1
|
Bala M, Rehana S, Singh MP. Self-incompatibility: a targeted, unexplored pre-fertilization barrier in flower crops of Asteraceae. JOURNAL OF PLANT RESEARCH 2023; 136:587-612. [PMID: 37452973 DOI: 10.1007/s10265-023-01480-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Asteraceae (synonym as Compositae) is one of the largest angiosperm families among flowering plants comprising one-tenth of all agri-horticultural species grown across various habitats except in Antarctica. These are commercially utilized as cut and loose flowers as well as pot and bedding plants in landscape gardens due to their unique floral traits. Consequently, ineffective seed setting and presence of an intraspecific reproductive barrier known as self-incompatibility (SI) severely reduces the effectiveness of hybridization and self-fertilization by traditional crossing. There have been very few detailed studies of pollen-stigma interactions in this family. Moreover, about 63% of Aster species can barely self-fertilize due to self-incompatibility (SI). The chrysanthemum (Chrysanthemum × morifolium) is one of the most economically important ornamental plants in the Asteraceae family which hugely shows incompatibility. Reasons for the low fertility and reproductive capacity of species are still indefinite or not clear. Hence, the temporal pattern of inheritance of self-incompatibility and its effect on reproductive biology needs to be investigated further to improve the breeding efficiency. This review highlights the self-incompatible (SI) system operating in important Astraceous (ornamental) crops which are adversely affected by this mechanism along with different physiological and molecular techniques involved in breaking down self-incompatibility.
Collapse
Affiliation(s)
- Madhu Bala
- Department of Floriculture and Landscaping, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India.
| | - Shaik Rehana
- Department of Floriculture and Landscaping, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - Mohini Prabha Singh
- Department of Floriculture and Landscaping, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| |
Collapse
|
2
|
Yang Y, Zhang X, Zou H, Chen J, Wang Z, Luo Z, Yao Z, Fang B, Huang L. Exploration of molecular mechanism of intraspecific cross-incompatibility in sweetpotato by transcriptome and metabolome analysis. PLANT MOLECULAR BIOLOGY 2022; 109:115-133. [PMID: 35338442 PMCID: PMC9072463 DOI: 10.1007/s11103-022-01259-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Cross-incompatibility, frequently happening in intraspecific varieties, has seriously restricted sweetpotato breeding. However, the mechanism of sweetpotato intraspecific cross-incompatibility (ICI) remains largely unexplored, especially for molecular mechanism. Treatment by inducible reagent developed by our lab provides a method to generate material for mechanism study, which could promote incompatible pollen germination and tube growth in the ICI group. Based on the differential phenotypes between treated and untreated samples, transcriptome and metabolome were employed to explore the molecular mechanism of sweetpotato ICI in this study, taking varieties 'Guangshu 146' and 'Shangshu 19', a typical incompatible combination, as materials. The results from transcriptome analysis showed oxidation-reduction, cell wall metabolism, plant-pathogen interaction, and plant hormone signal transduction were the essential pathways for sweetpotato ICI regulation. The differentially expressed genes (DEGs) enriched in these pathways were the important candidate genes to response ICI. Metabolome analysis showed that multiple differential metabolites (DMs) involved oxidation-reduction were identified. The most significant DM identified in comparison between compatible and incompatible samples was vitexin-2-O-glucoside, a flavonoid metabolite. Corresponding to it, cytochrome P450s were the most DEGs identified in oxidation-reduction, which were implicated in flavonoid biosynthesis. It further suggested oxidation-reduction play an important role in sweetpotato ICI regulation. To validate function of oxidation-reduction, reactive oxygen species (ROS) was detected in compatible and incompatible samples. The green fluorescence was observed in incompatible but not in compatible samples. It indicated ROS regulated by oxidation-reduction is important pathway to response sweetpotato ICI. The results in this study would provide valuable insights into molecular mechanisms for sweetpotato ICI.
