1
|
Gao Z, Su Y, Wang Y, Li Y, Wu Y, Sun X, Yao Y, Ma C, Li J, Du Y. The antisense CircRNA VvcircABH controls salt tolerance and the brassinosteroid signaling response by suppressing cognate mRNA splicing in grape. THE NEW PHYTOLOGIST 2025; 245:1563-1576. [PMID: 39627650 DOI: 10.1111/nph.20306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/12/2024] [Indexed: 01/24/2025]
Abstract
Soil salinization is a major factor limiting the sustainable development of the grape industry. Circular RNAs (circRNAs) are more stable than linear mRNAs and are involved in stress responses. However, the biological functions and molecular mechanisms underlying antisense circRNAs in plants remain unclear. We identified the antisense circRNA VvcircABH through high-throughput sequencing. Using genetic transformation methods and molecular biological techniques, we analyzed the effects of VvcircABH on the response to salt stress and the mechanisms underlying its effects. VvcircABH was located in the nucleus and upregulated by salt stress, while the expression level of its cognate gene VvABH (alpha/beta-hydrolase) was downregulated. VvcircABH overexpression or VvABH silencing greatly enhanced grape salt tolerance. VvcircABH could bind to the overlapping region and inhibits VvABH pre-mRNA splicing, thereby decreasing the expression level of VvABH. Additionally, VvcircABH repressed the additive effect of VvABH on the interaction between VvBRI1 (brassinosteroid-insensitive 1) and VvBKI1 (BRI1 kinase inhibitor 1), thus influencing the plant's response to BR, which plays important roles in plant salt tolerance. We conclude that VvcircABH and VvABH play distinct roles in the salt tolerance and brassinosteroid signaling response, and VvcircABH could govern the expression of VvABH by inhibiting its splicing.
Collapse
Affiliation(s)
- Zhen Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yifan Su
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yaru Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yeqi Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yue Wu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xinru Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yuxin Yao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yuanpeng Du
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| |
Collapse
|
2
|
Lezzhov AA, Atabekova AK, Chergintsev DA, Lazareva EA, Solovyev AG, Morozov SY. Viroids and Retrozymes: Plant Circular RNAs Capable of Autonomous Replication. PLANTS (BASEL, SWITZERLAND) 2024; 14:61. [PMID: 39795321 PMCID: PMC11722881 DOI: 10.3390/plants14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
Among the long non-coding RNAs that are currently recognized as important regulatory molecules influencing a plethora of processes in eukaryotic cells, circular RNAs (circRNAs) represent a distinct class of RNAs that are predominantly produced by back-splicing of pre-mRNA. The most studied regulatory mechanisms involving circRNAs are acting as miRNA sponges, forming R-loops with genomic DNA, and encoding functional proteins. In addition to circRNAs generated by back-splicing, two types of circRNAs capable of autonomous RNA-RNA replication and systemic transport have been described in plants: viroids, which are infectious RNAs that cause a number of plant diseases, and retrozymes, which are transcripts of retrotransposon genomic loci that are capable of circularization due to ribozymes. Based on a number of common features, viroids and retrozymes are considered to be evolutionarily related. Here, we provide an overview of the biogenesis mechanisms and regulatory functions of non-replicating circRNAs produced by back-splicing and further discuss in detail the currently available data on viroids and retrozymes, focusing on their structural features, replication mechanisms, interaction with cellular components, and transport in plants. In addition, biotechnological approaches involving replication-capable plant circRNAs are discussed, as well as their potential applications in research and agriculture.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.A.L.); (A.K.A.); (D.A.C.); (E.A.L.); (A.G.S.)
| |
Collapse
|
3
|
Xu J, Wang Q, Tang X, Feng X, Zhang X, Liu T, Wu F, Wang Q, Feng X, Tang Q, Lisch D, Lu Y. Drought-induced circular RNAs in maize roots: Separating signal from noise. PLANT PHYSIOLOGY 2024; 196:352-367. [PMID: 38669308 DOI: 10.1093/plphys/kiae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/28/2024]
Abstract
Circular RNAs (circRNAs) play an important role in diverse biological processes; however, their origin and functions, especially in plants, remain largely unclear. Here, we used 2 maize (Zea mays) inbred lines, as well as 14 of their derivative recombination inbred lines with different drought sensitivity, to systematically characterize 8,790 circRNAs in maize roots under well-watered (WW) and water-stress (WS) conditions. We found that a diverse set of circRNAs expressed at significantly higher levels under WS. Enhanced expression of circRNAs was associated with longer flanking introns and an enrichment of long interspersed nuclear element retrotransposable elements. The epigenetic marks found at the back-splicing junctions of circRNA-producing genes were markedly different from canonical splicing, characterized by increased levels of H3K36me3/H3K4me1, as well as decreased levels of H3K9Ac/H3K27Ac. We found that genes expressing circRNAs are subject to relaxed selection. The significant enrichment of trait-associated sites along their genic regions suggested that genes giving rise to circRNAs were associated with plant survival rate under drought stress, implying that circRNAs play roles in plant drought responses. Furthermore, we found that overexpression of circMED16, one of the drought-responsive circRNAs, enhances drought tolerance in Arabidopsis (Arabidopsis thaliana). Our results provide a framework for understanding the intricate interplay of epigenetic modifications and how they contribute to the fine-tuning of circRNA expression under drought stress.
Collapse
Affiliation(s)
- Jie Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan 611130, China
- Maize Research Institute, Sichuan Agricultural University, Sichuan 611130, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Sichuan 611130, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Sichuan 611130, China
| | - Qi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan 611130, China
- Maize Research Institute, Sichuan Agricultural University, Sichuan 611130, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Sichuan 611130, China
| | - Xin Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan 611130, China
- Maize Research Institute, Sichuan Agricultural University, Sichuan 611130, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Sichuan 611130, China
| | - Xiaoju Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan 611130, China
- Maize Research Institute, Sichuan Agricultural University, Sichuan 611130, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Sichuan 611130, China
| | - Xiaoyue Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan 611130, China
- Maize Research Institute, Sichuan Agricultural University, Sichuan 611130, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Sichuan 611130, China
| | - Tianhong Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan 611130, China
- Maize Research Institute, Sichuan Agricultural University, Sichuan 611130, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Sichuan 611130, China
| | - Fengkai Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan 611130, China
- Maize Research Institute, Sichuan Agricultural University, Sichuan 611130, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Sichuan 611130, China
| | - Qingjun Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan 611130, China
- Maize Research Institute, Sichuan Agricultural University, Sichuan 611130, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Sichuan 611130, China
| | - Xuanjun Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan 611130, China
- Maize Research Institute, Sichuan Agricultural University, Sichuan 611130, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Sichuan 611130, China
| | - Qi Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan 611130, China
- Maize Research Institute, Sichuan Agricultural University, Sichuan 611130, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Sichuan 611130, China
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Yanli Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan 611130, China
- Maize Research Institute, Sichuan Agricultural University, Sichuan 611130, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Sichuan 611130, China
| |
Collapse
|
4
|
Zhang D, Ma Y, Naz M, Ahmed N, Zhang L, Zhou JJ, Yang D, Chen Z. Advances in CircRNAs in the Past Decade: Review of CircRNAs Biogenesis, Regulatory Mechanisms, and Functions in Plants. Genes (Basel) 2024; 15:958. [PMID: 39062737 PMCID: PMC11276256 DOI: 10.3390/genes15070958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Circular RNA (circRNA) is a type of non-coding RNA with multiple biological functions. Whole circRNA genomes in plants have been identified, and circRNAs have been demonstrated to be widely present and highly expressed in various plant tissues and organs. CircRNAs are highly stable and conserved in plants, and exhibit tissue specificity and developmental stage specificity. CircRNAs often interact with other biomolecules, such as miRNAs and proteins, thereby regulating gene expression, interfering with gene function, and affecting plant growth and development or response to environmental stress. CircRNAs are less studied in plants than in animals, and their regulatory mechanisms of biogenesis and molecular functions are not fully understood. A variety of circRNAs in plants are involved in regulating growth and development and responding to environmental stress. This review focuses on the biogenesis and regulatory mechanisms of circRNAs, as well as their biological functions during growth, development, and stress responses in plants, including a discussion of plant circRNA research prospects. Understanding the generation and regulatory mechanisms of circRNAs is a challenging but important topic in the field of circRNAs in plants, as it can provide insights into plant life activities and their response mechanisms to biotic or abiotic stresses as well as new strategies for plant molecular breeding and pest control.
Collapse
Affiliation(s)
- Dongqin Zhang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Yue Ma
- College of Agriculture, Guizhou University, Guiyang 550025, China;
| | - Misbah Naz
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Nazeer Ahmed
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Libo Zhang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Jing-Jiang Zhou
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Ding Yang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Zhuo Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| |
Collapse
|
5
|
Li S, Wang J, Ren G. CircRNA: An emerging star in plant research: A review. Int J Biol Macromol 2024; 272:132800. [PMID: 38825271 DOI: 10.1016/j.ijbiomac.2024.132800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
CircRNAs are a class of covalently closed non-coding RNA formed by linking the 5' terminus and the 3' terminus after reverse splicing. CircRNAs are widely found in eukaryotes, and they are highly conserved, with spatio-temporal expression specificity and stability. CircRNAs can act as miRNA sponges to regulate the expression of downstream target genes, regulating the transcription of parental genes and some can even be translated into peptides or proteins. Research on circRNAs in plants is still in its infancy compared to that in animals. With the deepening of research, the results of a variety of plant circRNAs suggest that they play an important role in growth and development, and tolerance towards abiotic stresses such as salt, drought, low temperature, high temperature and other adverse environments. In this review paper, we elaborated the molecular characteristics, mechanism of action, function and bioinformatics databases of plant circRNAs, combined with the progress of circRNA research in animals, discussed the potential mechanism of action of plant circRNAs, and proposed the unsolved problems and prospects for future application of plant circRNAs.
