation. We inoculated three tomato plants with a single spore of Glomus etunicatum each and after six months sampled between two and three daughter spores per tomato plant. Pyrosequencing PLS amplicons in eight spores revealed high levels of allelic diversity; between 43 and 152 alleles per spore. We corroborated the spore pyrosequencing results with Sanger- and pyrosequenced allele distributions from the original parent isolate. Both sequencing methods retrieved the most abundant alleles from the offspring spore allele distributions. Our results indicate that individual spores contain only a subset of the total allelic variation from the pooled spores and parent isolate. Patterns of allele diversity between spores suggest the possibility for segregation of PLS alleles among spores. We conclude that a genetic bottleneck could potentially occur during sporulation in AMF, with resulting differences in genetic variation among sister spores. We suggest that the effects of this bottleneck may be countered by anastomosis (hyphal fusion) between related hyphae.
Collapse
Affiliation(s)
- Eva Boon
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, Montreal, Quebec, Canada
| | - Erin Zimmerman
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, Montreal, Quebec, Canada
| | - Marc St-Arnaud
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, Montreal, Quebec, Canada
| | - Mohamed Hijri
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
33
|
Beaudet D, Terrat Y, Halary S, de la Providencia IE, Hijri M. Mitochondrial genome rearrangements in glomus species triggered by homologous recombination between distinct mtDNA haplotypes. Genome Biol Evol 2013; 5:1628-43. [PMID: 23925788 PMCID: PMC3787672 DOI: 10.1093/gbe/evt120] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2013] [Indexed: 02/02/2023] Open
Abstract
Comparative mitochondrial genomics of arbuscular mycorrhizal fungi (AMF) provide new avenues to overcome long-lasting obstacles that have hampered studies aimed at understanding the community structure, diversity, and evolution of these multinucleated and genetically polymorphic organisms.AMF mitochondrial (mt) genomes are homogeneous within isolates, and their intergenic regions harbor numerous mobile elements that have rapidly diverged, including homing endonuclease genes, small inverted repeats, and plasmid-related DNA polymerase genes (dpo), making them suitable targets for the development of reliable strain-specific markers. However, these elements may also lead to genome rearrangements through homologous recombination, although this has never previously been reported in this group of obligate symbiotic fungi. To investigate whether such rearrangements are present and caused by mobile elements in AMF, the mitochondrial genomes from two Glomeraceae members (i.e., Glomus cerebriforme and Glomus sp.) with substantial mtDNA synteny divergence,were sequenced and compared with available glomeromycotan mitochondrial genomes. We used an extensive nucleotide/protein similarity network-based approach to investigated podiversity in AMF as well as in other organisms for which sequences are publicly available. We provide strong evidence of dpo-induced inter-haplotype recombination, leading to a reshuffled mitochondrial genome in Glomus sp. These findings raise questions as to whether AMF single spore cultivations artificially underestimate mtDNA genetic diversity.We assessed potential dpo dispersal mechanisms in AMF and inferred a robust phylogenetic relationship with plant mitochondrial plasmids. Along with other indirect evidence, our analyses indicate that members of the Glomeromycota phylum are potential donors of mitochondrial plasmids to plants.
Collapse
Affiliation(s)
- Denis Beaudet
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | | | | | - Ivan Enrique de la Providencia
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | - Mohamed Hijri
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|