Collapse
Affiliation(s)
- Yiling Yang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiongjian Zhang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Hongda Zou
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jingyi Chen
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhangying Wang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhongxia Luo
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhufang Yao
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Boping Fang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Lifei Huang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
3
|
Development of first linkage map for Silphium integrifolium (Asteraceae) enables identification of sporophytic self-incompatibility locus. Heredity (Edinb) 2022; 128:304-312. [PMID: 35437327 PMCID: PMC9076636 DOI: 10.1038/s41437-022-00530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/08/2022] Open
Abstract
Silphium integrifolium (Asteraceae) has been identified as a candidate for domestication as a perennial oilseed crop and is assumed to have sporophytic self-incompatibility system-the genetic basis of which is not well understood in the Asteraceae. To address this gap, we sought to map the genomic location of the self-recognition locus (S-locus) in this species. We used a biparental population and genotyping-by-sequencing to create the first genetic linkage map for this species, which contained 198 SNP markers and resolved into the correct number of linkage groups. Then we developed a novel crossing scheme and set of analysis methods in order to infer S-locus genotypes for a subset of these individuals, allowing us to map the trait. Finally, we evaluated potential genes of interest using synteny analysis with the annual sunflower (Helianthus annuus) and lettuce (Lactuca sativa) genomes. Our results confirm that S. integrifolium does indeed have a sporophytic self-incompatibility system. Our method is effective and efficient, allowed us to map the S. integrifolium S-locus using fewer resources than existing methods, and could be readily applied to other species.
Collapse
|
4
|
De Cauwer I, Vernet P, Billiard S, Godé C, Bourceaux A, Ponitzki C, Saumitou-Laprade P. Widespread coexistence of self-compatible and self-incompatible phenotypes in a diallelic self-incompatibility system in Ligustrum vulgare (Oleaceae). Heredity (Edinb) 2021; 127:384-392. [PMID: 34482370 PMCID: PMC8479060 DOI: 10.1038/s41437-021-00463-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
The breakdown of self-incompatibility (SI) in angiosperms is one of the most commonly observed evolutionary transitions. While multiple examples of SI breakdown have been documented in natural populations, there is strikingly little evidence of stable within-population polymorphism with both inbreeding (self-compatible) and outcrossing (self-incompatible) individuals. This absence of breeding system polymorphism corroborates theoretical expectations that predict that in/outbreeding polymorphism is possible only under very restricted conditions. However, theory also predicts that a diallelic sporophytic SI system should facilitate the maintenance of such polymorphism. We tested this prediction by studying the breeding system of Ligustrum vulgare L., an insect-pollinated hermaphroditic species of the Oleaceae family. Using stigma tests with controlled pollination and paternity assignment of open-pollinated progenies, we confirmed the existence of two self-incompatibility groups in this species. We also demonstrated the occurrence of self-compatible individuals in different populations of Western Europe arising from a mutation affecting the functioning of the pollen component of SI. Our results show that the observed low frequency of self-compatible individuals in natural populations is compatible with theoretical predictions only if inbreeding depression is very high.