Collapse
Affiliation(s)
- Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jingyi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Guocheng Ren
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; Dongying Institute, Shandong Normal University, Dongying 257000, China.
| |
Collapse
|
6
|
Yuan Y, Pang X, Pang J, Wang Q, Zhou M, Lu Y, Xu C, Huang D. Identification and Characterisation of the CircRNAs Involved in the Regulation of Leaf Colour in Quercus mongolica. BIOLOGY 2024; 13:183. [PMID: 38534452 DOI: 10.3390/biology13030183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
Circular RNAs (circRNAs) are important regulatory molecules involved in various biological processes. However, the potential function of circRNAs in the turning red process of Quercus mongolica leaves is unclear. This study used RNA-seq data to identify 6228 circRNAs in leaf samples from four different developmental stages and showed that 88 circRNAs were differentially expressed. A correlation analysis was performed between anthocyanins and the circRNAs. A total of 16 circRNAs that may be involved in regulating the colour of Mongolian oak leaves were identified. CircRNAs may affect the colour of Q. mongolica leaves by regulating auxin, cytokinin, gibberellin, ethylene, and abscisic acid. This study revealed the potential role of circRNAs in the colour change of Q. mongolica leaves.
Collapse
Affiliation(s)
- Yangchen Yuan
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding 071000, China
- Hongyashan State-Owned Forest Farm, Baoding 074200, China
| | - Xinbo Pang
- Hongyashan State-Owned Forest Farm, Baoding 074200, China
| | - Jiushuai Pang
- Hongyashan State-Owned Forest Farm, Baoding 074200, China
| | - Qian Wang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding 071000, China
| | - Miaomiao Zhou
- Hongyashan State-Owned Forest Farm, Baoding 074200, China
| | - Yan Lu
- Hongyashan State-Owned Forest Farm, Baoding 074200, China
| | - Chenyang Xu
- Hongyashan State-Owned Forest Farm, Baoding 074200, China
| | - Dazhuang Huang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
7
|
Dhandhanya UK, Mukhopadhyay K, Kumar M. An accretive detection method for in silico identification and validation of circular RNAs in wheat (Triticum aestivum L.) using RT-qPCR. Mol Biol Rep 2024; 51:162. [PMID: 38252357 DOI: 10.1007/s11033-023-09138-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Circular RNAs (circRNAs) are novel class of non-coding RNAs, which are involved in various functions at the transcriptional and post-transcriptional level in response to a fungal pathogen (Puccinia triticina), including microRNA (miRNA) sponge, RNA binding proteins sponge, regulation of parental gene and biomarkers. Detailed analysis of wheat circRNAs is essential to accelerate the regulated expression of fungal miRNAs. Therefore, we suggest a protocol to aid circRNA identification through RNA-Seq data using various algorithms based on perl script followed by validation through divergent primer designing, standard PCR, and RT-qPCR assays. METHODS AND RESULT The divergent primer has been widely used to detect, validate, and quantify back-spliced junction (BSJ) of circRNAs. The procedure covers index file formation, circRNA identification and BSJ detections. However, the laboratory validation of circRNA includes wheat genomic DNA isolation, RNA isolation and its cDNA conversion upto validation. In this study, we identified 28 circRNAs from RNA-Seq of S0 and R0, wherein six circRNAs are commonly present and 75% of the identified circRNAs were belongs to inter-genic, 14% were exonic and intronic category were 11%. Divergent primer designing method successfully validated the two circRNAs via RT-qPCR assay, where circRNA_2 showed less relative expression pattern than circRNA_1 in contrast with housekeeping genes. CONCLUSION Thus, our results of identified and validated circRNAs showed that, this protocol is quite helpful, relatively easy, reliable, and accurate for large datasets as other algorithms need various dependencies and have complex scripts with high chances of error occurrence. Additionally, analysis time will vary depending on the expertise level and the number of RNA-Seq data. This proposed protocol can also be used for a wide range of monocotyledons belonging to the Poaceae plant family.
Collapse
Affiliation(s)
- Umang Kumar Dhandhanya
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Kunal Mukhopadhyay
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Manish Kumar
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
8
|
Wang R, Zhang M, Wang H, Chen L, Zhang X, Guo L, Qi T, Tang H, Shahzad K, Wang H, Qiao X, Wu J, Xing C. Identification and characterization of circular RNAs involved in the fertility stability of cotton CMS-D2 restorer line under heat stress. BMC PLANT BIOLOGY 2024; 24:32. [PMID: 38183049 PMCID: PMC10768462 DOI: 10.1186/s12870-023-04706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND As a vital type of noncoding RNAs, circular RNAs (circRNAs) play important roles in plant growth and development and stress response. However, little is known about the biological roles of circRNAs in regulating the stability of male fertility restoration for cytoplasmic male sterility (CMS) conditioned by Gossypium harknessii cytoplasm (CMS-D2) cotton under high-temperature (HT) stress. RESULTS In this study, RNA-sequencing and bioinformatics analysis were performed on pollen grains of isonuclear alloplasmic near-isogenic restorer lines NH [N(Rf1rf1)] and SH [S(Rf1rf1)] with obvious differences in fertility stability under HT stress at two environments. A total of 967 circRNAs were identified, with 250 differentially expressed under HT stress. We confirmed the back-splicing sites of eight selected circRNAs using divergent primers and Sanger sequencing. Tissue-specific expression patterns of five differentially expressed circRNAs (DECs) were also verified by RT-PCR and qRT-PCR. Functional enrichment and metabolic pathway analysis revealed that the parental genes of DECs were significantly enriched in fertility-related biological processes such as pollen tube guidance and cell wall organization, as well as the Pentose and glucuronate interconversions, Steroid biosynthesis, and N-Glycan biosynthesis pathways. Moreover, we also constructed a putative circRNA-mediated competing endogenous RNA (ceRNA) network consisting of 21 DECs, eight predicted circRNA-binding miRNAs, and their corresponding 22 mRNA targets, especially the two ceRNA modules circRNA346-miR159a-MYB33 and circRNA484-miR319e-MYB33, which might play important biological roles in regulating pollen fertility stability of cotton CMS-D2 restorer line under HT stress. CONCLUSIONS Through systematic analysis of the abundance, characteristics and expression patterns of circRNAs, as well as the potential functions of their parent genes, our findings suggested that circRNAs and their mediated ceRNA networks acted vital biological roles in cotton pollen development, and might be also essential regulators for fertility stability of CMS-D2 restorer line under heat stress. This study will open a new door for further unlocking complex regulatory mechanisms underpinning the fertility restoration stability for CMS-D2 in cotton.
Collapse
Affiliation(s)
- Ruijie Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Meng Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| | - Hui Wang
- Xiangyang Vocational and Technical College, Xiangyang, 441050, Hubei, China
| | - Liangliang Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xuexian Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Liping Guo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Tingxiang Qi
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Huini Tang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Kashif Shahzad
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Hailin Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xiuqin Qiao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Jianyong Wu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| | - Chaozhu Xing
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| |
Collapse
|
9
|
Gao Z, Sun B, Fan Z, Su Y, Zheng C, Chen W, Yao Y, Ma C, Du Y. Vv-circSIZ1 mediated by pre-mRNA processing machinery contributes to salt tolerance. THE NEW PHYTOLOGIST 2023; 240:644-662. [PMID: 37530126 DOI: 10.1111/nph.19181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
CircRNAs exist widely in plants, but the regulatory mechanisms for the biogenesis and function of plant circRNAs remain largely unknown. Using extensive mutagenesis of expression plasmids and genetic transformation methods, we analyzed the biogenesis and anti-salt functions of a new grape circRNA Vv-circSIZ1. We identified Vv-circSIZ1 that is mainly expressed in the cytoplasm of xylem. CircSIZ1 is species-specific, and genomic circSIZ1-forming region of seven tested species could be backspliced in Nicotiana benthamiana, but not in Arabidopsis. The retention length of Vv-circSIZ1 flanking introns was significantly positively correlated with its generation efficiency. The precise splicing of Vv-circSIZ1 does not depend on its mature exon sequence or internal intron sequences, but on the AG/GT splicing signal sites and branch site of the flanking introns. The spliceosome activity was inversely proportional to the expression level of Vv-circSIZ1. Furthermore, RNA-binding proteins can regulate the expression of Vv-circSIZ1. The overexpression of Vv-circSIZ1 improved salt tolerance of grape and N. benthamiana. Additionally, Vv-circSIZ1 could relieve the repressive effect of VvmiR3631 on its target VvVHAc1. Vv-circSIZ1 also promoted transcription of its parental gene. Overall, these results broaden our understanding of circRNAs in plants.
Collapse
Affiliation(s)
- Zhen Gao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Baozhen Sun
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Zongbao Fan
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yifan Su
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Weiping Chen
- Institute of Horticulture, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, 750002, China
| | - Yuxin Yao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuanpeng Du
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| |
Collapse
|
10
|
Kan Q, Li Q. Post-transcriptional and translational regulation of plant gene expression by transposons. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102438. [PMID: 37619514 DOI: 10.1016/j.pbi.2023.102438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/22/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023]
Abstract
Transposons are mobile DNA sequences that can move within the genome and integrate in new genomic locations. They are widespread in eukaryotes and prokaryotes and can influence gene expression when landing within or nearby a gene. Although transposon-induced regulation of gene expression at the transcriptional level has been extensively studied, there has been less focus on regulation at the post-transcriptional and translational levels. Recent studies in maize (Zea mays) and other plant species suggest that transposon insertions can affect RNA processing, RNA stability, protein translation and protein stability. We will describe the diverse mechanisms by which transposons can influence gene expression at the post-transcriptional and translational levels, and discuss the interactions between these mechanisms.
