1
|
Chitosan Oligosaccharide Addition to Buddhist Pine (Podocarpus macrophyllus (Thunb) Sweet) under Drought: Reponses in Ecophysiology and δ13C Abundance. FORESTS 2020. [DOI: 10.3390/f11050526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Climate warming induces the necessity to increase the drought resistance of shade-obligate juvenile trees in sub-tropical forests. Chitosan oligosaccharide (COS) is a biopolymer derived from the marine resource that has attracted accumulative attention to induce and promote a plant’s resistance to abiotic stress. Buddhist pine (Podocarpus mascrophyllus (Thunb)Sweet) seedlings were cultured as the model material whose natural distribution in sub-tropical areas of China has suffered severe summer drought events in the last 113 years. A split-block design was conducted with a simulated drought event (drought vs. irrigated control), the COS addition, and two samplings at the ends of drought and re-watered treatments. The COS addition increased the resistance to drought by inducing a starch allocation towards roots where δ13C abundance and antioxidant enzyme activities were upregulated. The COS addition can promote biomass allocation to roots and increase the number of new roots. The COS addition to drought-treated Buddhist pine seedlings resulted in robust diameter growth. Therefore, COS is an available polymer to promote the resistance of Buddhist pine to drought. More work is suggested to clarify the dose of COS addition that can induce a prominent response of biomass accumulation and carbohydrate metabolism.
Collapse
|
2
|
De Mil T, Hubau W, Angoboy Ilondea B, Rocha Vargas MA, Boeckx P, Steppe K, Van Acker J, Beeckman H, Van den Bulcke J. Asynchronous leaf and cambial phenology in a tree species of the Congo Basin requires space-time conversion of wood traits. ANNALS OF BOTANY 2019; 124:245-253. [PMID: 31170728 PMCID: PMC6758582 DOI: 10.1093/aob/mcz069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND AIMS Wood traits are increasingly being used to document tree performance. In the Congo Basin, however, weaker seasonality causes asynchrony of wood traits between trees. Here, we monitor growth and phenology data to date the formation of traits. METHODS For two seasons, leaf and cambial phenology were monitored on four Terminalia superba trees (Mayombe) using cameras, cambial pinning and dendrometers. Subsequently, vessel lumen and parenchyma fractions as well as high-resolution isotopes (δ13C/δ18O) were quantified on the formed rings. All traits were dated and related to weather data. KEY RESULTS We observed between-tree differences in green-up of 45 d, with trees flushing before and after the rainy season. The lag between green-up and onset of xylem formation was 59 ± 21 d. The xylem growing season lasted 159 ± 17 d with between-tree differences of up to 53 d. Synchronized vessel, parenchyma and δ13C profiles were related to each other. Only parenchyma fraction and δ13C were correlated to weather variables, whereas the δ18O pattern showed no trend. CONCLUSIONS Asynchrony of leaf and cambial phenology complicates correct interpretation of environmental information recorded in wood. An integrated approach including high-resolution measurements of growth, stable isotopes and anatomical features allows exact dating of the formation of traits. This methodology offers a means to explore the asynchrony of growth in a rainforest and contribute to understanding this aspect of forest resilience.
Collapse
Affiliation(s)
- Tom De Mil
- UGCT-UGent-Woodlab, Ghent University, Laboratory of Wood Technology, Department of Environment, Gent, Belgium
- Royal Museum for Central Africa, Wood Biology Service, Tervuren, Belgium
| | - Wannes Hubau
- Royal Museum for Central Africa, Wood Biology Service, Tervuren, Belgium
| | - Bhély Angoboy Ilondea
- UGCT-UGent-Woodlab, Ghent University, Laboratory of Wood Technology, Department of Environment, Gent, Belgium
- Royal Museum for Central Africa, Wood Biology Service, Tervuren, Belgium
- Institut National pour l’Etude et la Recherche Agronomiques, Kinshasa, Democratic Republic of the Congo
| | - Mirvia Angela Rocha Vargas
- UGCT-UGent-Woodlab, Ghent University, Laboratory of Wood Technology, Department of Environment, Gent, Belgium
- Isotope Bioscience Laboratory – ISOFYS, Ghent University, Department of Green Chemistry and Technology, Gent, Belgium
| | - Pascal Boeckx
- Isotope Bioscience Laboratory – ISOFYS, Ghent University, Department of Green Chemistry and Technology, Gent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Joris Van Acker
- UGCT-UGent-Woodlab, Ghent University, Laboratory of Wood Technology, Department of Environment, Gent, Belgium
| | - Hans Beeckman
- Royal Museum for Central Africa, Wood Biology Service, Tervuren, Belgium
| | - Jan Van den Bulcke
- UGCT-UGent-Woodlab, Ghent University, Laboratory of Wood Technology, Department of Environment, Gent, Belgium
| |
Collapse
|