Collapse
Affiliation(s)
- Isabelle De Cauwer
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Philippe Vernet
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Sylvain Billiard
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Cécile Godé
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Angélique Bourceaux
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Chloé Ponitzki
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Pierre Saumitou-Laprade
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| |
Collapse
|
5
|
Kerbs B, Crawford DJ, White G, Moura M, Borges Silva L, Schaefer H, Brown K, Mort ME, Kelly JK. How rapidly do self-compatible populations evolve selfing? Mating system estimation within recently evolved self-compatible populations of Azorean Tolpis succulenta (Asteraceae). Ecol Evol 2020; 10:13990-13999. [PMID: 33391697 PMCID: PMC7771160 DOI: 10.1002/ece3.6992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 01/04/2023] Open
Abstract
Genome-wide genotyping and Bayesian inference method (BORICE) were employed to estimate outcrossing rates and paternity in two small plant populations of Tolpis succulenta (Asteraceae) on Graciosa island in the Azores. These two known extant populations of T. succulenta on Graciosa have recently evolved self-compatibility. Despite the expectation that selfing would occur at an appreciable rate (self-incompatible populations of the same species show low but nonzero selfing), high outcrossing was found in progeny arrays from maternal plants in both populations. This is inconsistent with an immediate transition to high selfing following the breakdown of a genetic incompatibility system. This finding is surprising given the small population sizes and the recent colonization of an island from self-incompatible colonists of T. succulenta from another island in the Azores, and a potential paucity of pollinators, all factors selecting for selfing through reproductive assurance. The self-compatible lineage(s) likely have high inbreeding depression (ID) that effectively halts the evolution of increased selfing, but this remains to be determined. Like their progeny, all maternal plants in both populations are fully outbred, which is consistent with but not proof of high ID. High multiple paternity was found in both populations, which may be due in part to the abundant pollinators observed during the flowering season.
Collapse
Affiliation(s)
- Benjamin Kerbs
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKSUSA
| | - Daniel J. Crawford
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKSUSA
- Biodiversity InstituteUniversity of KansasLawrenceKSUSA
| | - Griffin White
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKSUSA
- ETH ZurichFunctional Genomics Center ZurichZurichSwitzerland
| | - Mónica Moura
- InBIO Laboratório Associado, Pólo dos AçoresFaculdade de Ciências TecnoclogiaCIBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade dos AçoresPonta DelgadaPortugal
| | - Lurdes Borges Silva
- InBIO Laboratório Associado, Pólo dos AçoresFaculdade de Ciências TecnoclogiaCIBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade dos AçoresPonta DelgadaPortugal
| | - Hanno Schaefer
- Department of Ecology and Ecosystem ManagementPlant Biodiversity ResearchTechnical University of MunichFreisingGermany
| | - Keely Brown
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKSUSA
| | - Mark E. Mort
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKSUSA
| | - John K. Kelly
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKSUSA
| |
Collapse
|
6
|
Li Q, Zhao T, Liang L, Hou S, Wang G, Ma Q. Molecular cloning and expression analysis of hybrid hazelnut (Corylus heterophylla × Corylus avellana) ChaSRK1/2 genes and their homologs from other cultivars and species. Gene 2020; 756:144917. [PMID: 32590104 DOI: 10.1016/j.gene.2020.144917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 05/22/2020] [Accepted: 06/17/2020] [Indexed: 12/01/2022]
Abstract
The self-incompatibility system of Corylus is a sporophytic type that is phenotypically similar to that of Brassica. While the molecular mechanism of sporophytic self-incompatibility (SSI) has been investigated extensively in Brassica (Brassicaceae), little is known about the corresponding mechanism in Corylus (Betulaceae). Here, we discuss the SSI mechanism with respect to S-locus receptor kinase (SRK) gene homologs. To obtain two SRK candidate unigenes, we compared all of the unigenes in a transcriptional protein database from our previous study with BnSRK-1 (AB270767) using BLASTX with a cutoff e-value of 10-5. We then cloned the full-length cDNA of ChaSRK1 and ChaSRK2 genes from Ping'ou hybrid hazelnut (Corylus heterophylla × Corylus avellana) using RACE techniques. Bioinformatics approaches were used to analyze the cDNA sequences, protein sequences, and domains of the encoded proteins. The full-length ChaSRK1 cDNA was 2883 base pairs (bp) with a coding sequence (CDS) of 2,547 bp encoding 849 amino acid residues. The full-length ChaSRK2 cDNA was 2,693 bp, with a CDS of 2,433 bp encoding 811 amino acids. The ChaSRK1/2 proteins contained an S-domain (extracellular domain), a transmembrane domain, a Ser/Thr protein kinase active site (kinase domain), and DUF3660 and/or DUF3403 domains. The lengths of 18 partial SRK homologs ranged from 1347 to 1451 bp, and they contained the same structural domains as ChaSRK1 and ChaSRK2. Phylogenetic analysis revealed that all SRK homologs could be divided into two categories that were similar to the classification of SRKs in Brassica. The expression patterns of ChaSRK1 and ChaSRK2 differed: ChaSRK2 was predominantly expressed in mature stigmatic styles, while ChaSRK1 was expressed in other tissues with the highest in the root tips of Corylus. Using dual-color fluorescence in situ hybridization, ChaSRK1/2 expression was found to be localized in papillar cells. Collectively, these results revealed that SRKs from Corylus had similar characteristics to SRKs from Brassica. We therefore speculated that the SSI mechanism in Corylus might be more similar to the Brassica mechanism than to other SSI types.