Collapse
Affiliation(s)
- Qiuxin Kan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
11
|
Gebrie A. Transposable elements as essential elements in the control of gene expression. Mob DNA 2023; 14:9. [PMID: 37596675 PMCID: PMC10439571 DOI: 10.1186/s13100-023-00297-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023] Open
Abstract
Interspersed repetitions called transposable elements (TEs), commonly referred to as mobile elements, make up a significant portion of the genomes of higher animals. TEs contribute in controlling the expression of genes locally and even far away at the transcriptional and post-transcriptional levels, which is one of their significant functional effects on gene function and genome evolution. There are different mechanisms through which TEs control the expression of genes. First, TEs offer cis-regulatory regions in the genome with their inherent regulatory features for their own expression, making them potential factors for controlling the expression of the host genes. Promoter and enhancer elements contain cis-regulatory sites generated from TE, which function as binding sites for a variety of trans-acting factors. Second, a significant portion of miRNAs and long non-coding RNAs (lncRNAs) have been shown to have TEs that encode for regulatory RNAs, revealing the TE origin of these RNAs. Furthermore, it was shown that TE sequences are essential for these RNAs' regulatory actions, which include binding to the target mRNA. By being a member of cis-regulatory and regulatory RNA sequences, TEs therefore play essential regulatory roles. Additionally, it has been suggested that TE-derived regulatory RNAs and cis-regulatory regions both contribute to the evolutionary novelty of gene regulation. Additionally, these regulatory systems arising from TE frequently have tissue-specific functions. The objective of this review is to discuss TE-mediated gene regulation, with a particular emphasis on the processes, contributions of various TE types, differential roles of various tissue types, based mostly on recent studies on humans.
Collapse
Affiliation(s)
- Alemu Gebrie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia.
| |
Collapse
|
12
|
Evolutionary Landscape of Tea Circular RNAs and Its Contribution to Chilling Tolerance of Tea Plant. Int J Mol Sci 2023; 24:ijms24021478. [PMID: 36674993 PMCID: PMC9861842 DOI: 10.3390/ijms24021478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Chilling stress threatens the yield and distribution pattern of global crops, including the tea plant (Camellia sinensis), one of the most important cash crops around the world. Circular RNA (circRNA) plays roles in regulating plant growth and biotic/abiotic stress responses. Understanding the evolutionary characteristics of circRNA and its feedbacks to chilling stress in the tea plant will help to elucidate the vital roles of circRNAs. In the current report, we systematically identified 2702 high-confidence circRNAs under chilling stress in the tea plant, and interestingly found that the generation of tea plant circRNAs was associated with the length of their flanking introns. Repetitive sequences annotation and DNA methylation analysis revealed that the longer flanking introns of circRNAs present more repetitive sequences and higher methylation levels, which suggested that repeat-elements-mediated DNA methylation might promote the circRNAs biogenesis in the tea plant. We further detected 250 differentially expressed circRNAs under chilling stress, which were functionally enriched in GO terms related to cold/stress responses. Constructing a circRNA-miRNA-mRNA interaction network discovered 139 differentially expressed circRNAs harboring potential miRNA binding sites, which further identified 14 circRNAs that might contribute to tea plant chilling responses. We further characterized a key circRNA, CSS-circFAB1, which was significantly induced under chilling stress. FISH and silencing experiments revealed that CSS-circFAB1 was potentially involved in chilling tolerance of the tea plant. Our study emphasizes the importance of circRNA and its preliminary role against low-temperature stress, providing new insights for tea plant cold tolerance breeding.
Collapse
|
13
|
Liu R, Ma Y, Guo T, Li G. Identification, biogenesis, function, and mechanism of action of circular RNAs in plants. PLANT COMMUNICATIONS 2023; 4:100430. [PMID: 36081344 PMCID: PMC9860190 DOI: 10.1016/j.xplc.2022.100430] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Circular RNAs (circRNAs) are a class of single-stranded, closed RNA molecules with unique functions that are ubiquitously expressed in all eukaryotes. The biogenesis of circRNAs is regulated by specific cis-acting elements and trans-acting factors in humans and animals. circRNAs mainly exert their biological functions by acting as microRNA sponges, forming R-loops, interacting with RNA-binding proteins, or being translated into polypeptides or proteins in human and animal cells. Genome-wide identification of circRNAs has been performed in multiple plant species, and the results suggest that circRNAs are abundant and ubiquitously expressed in plants. There is emerging compelling evidence to suggest that circRNAs play essential roles during plant growth and development as well as in the responses to biotic and abiotic stress. However, compared with recent advances in human and animal systems, the roles of most circRNAs in plants are unclear at present. Here we review the identification, biogenesis, function, and mechanism of action of plant circRNAs, which will provide a fundamental understanding of the characteristics and complexity of circRNAs in plants.
Collapse
Affiliation(s)
- Ruiqi Liu
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yu Ma
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Tao Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Guanglin Li
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
14
|
Zhang P, Dai M. CircRNA: a rising star in plant biology. J Genet Genomics 2022; 49:1081-1092. [PMID: 35644325 DOI: 10.1016/j.jgg.2022.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 01/14/2023]
Abstract
Circular RNAs (circRNAs) are covalently closed single-stranded RNA molecules, which are widespread in eukaryotic cells. As regulatory molecules, circRNAs have various functions, such as regulating gene expression, binding miRNAs or proteins, and being translated into proteins, which are important for cell proliferation and cell differentiation, individual growth and development, as well as many other biological processes. However, compared with that in animal models, studies of circRNAs in plants lags behind and, particularly, the regulatory mechanisms of biogenesis and molecular functions of plant circRNAs remain elusive. Recent studies have shown that circRNAs are wide spread in plants with tissue- or development-specific expression patterns and are responsive to a variety of environmental stresses. In this review, we summarize these advances, focusing on the regulatory mechanisms of biogenesis, molecular and biological functions of circRNAs, and the methods for investigating circRNAs. We also discuss the challenges and the prospects of plant circRNA studies.
Collapse
Affiliation(s)
- Pei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mingqiu Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
15
|
Fan K, Sze CC, Li MW, Lam HM. Roles of non-coding RNAs in the hormonal and nutritional regulation in nodulation and nitrogen fixation. FRONTIERS IN PLANT SCIENCE 2022; 13:997037. [PMID: 36330261 PMCID: PMC9623164 DOI: 10.3389/fpls.2022.997037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Symbiotic nitrogen fixation is an important component in the nitrogen cycle and is a potential solution for sustainable agriculture. It is the result of the interactions between the plant host, mostly restricted to legume species, and the rhizobial symbiont. From the first encounter between the host and the symbiont to eventual successful nitrogen fixation, there are delicate processes involved, such as nodule organogenesis, rhizobial infection thread progression, differentiation of the bacteroid, deregulation of the host defense systems, and reallocation of resources. All these processes are tightly regulated at different levels. Recent evidence revealed that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), participate in these processes by controlling the transcription and translation of effector genes. In general, ncRNAs are functional transcripts without translation potential and are important gene regulators. MiRNAs, negative gene regulators, bind to the target mRNAs and repress protein production by causing the cleavage of mRNA and translational silencing. LncRNAs affect the formation of chromosomal loops, DNA methylation, histone modification, and alternative splicing to modulate gene expression. Both lncRNAs and circRNAs could serve as target mimics of miRNA to inhibit miRNA functions. In this review, we summarized and discussed the current understanding of the roles of ncRNAs in legume nodulation and nitrogen fixation in the root nodule, mainly focusing on their regulation of hormone signal transduction, the autoregulation of nodulation (AON) pathway and nutrient homeostasis in nodules. Unraveling the mediation of legume nodulation by ncRNAs will give us new insights into designing higher-performance leguminous crops for sustainable agriculture.
Collapse
|
16
|
Identification and Characterization of Circular RNAs Involved in the Flower Development and Senescence of Rhododendron delavayi Franch. Int J Mol Sci 2022; 23:ijms231911214. [PMID: 36232515 PMCID: PMC9569710 DOI: 10.3390/ijms231911214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Floral development and senescence are a crucial determinant for economic and ornamental value. CircRNAs play an essential role in regulating plant growth and development; however, there is no systematic identification of circRNAs during the lifespan of flowers. This study aims to explore the expression profile and functional role of circRNAs in the full flowering stages of Rhododendron delavayi Franch. We carried out transcriptome sequencing of the six stages of Rhododendron delavayi Franch flowers to identify the circular RNA expression profile. In addition, using bioinformatics methods, we explored the functions of circRNAs, including analysis of the circRNA-miRNA-mRNA network, short time-series expression miner (STEM), and so on. We identified 146 circRNAs, of which 79 were differentially expressed from the budding to fading stages. Furthermore, using STEM analysis, one of the 42 circRNA expression model profiles was significantly upregulated during the senescence stage, including 16 circRNAs. Additionally, 7 circRNA-miRNA-mRNA networks were constructed with 10 differentially expressed circRNAs, in which some target mRNA may regulate the development and senescence of the Rhododendron flowers. Finally, by analyzing the correlation between circRNAs and mRNA, combined with existing reports, we proposed that circRNAs play a regulatory role during flower development and senescence by mediating the jasmonate signaling pathway. Overall, these results provide new clues to the potential mechanism of circRNAs acting as novel post-transcriptional regulators in the development and senescence process of flowers.