Collapse
Affiliation(s)
- Qing Li
- Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Beijing 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100091, China; National Hazelnut Industry Innovation Alliance, Beijing 100091, China
| | - Tiantian Zhao
- Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Beijing 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100091, China; National Hazelnut Industry Innovation Alliance, Beijing 100091, China
| | - Lisong Liang
- Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Beijing 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100091, China; National Hazelnut Industry Innovation Alliance, Beijing 100091, China
| | - Sihao Hou
- Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Beijing 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100091, China; National Hazelnut Industry Innovation Alliance, Beijing 100091, China
| | - Guixi Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Beijing 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100091, China; National Hazelnut Industry Innovation Alliance, Beijing 100091, China
| | - Qinghua Ma
- Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Beijing 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100091, China; National Hazelnut Industry Innovation Alliance, Beijing 100091, China.
| |
Collapse
|
7
|
Chen M, Fan W, Hao B, Zhang W, Yan M, Zhao Y, Liang Y, Liu G, Lu Y, Zhang G, Zhao Z, Hu Y, Yang S. EbARC1, an E3 Ubiquitin Ligase Gene in Erigeron breviscapus, Confers Self-Incompatibility in Transgenic Arabidopsis thaliana. Int J Mol Sci 2020; 21:E1458. [PMID: 32093420 PMCID: PMC7073078 DOI: 10.3390/ijms21041458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 11/19/2022] Open
Abstract
Erigeron breviscapus (Vant.) Hand.-Mazz. is a famous traditional Chinese medicine that has positive effects on the treatment of cardiovascular and cerebrovascular diseases. With the increase of market demand (RMB 500 million per year) and the sharp decrease of wild resources, it is an urgent task to cultivate high-quality and high-yield varieties of E. breviscapus. However, it is difficult to obtain homozygous lines in breeding due to the self-incompatibility (SI) of E. breviscapus. Here, we first proved that E. breviscapus has sporophyte SI (SSI) characteristics. Characterization of the ARC1 gene in E. breviscapus showed that EbARC1 is a constitutive expression gene located in the nucleus. Overexpression of EbARC1 in Arabidopsis thaliana L. (Col-0) could cause transformation of transgenic lines from self-compatibility (SC) into SI. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays indicated that EbARC1 and EbExo70A1 interact with each other in the nucleus, and the EbARC1-ubox domain and EbExo70A1-N are the key interaction regions, suggesting that EbARC1 may ubiquitinate EbExo70A to regulate SI response. This study of the SSI mechanism in E. breviscapus has laid the foundation for further understanding SSI in Asteraceae and breeding E. breviscapus varieties.