Collapse
|
17
|
Chen X, Xu X, Zhang S, Munir N, Zhu C, Zhang Z, Chen Y, Xuhan X, Lin Y, Lai Z. Genome-wide circular RNA profiling and competing endogenous RNA regulatory network analysis provide new insights into the molecular mechanisms underlying early somatic embryogenesis in Dimocarpus longan Lour. TREE PHYSIOLOGY 2022; 42:1876-1898. [PMID: 35313353 DOI: 10.1093/treephys/tpac032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Circular RNAs (circRNAs) are widely involved in plant growth and development. However, the function of circRNAs in plant somatic embryogenesis (SE) remains elusive. Here, by using high-throughput sequencing, a total of 5029 circRNAs were identified in the three stages of longan (Dimocarpus longan Lour.) early SE. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that differentially expressed (DE) circRNA host genes were enriched in the 'non-homologous end-joining' (NHEJ) and 'butanoate metabolism' pathways. In addition, the reactive oxygen species (ROS) content during longan early SE was determined. The results indicated that ROS-induced DNA double-strand breaks may not depend on the NHEJ repair pathway. Correlation analyses of the levels of related metabolites (glutamate, γ-aminobutyrate and pyruvate) and the expression levels of circRNAs and their host genes involved in butanoate metabolism were performed. The results suggested that circRNAs may act as regulators of the expression of cognate mRNAs, thereby affecting the accumulation of related compounds. A competing endogenous RNA (ceRNA) network of DE circRNAs, DE mRNAs, DE long noncoding RNAs (lncRNAs) and DE microRNAs (miRNAs) was constructed. The results showed that the putative targets of the noncoding RNA (ncRNAs) were significantly enriched in the KEGG pathways 'mitogen-activated protein kinase signaling' and 'nitrogen metabolism'. Furthermore, the expression patterns of the candidate circRNAs, lncRNAs, miRNAs and mRNAs confirmed the negative correlation between miRNAs and ceRNAs. In addition, two circRNA overexpression vectors were constructed to further verify the ceRNA network correlations in longan early SE. Our study revealed the potential role of circRNAs in longan early SE, providing new insights into the intricate regulatory mechanism underlying plant SE.
Collapse
Affiliation(s)
- Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Xiaoping Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Shuting Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Nigarish Munir
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Chen Zhu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Xu Xuhan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
- Institut de la Recherche Interdisciplinaire de Toulouse, IRIT-ARI, 31300 Toulouse, France
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| |
Collapse
|
18
|
Plant DNA Methylation: An Epigenetic Mark in Development, Environmental Interactions, and Evolution. Int J Mol Sci 2022; 23:ijms23158299. [PMID: 35955429 PMCID: PMC9368846 DOI: 10.3390/ijms23158299] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 01/06/2023] Open
Abstract
DNA methylation is an epigenetic modification of the genome involved in the regulation of gene expression and modulation of chromatin structure. Plant genomes are widely methylated, and the methylation generally occurs on the cytosine bases through the activity of specific enzymes called DNA methyltransferases. On the other hand, methylated DNA can also undergo demethylation through the action of demethylases. The methylation landscape is finely tuned and assumes a pivotal role in plant development and evolution. This review illustrates different molecular aspects of DNA methylation and some plant physiological processes influenced by this epigenetic modification in model species, crops, and ornamental plants such as orchids. In addition, this review aims to describe the relationship between the changes in plant DNA methylation levels and the response to biotic and abiotic stress. Finally, we discuss the possible evolutionary implications and biotechnological applications of DNA methylation.
Collapse
|
19
|
Zhou J, Yang LY, Jia CL, Shi WG, Deng SR, Luo ZB. Identification and Functional Prediction of Poplar Root circRNAs Involved in Treatment With Different Forms of Nitrogen. FRONTIERS IN PLANT SCIENCE 2022; 13:941380. [PMID: 35874008 PMCID: PMC9305699 DOI: 10.3389/fpls.2022.941380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNA molecules with ring structures formed by covalent bonds and are commonly present in organisms, playing an important regulatory role in plant growth and development. However, the mechanism of circRNAs in poplar root responses to different forms of nitrogen (N) is still unclear. In this study, high-throughput sequencing was used to identify and predict the function of circRNAs in the roots of poplar exposed to three N forms [1 mM NO3 - (T1), 0.5 mM NH4NO3 (T2, control) and 1 mM NH4 + (T3)]. A total of 2,193 circRNAs were identified, and 37, 24 and 45 differentially expressed circRNAs (DECs) were screened in the T1-T2, T3-T2 and T1-T3 comparisons, respectively. In addition, 30 DECs could act as miRNA sponges, and several of them could bind miRNA family members that play key roles in response to different N forms, indicating their important functions in response to N and plant growth and development. Furthermore, we generated a competing endogenous RNA (ceRNA) regulatory network in poplar roots treated with three N forms. DECs could participate in responses to N in poplar roots through the ceRNA regulatory network, which mainly included N metabolism, amino acid metabolism and synthesis, response to NO3 - or NH4 + and remobilization of N. Together, these results provide new insights into the potential role of circRNAs in poplar root responses to different N forms.
Collapse
|
20
|
The Intersection of Non-Coding RNAs Contributes to Forest Trees' Response to Abiotic Stress. Int J Mol Sci 2022; 23:ijms23126365. [PMID: 35742808 PMCID: PMC9223653 DOI: 10.3390/ijms23126365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/15/2022] [Accepted: 06/01/2022] [Indexed: 12/10/2022] Open
Abstract
Non-coding RNAs (ncRNAs) play essential roles in plants by modulating the expression of genes at the transcriptional or post-transcriptional level. In recent years, ncRNAs have been recognized as crucial regulators for growth and development in forest trees, and ncRNAs that respond to various abiotic stresses are now under intense study. In this review, we summarized recent advances in the understanding of abiotic stress-responsive microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) in forest trees. Furthermore, we analyzed the intersection of miRNAs, and epigenetic modified ncRNAs of forest trees in response to abiotic stress. In particular, the abiotic stress-related lncRNA/circRNA-miRNA-mRNA regulatory network of forest trees was explored.
Collapse
|
21
|
Zhang Y, Li H, Yang X, Chen J, Shi T. Expression rewiring and methylation of non-coding RNAs involved in rhizome phenotypic variations of lotus ecotypes. Comput Struct Biotechnol J 2022; 20:2848-2860. [PMID: 35765649 PMCID: PMC9193371 DOI: 10.1016/j.csbj.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022] Open
Abstract
Non-coding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, emerge as crucial components for gene regulation. Nelumbo nucifera (lotus), a horticulturally important plant, differentiates into a temperate ecotype of enlarged rhizomes and a tropical ecotype of thin rhizomes. Nevertheless, whether and how ncRNAs can be rewired in expression and differentially methylated contributing to adaptive divergence of this storage organ in lotus ecotypes is unclear. Herein, we study the expression behaviors and DNA methylation patterns of ncRNAs in temperate and tropical lotus rhizomes. By whole transcriptome sequencing, we found both mRNAs and lncRNAs have divergent expression patterns between ecotypes, whereas miRNAs and circRNAs tended to be accession-specific or noisier in expression. The differentially expressed ncRNAs are involved in phenotypic differentiation of lotus rhizome between ecotypes, as the genes that interacted with them in the competing endogenous RNA network are enriched in functions including carbohydrate metabolism and plant hormone signaling, being critical to rhizome enlargement. Intriguingly, ncRNA-targeted genes are less prone to show positive selection or differential expression during ecotypic divergence due to constraints from ncRNA-mRNA interactions. The methylation levels of ncRNAs generally tend to be higher in temperate lotus than in tropical lotus, and differential methylation of lncRNAs also tends to have expression changes. Overall, our study of ncRNAs and their targets highlights the role of ncRNAs in rhizome growth variation between lotus ecotypes through expression rewiring and methylation modification.
Collapse
|
22
|
Chen H, Wang T, Gong Z, Lu H, Chen Y, Deng F, Ren W. Low Light Conditions Alter Genome-Wide Profiles of Circular RNAs in Rice Grains during Grain Filling. PLANTS 2022; 11:plants11091272. [PMID: 35567273 PMCID: PMC9102277 DOI: 10.3390/plants11091272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022]
Abstract
In animals and plants, circRNAs regulate gene expression and act as sponges that inhibit the activity of microRNAs. This study aimed to determine how specific circRNAs are expressed in rice grains at different stages of grain filling, under normal and low light conditions. We extracted total RNA from rice grains under low and sufficient light conditions. Deep sequencing was performed using circRNA libraries, and bioinformatics tools were used to identify the circRNAs. In addition, we analyzed targeted messenger RNA functions using two databases to predict the processes involved in rice grain development, and we conducted real-time PCR on 15 of the circRNAs as well as Sanger sequencing. During the grain development process, 8015 candidate circRNAs were isolated, among which the number of known circRNAs was 1661. We also found that the number of circRNAs changed with the time of development. Among them, six circRNAs acted as sponges that targeted more than two microRNAs at different stages of development, and these circRNAs showed a regulatory pattern consistent with the transcriptome sequencing results. More circRNA diversity was found under low light treatment compared to normal light. These findings reveal a possible link between circRNA regulation and the expression of the functional genes associated with photosignal-mediated rice grain development.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 621000, China; (H.C.); (T.W.); (Z.G.); (H.L.); (Y.C.); (F.D.)
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Tao Wang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 621000, China; (H.C.); (T.W.); (Z.G.); (H.L.); (Y.C.); (F.D.)
| | - Zhiyou Gong
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 621000, China; (H.C.); (T.W.); (Z.G.); (H.L.); (Y.C.); (F.D.)
| | - Hui Lu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 621000, China; (H.C.); (T.W.); (Z.G.); (H.L.); (Y.C.); (F.D.)
| | - Yong Chen
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 621000, China; (H.C.); (T.W.); (Z.G.); (H.L.); (Y.C.); (F.D.)
| | - Fei Deng
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 621000, China; (H.C.); (T.W.); (Z.G.); (H.L.); (Y.C.); (F.D.)
| | - Wanjun Ren
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China of Ministry of Agriculture, Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 621000, China; (H.C.); (T.W.); (Z.G.); (H.L.); (Y.C.); (F.D.)
- Correspondence:
| |
Collapse
|
23
|
Wang D, Gao Y, Sun S, Li L, Wang K. Expression Characteristics in Roots, Phloem, Leaves, Flowers and Fruits of Apple circRNA. Genes (Basel) 2022; 13:genes13040712. [PMID: 35456518 PMCID: PMC9030095 DOI: 10.3390/genes13040712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 01/25/2023] Open
Abstract
Circular RNAs (circRNAs) are covalently closed non-coding RNAs that play pivotal roles in various biological processes. However, circRNAs' roles in different tissues of apple are currently unknown. A total of 6495 unique circRNAs were identified from roots, phloem, leaves, flowers and fruits; 65.99% of them were intergenic circRNAs. Similar to other plants, tissue-specific expression was also observed for apple circRNAs; only 175 (2.69%) circRNAs were prevalently expressed in all five different tissues, while 1256, 1064, 912, 904 and 1080 circRNAs were expressed only in roots, phloem, leaves, flowers and fruit, respectively. The hosting-genes of circRNAs showed significant differences enriched in COG, GO terms or KEGG pathways in five tissues, suggesting the special functions of circRNAs in different tissues. Potential binding interactions between circRNAs and miRNAs were investigated using TargetFinder; 2989 interactions between 647 circRNAs and 192 miRNA were predicated in the present study. It also predicted that Chr00:18744403|18744580-mdm-miR160 might play an important role in the formation of flowers or in regulating the coloration of flowers, Chr10:6857496|6858910-mdm-miR168 might be involved in response to drought stress in roots, and Chr03:1226434|1277176 may absorb mdm-miR482a-3p and play a major role in disease resistance. Two circRNAs were experimentally analyzed by qRT-PCR with divergent primers, the expression levels were consistent with RNA-seq, which indicates that the RNA-seq datasets were reliable.
Collapse
Affiliation(s)
| | | | | | | | - Kun Wang
- Correspondence: ; Tel.: +86-429-3598120
| |
Collapse
|
24
|
Identification and Characterization of circRNAs under Drought Stress in Moso Bamboo (Phyllostachys edulis). FORESTS 2022. [DOI: 10.3390/f13030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Circular RNAs (circRNAs) are a class of endogenous noncoding RNAs formed by 3′-5′ ligation during splicing. They play an important role in the regulation of transcription and miRNA in eukaryotes. Drought is one of the detrimental abiotic stresses that limit plant growth and productivity. How circRNAs influence the response to drought stress in moso bamboo (Phyllostachys edulis) remains elusive. In this study, we investigate the expression pattern of circRNAs in moso bamboo at 6 h, 12 h, 24 h and 48 h after drought treatment by deep sequencing and bioinformatics analysis and identify 4931 circRNAs, 52 of which are differentially expressed (DEcircRNAs) in drought-treated and untreated moso bamboo. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the host genes that generate the DEcircRNAs indcate that these DEcircRNAs are predicted to be involved in biochemical processes in response to drought, such as ubiquitin-mediated proteolysis, calcium-dependent protein kinase phosphorylation, amino acid biosynthesis and plant hormone signal transduction including abscisic acid. In addition, some circRNAs are shown to act as sponges for 291 miRNAs. Taken together, our results characterize the transcriptome profiles of circRNAs in drought responses and provide new insights into resistance breeding of moso bamboo.
Collapse
|
25
|
Oliveira LS, Patera AC, Domingues DS, Sanches DS, Lopes FM, Bugatti PH, Saito PTM, Maracaja-Coutinho V, Durham AM, Paschoal AR. Computational Analysis of Transposable Elements and CircRNAs in Plants. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2362:147-172. [PMID: 34195962 DOI: 10.1007/978-1-0716-1645-1_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter provides two main contributions: (1) a description of computational tools and databases used to identify and analyze transposable elements (TEs) and circRNAs in plants; and (2) data analysis on public TE and circRNA data. Our goal is to highlight the primary information available in the literature on circular noncoding RNAs and transposable elements in plants. The exploratory analysis performed on publicly available circRNA and TEs data help discuss four sequence features. Finally, we investigate the association on circRNAs:TE in plants in the model organism Arabidopsis thaliana.
Collapse
Affiliation(s)
- Liliane Santana Oliveira
- Department of Computer Science, Federal University of Technology-Paraná (UTFPR), Cornélio Procópio, PR, Brazil. .,Embrapa Soja, Londrina, Paraná, Brazil.
| | - Andressa Caroline Patera
- Department of Computer Science, Federal University of Technology-Paraná (UTFPR), Cornélio Procópio, PR, Brazil
| | - Douglas Silva Domingues
- Department of Computer Science, Federal University of Technology-Paraná (UTFPR), Cornélio Procópio, PR, Brazil.,Group of Genomics and Transcriptomes in Plants, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil
| | - Danilo Sipoli Sanches
- Department of Computer Science, Federal University of Technology-Paraná (UTFPR), Cornélio Procópio, PR, Brazil
| | - Fabricio Martins Lopes
- Department of Computer Science, Federal University of Technology-Paraná (UTFPR), Cornélio Procópio, PR, Brazil
| | - Pedro Henrique Bugatti
- Department of Computer Science, Federal University of Technology-Paraná (UTFPR), Cornélio Procópio, PR, Brazil
| | - Priscila Tiemi Maeda Saito
- Department of Computer Science, Federal University of Technology-Paraná (UTFPR), Cornélio Procópio, PR, Brazil
| | - Vinicius Maracaja-Coutinho
- Centro de Modelamiento Molecular, Biofísica y Bioinformática-CM2B2, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago, Chile
| | - Alan Mitchell Durham
- Department of Computer Science, Instituto de Matemática e Estatística, Universidade de São Paulo (USP), Cidade Universitária, SP, Brazil
| | - Alexandre Rossi Paschoal
- Department of Computer Science, Federal University of Technology-Paraná (UTFPR), Cornélio Procópio, PR, Brazil.
| |
Collapse
|
26
|
Marquez-Molins J, Navarro JA, Seco LC, Pallas V, Gomez G. Might exogenous circular RNAs act as protein-coding transcripts in plants? RNA Biol 2021; 18:98-107. [PMID: 34392787 PMCID: PMC8677015 DOI: 10.1080/15476286.2021.1962670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 01/23/2023] Open
Abstract
Circular RNAs (circRNAs) are regulatory molecules involved in the modulation of gene expression. Although originally assumed as non-coding RNAs, recent studies have evidenced that animal circRNAs can act as translatable transcripts. The study of plant-circRNAs is incipient, and no autonomous coding plant-circRNA has been described yet. Viroids are the smallest plant-pathogenic circRNAs known to date. Since their discovery 50 years ago, viroids have been considered valuable systems for the study of the structure-function relationships in RNA, essentially because they have not been shown to have coding capacity. We used two pathogenic circRNAs (Hop stunt viroid and Eggplant latent viroid) as experimental tools to explore the coding potential of plant-circRNAs. Our work supports that the analysed viroids contain putative ORFs able to encode peptides carrying subcellular localization signals coincident with the corresponding replication-specific organelle. Bioassays in well-established hosts revealed that mutations in these ORFs diminish their biological efficiency. Interestingly, circular forms of HSVd and ELVd were found to co-sediment with polysomes, revealing their physical interaction with the translational machinery of the plant cell. Based on this evidence we hypothesize about the possibility that plant circRNAs in general, and viroids in particular, can act, under certain cellular conditions, as non-canonical translatable transcripts.
Collapse
Affiliation(s)
- Joan Marquez-Molins
- Institute for Integrative Systems Biology (I2sysbio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València, Parc Científic, Paterna, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat Politècnica de València, Valencia, Spain
| | - José Antonio Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat Politècnica de València, Valencia, Spain
| | - Luis Cervera Seco
- Institute for Integrative Systems Biology (I2sysbio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València, Parc Científic, Paterna, Spain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat Politècnica de València, Valencia, Spain
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2sysbio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València, Parc Científic, Paterna, Spain
| |
Collapse
|
27
|
Ma P, Gao S, Zhang HY, Li BY, Zhong HX, Wang YK, Hu HM, Zhang HK, Luo BW, Zhang X, Liu D, Wu L, Gao DJ, Gao SQ, Zhang SZ, Gao SB. Identification and characterization of circRNAs in maize seedlings under deficient nitrogen. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:850-860. [PMID: 33932084 DOI: 10.1111/plb.13280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Here, deep sequencing results of the maize transcriptome in leaves and roots were compared under high-nitrogen (HN) and low-nitrogen (LN) conditions to identify differentially expressed circRNAs (DECs). Circular RNAs (circRNAs) are covalently closed non-coding RNA with widely regulatory potency that has been identified in animals and plants. However, the understanding of circRNAs involved in responsive nitrogen deficiency remains to be elucidated. A total of 24 and 22 DECs were obtained from the leaves and roots, respectively. Ten circRNAs were validated by divergent and convergent primers, and 6 DECs showed the same expression tendency validated by reverse transcriptase-quantitative PCR. Integrating the identified differentially expressed miRNAs, 34 circRNAs could act as miRNA decoys, which might play important roles in multiple biological processes, including organonitrogen compound biosynthesis and regulation of the metabolic process. A total of 51 circRNA-parent genes located in the genome-wide association study identified loci were assessed between HN and LN conditions and were associated with root growth and development. In summary, our results provide valuable information regarding further study of maize circRNAs under nitrogen deficiency and provide new insights into screening of candidate genes as well as the improvement of maize regarding nitrogen deficiency resistance. CircRNA-miRNA-mRNA co-expression networks were constructed to explore the circRNAs that participated in biological development and nitrogen metabolism.
Collapse
Affiliation(s)
- P Ma
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - S Gao
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - H Y Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - B Y Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - H X Zhong
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Y K Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - H M Hu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - H K Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - B W Luo
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - X Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - D Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - L Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - D J Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - S Q Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - S Z Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - S B Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
| |
Collapse
|
28
|
Tao M, Zheng M, Xu Y, Ma S, Zhang W, Ju S. CircRNAs and their regulatory roles in cancers. Mol Med 2021; 27:94. [PMID: 34445958 PMCID: PMC8393742 DOI: 10.1186/s10020-021-00359-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/18/2021] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (circRNAs), a novel type of non-coding RNAs (ncRNAs), have a covalently closed circular structure resulting from pre-mRNA back splicing via spliceosome and ribozymes. They can be classified differently in accordance with different criteria. As circRNAs are abundant, conserved, and stable, they can be used as diagnostic markers in various diseases and targets to develop new therapies. There are various functions of circRNAs, including sponge for miR/proteins, role of scaffolds, templates for translation, and regulators of mRNA translation and stability. Without m7G cap and poly-A tail, circRNAs can still be degraded in several ways, including RNase L, Ago-dependent, and Ago-independent degradation. Increasing evidence indicates that circRNAs can be modified by N-6 methylation (m6A) in many aspects such as biogenesis, nuclear export, translation, and degradation. In addition, they have been proved to play a regulatory role in the progression of various cancers. Recently, methods of detecting circRNAs with high sensitivity and specificity have also been reported. This review presents a detailed overview of circRNAs regarding biogenesis, biomarker, functions, degradation, and dynamic modification as well as their regulatory roles in various cancers. It’s particularly summarized in detail in the biogenesis of circRNAs, regulation of circRNAs by m6A modification and mechanisms by which circRNAs affect tumor progression respectively. Moreover, existing circRNA detection methods and their characteristics are also mentioned.