Collapse
Affiliation(s)
- Mo Chen
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Wei Fan
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
| | - Bing Hao
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
| | - Wei Zhang
- College of Life Science and Technology, Honghe University, Mengzi 661100, China;
| | - Mi Yan
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
| | - Yan Zhao
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
| | - Yanli Liang
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
| | - Guanze Liu
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
| | - Yingchun Lu
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
| | - Guanghui Zhang
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
| | - Zheng Zhao
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China;
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Shengchao Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
| |
Collapse
|
8
|
Quantitative Genetic Mapping and Genome Assembly in the Lesser Wax Moth Achroia grisella. G3-GENES GENOMES GENETICS 2019; 9:2349-2361. [PMID: 31101652 PMCID: PMC6643890 DOI: 10.1534/g3.119.400090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Specific characteristics of the male Achroia grisella acoustic mating signal determine a male’s attractiveness toward females. These features are genetically variable in populations, and mapping experiments have been used to identify loci contributing to song variation, and understand the evolutionary forces acting on this important sexual trait. Here we built on this foundation and carried out QTL (Quantitative Trait Locus) mapping using >1,000 recombinant individuals, genotyping this large cohort at thousands of sequence-based markers covering the entire collection of 30 A. grisella chromosomes. This dense marker set, coupled with our development of an annotated, draft genome of A. grisella, allowed us to link >3,000 genome scaffolds, >10,000 predicted genes, and close to 275Mb of genome sequence to chromosomes. Our QTL mapping confirmed a fraction of the QTL identified in a previous study, and additionally revealed novel loci. Collectively, QTL explained only small fractions of the phenotypic variance, suggesting many more causative factors remain below the detection threshold of our study. A surprising, and ultimately challenging feature of our study was the low level of intrachromosomal recombination present in our mapping population. This led to difficulty ordering markers along linkage groups, necessitating a chromosome-by-chromosome mapping approach, rather than true interval mapping, and precluded confident ordering/orienting of scaffolds along each chromosome. Nonetheless, our study increased the genomic resources available for the A. grisella system. Enabled by ever more powerful technologies, future investigators will be able to leverage our data to provide more detailed genetic dissection of male song variation in A. grisella.
Collapse
|
9
|
Manrique S, Friel J, Gramazio P, Hasing T, Ezquer I, Bombarely A. Genetic insights into the modification of the pre-fertilization mechanisms during plant domestication. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3007-3019. [PMID: 31152173 DOI: 10.1093/jxb/erz231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 05/02/2019] [Indexed: 05/26/2023]
Abstract
Plant domestication is the process of adapting plants to human use by selecting specific traits. The selection process often involves the modification of some components of the plant reproductive mechanisms. Allelic variants of genes associated with flowering time, vernalization, and the circadian clock are responsible for the adaptation of crops, such as rice, maize, barley, wheat, and tomato, to non-native latitudes. Modifications in the plant architecture and branching have been selected for higher yields and easier harvests. These phenotypes are often produced by alterations in the regulation of the transition of shoot apical meristems to inflorescences, and then to floral meristems. Floral homeotic mutants are responsible for popular double-flower phenotypes in Japanese cherries, roses, camellias, and lilies. The rise of peloric flowers in ornamentals such as snapdragon and florists' gloxinia is associated with non-functional alleles that control the relative expansion of lateral and ventral petals. Mechanisms to force outcrossing such as self-incompatibility have been removed in some tree crops cultivars such as almonds and peaches. In this review, we revisit some of these important concepts from the plant domestication perspective, focusing on four topics related to the pre-fertilization mechanisms: flowering time, inflorescence architecture, flower development, and pre-fertilization self-incompatibility mechanisms.
Collapse
Affiliation(s)
- Silvia Manrique
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - James Friel
- Genetics and Biotechnology Laboratory, Plant and AgriBioscience Research Center (PABC), Ryan Institute, National University of Ireland Galway, Galway, Ireland
- School of Plant and Environmental Sciences (SPES), Virginia Tech, Blacksburg, VA, USA
| | - Pietro Gramazio
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Valencia, Spain
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomas Hasing
- School of Plant and Environmental Sciences (SPES), Virginia Tech, Blacksburg, VA, USA
| | - Ignacio Ezquer
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Aureliano Bombarely
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
- School of Plant and Environmental Sciences (SPES), Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|