Collapse
Affiliation(s)
- Mei Tao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Xisi Road, No.20, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Medical School of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China
| | - Ming Zheng
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Xisi Road, No.20, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Medical School of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yanhua Xu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Xisi Road, No.20, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Medical School of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China
| | - Shuo Ma
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Xisi Road, No.20, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Medical School of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China
| | - Weiwei Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Xisi Road, No.20, Nantong, 226001, Jiangsu, China. .,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Xisi Road, No.20, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
29
|
Zhang J, Hao Z, Yin S, Li G. GreenCircRNA: a database for plant circRNAs that act as miRNA decoys. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2020:5854388. [PMID: 32510565 PMCID: PMC7278087 DOI: 10.1093/database/baaa039] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/16/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022]
Abstract
Circular RNAs (circRNAs) are endogenous non-coding RNAs that form a covalently closed continuous loop, are widely distributed and play important roles in a series of developmental processes. In plants, an increasing number of studies have found that circRNAs can regulate plant metabolism and are involved in plant responses to biotic or abiotic stress. Acting as miRNA decoys is a critical way for circRNAs to perform their functions. Therefore, we developed GreenCircRNA—a database for plant circRNAs acting as miRNA decoys that is dedicated to providing a plant-based platform for detailed exploration of plant circRNAs and their potential decoy functions. This database includes over 210 000 circRNAs from 69 species of plants; the main data sources of circRNAs in this database are NCBI, EMBL-EBI and Phytozome. To investigate the function of circRNAs as competitive endogenous RNAs, the possibility of circRNAs from 38 plants to act as miRNA decoys was predicted. Moreover, we provide basic information for the circRNAs in the database, including their locations, host genes and relative expression levels, as well as full-length sequences, host gene GO (Gene Ontology) numbers and circRNA visualization. GreenCircRNA is the first database for the prediction of circRNAs that act as miRNA decoys and contains the largest number of plant species. Database URL: http://greencirc.cn
Collapse
Affiliation(s)
- Jingjing Zhang
- College of Life Sciences, Shaanxi Normal University, West Chang'an Street, Xi'an 710062, China
| | - Zhiqiang Hao
- College of Life Sciences, Shaanxi Normal University, West Chang'an Street, Xi'an 710062, China
| | - Shuwei Yin
- College of Life Sciences, Shaanxi Normal University, West Chang'an Street, Xi'an 710062, China
| | - Guanglin Li
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, Shaanxi Normal University, West Chang'an Street, Xi'an 710062, China.,College of Life Sciences, Shaanxi Normal University, West Chang'an Street, Xi'an 710062, China
| |
Collapse
|
30
|
NGS Methodologies and Computational Algorithms for the Prediction and Analysis of Plant Circular RNAs. Methods Mol Biol 2021; 2362:119-145. [PMID: 34195961 DOI: 10.1007/978-1-0716-1645-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Circular RNAs (circRNAs) are a class of single-stranded RNAs derived from exonic, intronic, and intergenic regions from precursor messenger RNAs (pre-mRNA), where a noncanonical back-splicing event occurs, in which the 5' and 3' ends are attached by covalent bond. CircRNAs participate in the regulation of gene expression at the transcriptional and posttranscriptional level primarily as miRNA and RNA-binding protein (RBP) sponges, but also involved in the regulation of alternative RNA splicing and transcription. CircRNAs are widespread and abundant in plants where they have been involved in stress responses and development. Through the analysis of all publications in this field in the last five years, we can summarize that the identification of these molecules is carried out through next generation sequencing studies, where samples have been previously treated to eliminate DNA, rRNA, and linear RNAs as a means to enrich circRNAs. Once libraries are prepared, they are sequenced and subsequently studied from a bioinformatics point of view. Among the different tools for identifying circRNAs, we can highlight CIRI as the most used (in 60% of the published studies), as well as CIRCExplorer (20%) and find_circ (20%). Although it is recommended to use more than one program in combination, and preferably developed specifically to treat with plant samples, this is not always the case. It should also be noted that after identifying these circular RNAs, most of the authors validate their findings in the laboratory in order to obtain bona fide results.
Collapse
|
31
|
Zhou J, Yuan M, Zhao Y, Quan Q, Yu D, Yang H, Tang X, Xin X, Cai G, Qian Q, Qi Y, Zhang Y. Efficient deletion of multiple circle RNA loci by CRISPR-Cas9 reveals Os06circ02797 as a putative sponge for OsMIR408 in rice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1240-1252. [PMID: 33440058 PMCID: PMC8196656 DOI: 10.1111/pbi.13544] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/29/2020] [Accepted: 12/22/2020] [Indexed: 05/05/2023]
Abstract
CRISPR-Cas9 is an emerging genome editing tool for reverse genetics in plants. However, its application for functional study of non-coding RNAs in plants is still at its infancy. Despite being a major class of non-coding RNAs, the biological roles of circle RNAs (circRNAs) remain largely unknown in plants. Previous plant circRNA studies have focused on identification and annotation of putative circRNAs, with their functions largely uninvestigated by genetic approaches. Here, we applied a multiplexed CRISPR-Cas9 strategy to efficiently acquire individual null mutants for four circRNAs in rice. We showed each of these rice circRNA loci (Os02circ25329, Os06circ02797, Os03circ00204 and Os05circ02465) can be deleted at 10% or higher efficiency in both protoplasts and stable transgenic T0 lines. Such high efficiency deletion enabled the generation of circRNA null allele plants without the CRISPR-Cas9 transgene in the T1 generation. Characterization of the mutants reveals these circRNAs' participation in salt stress response during seed germination and in particular the Os05circ02465 null mutant showed high salt tolerance. Notably, the seedlings of the Os06circ02797 mutant showed rapid growth phenotype after seed germination with the seedlings containing higher chlorophyll A/B content. Further molecular and computational analyses suggested a circRNA-miRNA-mRNA regulatory network where Os06circ02797 functions to bind and sequester OsMIR408, an important and conserved microRNA in plants. This study not only presents genetic evidence for the first time in plants that certain circRNAs may serve as sponges to negatively regulate miRNAs, a phenomenon previously demonstrated in mammalian cells, but also provides important insights for improving agronomic traits through gene editing of circRNA loci in crops.
Collapse
Affiliation(s)
- Jianping Zhou
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Mingzhu Yuan
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yuxin Zhao
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Quan Quan
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Dong Yu
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Sichuan Grass Industry Technology Research and Promotion CenterChengduChina
| | - Han Yang
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xu Tang
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xuhui Xin
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Guangze Cai
- School of Agricultural scienceXichang UniversityXichangChina
| | - Qian Qian
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Yiping Qi
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMDUSA
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandRockvilleMDUSA
| | - Yong Zhang
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
32
|
Sun J, Dong Y, Wang C, Xiao S, Jiao Z, Gao C. Identification and characterization of melon circular RNAs involved in powdery mildew responses through comparative transcriptome analysis. PeerJ 2021; 9:e11216. [PMID: 33959417 PMCID: PMC8053381 DOI: 10.7717/peerj.11216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/15/2021] [Indexed: 12/25/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of newly discovered non-coding RNAs that are typically derived from a genome's exonic, intronic, and intergenic regions. Recent studies of circRNAs in animals and plants have shown that circRNAs are vital in response to various abiotic and biotic stresses. Powdery mildew disease (PM) is a serious fungal disease threatening the melon industry. We performed whole transcriptome sequencing using the leaves of a PM-resistant (M1) and a PM-susceptible (B29) melon to identify circRNAs and determine their molecular functions. A total of 303 circRNAs were identified and >50% circRNAs were derived from exonic regions. Expression levels were significantly altered in 17 and 23 circRNAs after PM infections in B29 and M1, respectively. Melon circRNAs may participate in the response to biotic stimuli, oxidation reduction, metabolic processes, and the regulation of gene expression based on the functional annotation of circRNA parental genes. Furthermore, 27 circRNAs were predicted to be potential targets or 'sponges' for 18 microRNAs (miRNAs). Our results are the first to identify and characterize circRNA functions in melon and may contribute to a better understanding of the role and regulatory mechanisms of circRNAs in resisting PM.
Collapse
Affiliation(s)
- Jianlei Sun
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yumei Dong
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chongqi Wang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shouhua Xiao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zigao Jiao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chao Gao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
33
|
Zhang Z, Wang H, Wang Y, Xi F, Wang H, Kohnen MV, Gao P, Wei W, Chen K, Liu X, Gao Y, Han X, Hu K, Zhang H, Zhu Q, Zheng Y, Liu B, Ahmad A, Hsu YH, Jacobsen SE, Gu L. Whole-genome characterization of chronological age-associated changes in methylome and circular RNAs in moso bamboo (Phyllostachys edulis) from vegetative to floral growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:435-453. [PMID: 33506534 DOI: 10.1111/tpj.15174] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
In mammals, DNA methylation is associated with aging. However, age-related DNA methylation changes during phase transitions largely remain unstudied in plants. Moso bamboo (Phyllostachys edulis) requires a very long time to transition from the vegetative to the floral phase. To comprehensively investigate the association of DNA methylation with aging, we present here single-base-resolution DNA methylation profiles using both high-throughput bisulfite sequencing and single-molecule nanopore-based DNA sequencing, covering the long period of vegetative growth and transition to flowering in moso bamboo. We discovered that CHH methylation gradually accumulates from vegetative to reproductive growth in a time-dependent fashion. Differentially methylated regions, correlating with chronological aging, occurred preferentially at both transcription start sites and transcription termination sites. Genes with CG methylation changes showed an enrichment of Gene Ontology (GO) categories in 'vegetative to reproductive phase transition of meristem'. Combining methylation data with mRNA sequencing revealed that DNA methylation in promoters, introns and exons may have different roles in regulating gene expression. Finally, circular RNA (circRNA) sequencing revealed that the flanking introns of circRNAs are hypermethylated and enriched in long terminal repeat (LTR) retrotransposons. Together, the observations in this study provide insights into the dynamic DNA methylation and circRNA landscapes, correlating with chronological age, which paves the way to study further the impact of epigenetic factors on flowering in moso bamboo.
Collapse
Affiliation(s)
- Zeyu Zhang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huihui Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongsheng Wang
- Basic Forestry and Proteomics Research Center, College of life science, Fuzhou, 350002, China
| | - Feihu Xi
- Basic Forestry and Proteomics Research Center, College of life science, Fuzhou, 350002, China
| | - Huiyuan Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Markus V Kohnen
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pengfei Gao
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wentao Wei
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kai Chen
- Basic Forestry and Proteomics Research Center, College of life science, Fuzhou, 350002, China
| | - Xuqing Liu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yubang Gao
- Basic Forestry and Proteomics Research Center, College of life science, Fuzhou, 350002, China
| | - Ximei Han
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kaiqiang Hu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hangxiao Zhang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiang Zhu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yushan Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bo Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ayaz Ahmad
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Steven E Jacobsen
- Department of Molecular, Cell & Developmental Biology, Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095, USA
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
34
|
Song Y, Bu C, Chen P, Liu P, Zhang D. Miniature inverted repeat transposable elements cis-regulate circular RNA expression and promote ethylene biosynthesis, reducing heat tolerance in Populus tomentosa. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1978-1994. [PMID: 33258949 DOI: 10.1093/jxb/eraa570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Transposable elements (TEs) and their reverse complementary sequence pairs (RCPs) are enriched around loci that produce circular RNAs (circRNAs) in plants. However, the function of these TE-RCP pairs in modulating circRNA expression remains elusive. Here, we identified 4609 circRNAs in poplar (Populus tomentosa) and showed that miniature inverted repeat transposable elements (MITEs)-RCPs were enriched in circRNA flanking regions. Moreover, we used expression quantitative trait nucleotide (eQTN) mapping to decipher the cis-regulatory role of MITEs. eQTN results showed that 14 single-nucleotide polymorphisms (SNPs) were significantly associated with Circ_0000408 and Circ_0003418 levels and the lead associated SNPs were located in MITE-RCP regions, indicating that MITE-RCP sequence variations affect exon circularization. Overexpression and knockdown analysis showed that Circ_0003418 positively modulated its parental gene, which encodes the RING-type E3 ligase XBAT32, and specifically increased the expression of the PtoXBAT32.5 transcript variant, which lacks the E3 ubiquitin ligase domain. Under heat stress, PtoXBAT32.5 expression was induced with up-regulation of Circ_0003418, resulting in increased production of ethylene and peroxidation of membrane lipids. Our findings thus reveal the cis-regulatory mechanism by which a MITE-RCP pair affects circRNA abundance in poplar and indicate that Circ_0003418 is a negative regulator of poplar heat tolerance via the ubiquitin-mediated protein modification pathway.
Collapse
Affiliation(s)
- Yuepeng Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Chenhao Bu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Panfei Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Peng Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| |
Collapse
|
35
|
Gomès É, Maillot P, Duchêne É. Molecular Tools for Adapting Viticulture to Climate Change. FRONTIERS IN PLANT SCIENCE 2021; 12:633846. [PMID: 33643361 PMCID: PMC7902699 DOI: 10.3389/fpls.2021.633846] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 05/04/2023]
Abstract
Adaptation of viticulture to climate change includes exploration of new geographical areas, new training systems, new management practices, or new varieties, both for rootstocks and scions. Molecular tools can be defined as molecular approaches used to study DNAs, RNAs, and proteins in all living organisms. We present here the current knowledge about molecular tools and their potential usefulness in three aspects of grapevine adaptation to the ongoing climate change. (i) Molecular tools for understanding grapevine response to environmental stresses. A fine description of the regulation of gene expression is a powerful tool to understand the physiological mechanisms set up by the grapevine to respond to abiotic stress such as high temperatures or drought. The current knowledge on gene expression is continuously evolving with increasing evidence of the role of alternative splicing, small RNAs, long non-coding RNAs, DNA methylation, or chromatin activity. (ii) Genetics and genomics of grapevine stress tolerance. The description of the grapevine genome is more and more precise. The genetic variations among genotypes are now revealed with new technologies with the sequencing of very long DNA molecules. High throughput technologies for DNA sequencing also allow now the genetic characterization at the same time of hundreds of genotypes for thousands of points in the genome, which provides unprecedented datasets for genotype-phenotype associations studies. We review the current knowledge on the genetic determinism of traits for the adaptation to climate change. We focus on quantitative trait loci and molecular markers available for developmental stages, tolerance to water stress/water use efficiency, sugar content, acidity, and secondary metabolism of the berries. (iii) Controlling the genome and its expression to allow breeding of better-adapted genotypes. High-density DNA genotyping can be used to select genotypes with specific interesting alleles but genomic selection is also a powerful method able to take into account the genetic information along the whole genome to predict a phenotype. Modern technologies are also able to generate mutations that are possibly interesting for generating new phenotypes but the most promising one is the direct editing of the genome at a precise location.
Collapse
Affiliation(s)
- Éric Gomès
- EGFV, University of Bordeaux – Bordeaux Sciences-Agro – INRAE, Villenave d’Ornon, France
| | - Pascale Maillot
- SVQV, INRAE – University of Strasbourg, Colmar, France
- University of Haute Alsace, Mulhouse, France
| | - Éric Duchêne
- SVQV, INRAE – University of Strasbourg, Colmar, France
| |
Collapse
|
36
|
Emerging roles of centromeric RNAs in centromere formation and function. Genes Genomics 2021; 43:217-226. [PMID: 33523401 DOI: 10.1007/s13258-021-01041-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Centromeres are specialized chromosomal domains involved in kinetochore formation and faithful chromosome segregation. Despite a high level of functional conservation, centromeres are not identified by DNA sequences, but by epigenetic means. Universally, centromeres are typically formed on highly repetitive DNA, which were previously considered to be silent. However, recent studies have shown that transcription occurs in this region, known as centromeric-derived RNAs (cenRNAs). CenRNAs that contribute to fundamental aspects of centromere function have been recently investigated in detail. However, the distribution, behavior and contributions of centromeric transcripts are still poorly understood. OBJECTIVE The aim of this article is to provide an overview of the roles of cenRNAs in centromere formation and function. METHODS We describe the structure and DNA sequence of centromere from yeast to human. In addition, we briefly introduce the roles of cenRNAs in centromere formation and function, kinetochore structure, accurate chromosome segregation, and pericentromeric heterochromatin assembly. Centromeric circular RNAs (circRNAs) and R-loops are rising stars in centromere function. CircRNAs have been successfully identified in various species with the assistance of high-throughput sequencing and novel computational approaches for non-polyadenylated RNA transcripts. Centromeric R-loops can be identified by the single-strand DNA ligation-based library preparation technique. But the molecular features and function of these centromeric R-loops and circRNAs are still being investigated. CONCLUSION In this review, we summarize recent findings on the epigenetic regulation of cenRNAs across species, which would provide useful information about cenRNAs and interesting hints for further studies.
Collapse
|
37
|
Zhou R, Sanz-Jimenez P, Zhu XT, Feng JW, Shao L, Song JM, Chen LL. Analysis of Rice Transcriptome Reveals the LncRNA/CircRNA Regulation in Tissue Development. RICE (NEW YORK, N.Y.) 2021; 14:14. [PMID: 33507446 PMCID: PMC7843763 DOI: 10.1186/s12284-021-00455-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/08/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can play important roles in many biological processes. However, no study of the influence of epigenetics factors or the 3D structure of the genome in their regulation is available in plants. RESULTS In the current analysis, we identified a total of 15,122 lncRNAs and 7902 circRNAs in three tissues (root, leaf and panicle) in the rice varieties Minghui 63, Zhenshan 97 and their hybrid Shanyou 63. More than 73% of these lncRNAs and parental genes of circRNAs (P-circRNAs) are shared among Oryza sativa with high expression specificity. We found that, compared with protein-coding genes, the loci of these lncRNAs have higher methylation levels and the loci of circRNAs tend to locate in the middle of genes with high CG and CHG methylation. Meanwhile, the activated lncRNAs and P-circRNAs are mainly transcribed from demethylated regions containing CHH methylation. In addition, ~ 53% lncRNAs and ~ 15% P-circRNAs are associated with transposable elements (TEs), especially miniature inverted-repeat transposable elements and RC/Helitron. We didn't find correlation between the expression of lncRNAs and histone modifications; however, we found that the binding strength and interaction of RNAPII significantly affects lncRNA expression. Interestingly, P-circRNAs tend to combine active histone modifications. Finally, we found that lncRNAs and circRNAs acting as competing-endogenous RNAs have the potential to regulate the expression of genes, such as osa-156 l-5p (related to yield) and osa-miR444a-3p (related to N/P metabolism) confirmed through dual-luciferase reporter assays, with important roles in the growth and development of rice, laying a foundation for future rice breeding analyses. CONCLUSIONS In conclusion, our study comprehensively analyzed the important regulatory roles of lncRNA/circRNA in the tissue development of Indica rice from multiple perspectives.
Collapse
Affiliation(s)
- Run Zhou
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Pablo Sanz-Jimenez
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xi-Tong Zhu
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jia-Wu Feng
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lin Shao
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jia-Ming Song
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- College of Life Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China
| | - Ling-Ling Chen
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- College of Life Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|
38
|
Sharma P, Guria A, Natesan S, Pandi G. Generation of Transgenic Rice Expressing CircRNA and Its Functional Characterization. Methods Mol Biol 2021; 2362:35-68. [PMID: 34195956 DOI: 10.1007/978-1-0716-1645-1_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Circular RNA (CircRNA) is yet another vital addition to the noncoding RNA family. They are mainly derived by fusion of downstream 3' splice donor with upstream 5' splice acceptor by a noncanonical form of alternative splicing mechanism called backsplicing. An array of functional aspects of these circRNAs has been reported in animal systems. However, functional investigation of circRNA in plants is very limited. In this chapter, we described a methodological outline to study the circRNA biogenesis and to characterize its function(s). Sequence of a newly identified Oryza sativa Indica circRNA flanked by complementary repeat sequences of a rice intron was assembled to yield a circRNA expression cassette. This cassette can be cloned into any plant expression vector which has a suitable promoter (CaMV 35S or ubiquitin promoter) and terminator, and can be used for any circRNA-mediated functional studies. Subsequent agroinfection of rice calli with this cassette yielded circRNA expressing transgenic plants. These transgenic plants were used to establish a correlation between the expressing circRNA, parental gene, and interacting miRNAs. Moreover, effect of circRNA overexpression on plant phenotype under various stress conditions can be studied using these transgenic plants. Also, RNA pull-down assay can be performed to identify the circRNA interacting proteins and the expression of these RBPs can also be studied from these transgenic plants.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Ashirbad Guria
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Sankar Natesan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India.
| | - Gopal Pandi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India.
| |
Collapse
|
39
|
Yang X, Liu Y, Zhang H, Wang J, Zinta G, Xie S, Zhu W, Nie WF. Genome-Wide Identification of Circular RNAs in Response to Low-Temperature Stress in Tomato Leaves. Front Genet 2020; 11:591806. [PMID: 33250924 PMCID: PMC7674948 DOI: 10.3389/fgene.2020.591806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/06/2020] [Indexed: 11/13/2022] Open
Abstract
Abiotic stress adversely inhibits the growth and development of plants, by changing the expression of multiple genes. Circular RNAs (circRNAs), as a class of non-coding RNAs, function in transcriptional and posttranscriptional regulation. Yet, the involvement of circRNAs in abiotic stress response is rarely reported. In this study, the participation and function of circRNAs in low-temperature (LT)-induced stress response were investigated in tomato leaves. We generated genome-wide profiles of circRNAs and mRNAs in tomato leaves grown at 25°C room temperature (RT) and 12°C LT. Our results show that 1,830 circRNAs were identified in tomato leaves in both RT and LT treatments, among which 1,759 were differentially induced by the LT treatment. We find that the identified circRNAs are mainly located at exons of genes, but less distributed at introns of genes or intergenic regions. Our results suggest that there are 383 differentially expressed circRNAs predicted to function as putative sponges of 266 miRNAs to target 4,476 mRNAs in total. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis assays indicate that multiple pathways were enriched in both differentially expressed genes induced by LT and parental genes of differentially expressed circRNAs induced by LT, revealing the key functions of circRNAs and the corresponding targeted genes in response to LT stress. Our results suggest that circRNAs may be involved in regulating metabolism (i.e., carbohydrate, amino acid, lipid, and energy), signal transduction, and environmental adaptation-related pathways and that these circRNAs were predicted to regulate the expression of transcription factors, genes in signal transduction pathways, and genes related to the Ca2+ channel through targeting the corresponding proteins, such as WRKY, NAC, cytochrome P450, and calmodulin binding protein. Taken together, our study uncovers that multiple circRNAs are isolated and differently regulated in response to LT stress and provides the resource and potential networks of circRNA–miRNA–mRNA under LT stress for further investigations in tomato leaves.
Collapse
Affiliation(s)
- Xuedong Yang
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yahui Liu
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hui Zhang
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jinyu Wang
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Gaurav Zinta
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | | | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wen-Feng Nie
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
40
|
Zhu C, Zhang S, Zhou C, Chen L, Zaripov T, Zhan D, Weng J, Lin Y, Lai Z, Guo Y. Integrated Transcriptome, microRNA, and Phytochemical Analyses Reveal Roles of Phytohormone Signal Transduction and ABC Transporters in Flavor Formation of Oolong Tea ( Camellia sinensis) during Solar Withering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12749-12767. [PMID: 33112139 DOI: 10.1021/acs.jafc.0c05750] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The unique aroma and flavor of oolong tea develop during the withering stage of postharvest processing. We explored the roles of miRNA-related regulatory networks during tea withering and their effects on oolong tea quality. We conducted transcriptome and miRNA analyses to identify differentially expressed (DE) miRNAs and target genes among fresh leaves, indoor-withered leaves, and solar-withered leaves. We identified 32 DE-miRNAs and 41 target genes involved in phytohormone signal transduction and ABC transporters. Further analyses indicated that these two pathways regulated the accumulation of flavor-related metabolites during tea withering. Flavonoid accumulation was correlated with the miR167d_1-ARF-GH3, miR845-ABCC1-3/ABCC2, miR166d-5p_1-ABCC1-2, and miR319c_3-PIF-ARF modules. Terpenoid content was correlated with the miR171b-3p_2-DELLA-MYC2 and miR166d-5p_1-ABCG2-MYC2 modules. These modules inhibited flavonoid biosynthesis and enhanced terpenoid biosynthesis in solar-withered leaves. Low auxin and gibberellic acid contents and circRNA-related regulatory networks also regulated the accumulation of flavor compounds in solar-withered leaves. Our analyses reveal how solar withering produces high-quality oolong tea.
Collapse
Affiliation(s)
- Chen Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuting Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lan Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Timur Zaripov
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongmei Zhan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingjing Weng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
41
|
CircPlant: An Integrated Tool for circRNA Detection and Functional Prediction in Plants. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:352-358. [PMID: 33157302 PMCID: PMC7801249 DOI: 10.1016/j.gpb.2020.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 01/26/2019] [Accepted: 02/15/2019] [Indexed: 12/22/2022]
Abstract
The recent discovery of circular RNAs (circRNAs) and characterization of their functional roles have opened a new avenue for understanding the biology of genomes. circRNAs have been implicated to play important roles in a variety of biological processes, but their precise functions remain largely elusive. Currently, a few approaches are available for novel circRNA prediction, but almost all these methods are intended for animal genomes. Considering that the major differences between the organization of plant and mammal genomes cannot be neglected, a plant-specific method is needed to enhance the validity of plant circRNA identification. In this study, we present CircPlant, an integrated tool for the exploration of plant circRNAs, potentially acting as competing endogenous RNAs (ceRNAs), and their potential functions. With the incorporation of several unique plant-specific criteria, CircPlant can accurately detect plant circRNAs from high-throughput RNA-seq data. Based on comparison tests on simulated and real RNA-seq datasets from Arabidopsis thaliana and Oryza sativa, we show that CircPlant outperforms all evaluated competing tools in both accuracy and efficiency. CircPlant is freely available at http://bis.zju.edu.cn/circplant.
Collapse
|
42
|
Tahir Ul Qamar M, Zhu X, Khan MS, Xing F, Chen LL. Pan-genome: A promising resource for noncoding RNA discovery in plants. THE PLANT GENOME 2020; 13:e20046. [PMID: 33217199 DOI: 10.1002/tpg2.20046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 05/05/2023]
Abstract
Plant genomes contain both protein-coding and noncoding sequences including transposable elements (TEs) and noncoding RNAs (ncRNAs). The ncRNAs are recognized as important elements that play fundamental roles in the structural organization and function of plant genomes. Despite various hypotheses, TEs are believed to be a major precursor of ncRNAs. Transposable elements are also prime factors that cause genomic variation among members of a species. Hence, TEs pose a major challenge in the discovery and analysis of ncRNAs. With the increase in the number of sequenced plant genomes, it is now accepted that a single reference genome is insufficient to represent the complete genomic diversity and contents of a species, and exploring the pan-genome of a species is critical. In this review, we summarize the recent progress in the field of plant pan-genomes. We also discuss TEs and their roles in ncRNA biogenesis and present our perspectives on the application of pan-genomes for the discovery of ncRNAs to fully explore and exploit their biological roles in plants.
Collapse
Affiliation(s)
- Muhammad Tahir Ul Qamar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, P. R. China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Xitong Zhu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Muhammad Sarwar Khan
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Feng Xing
- College of Life Science, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, P. R. China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| |
Collapse
|
43
|
Zheng WQ, Zhang Y, Chen B, Wei M, Wang XW, Du L. Identification and Characterization of circRNAs in the Developing Stem Cambium of Poplar Seedlings. Mol Biol 2020. [DOI: 10.1134/s0026893320050131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Philips A, Nowis K, Stelmaszczuk M, Jackowiak P, Podkowiński J, Handschuh L, Figlerowicz M. Expression Landscape of circRNAs in Arabidopsis thaliana Seedlings and Adult Tissues. FRONTIERS IN PLANT SCIENCE 2020; 11:576581. [PMID: 33014000 PMCID: PMC7511659 DOI: 10.3389/fpls.2020.576581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/25/2020] [Indexed: 05/27/2023]
Abstract
RNA-seq is currently the only method that can provide a comprehensive landscape of circular RNA (circRNAs) in the whole organism and its particular organs. Recent years have brought an increasing number of RNA-seq-based reports on plant circRNAs. Notably, the picture they revealed is questionable and depends on the applied circRNA identification and quantification techniques. In consequence, little is known about the biogenesis and functions of circRNAs in plants. In this work, we tested two experimental and six bioinformatics procedures of circRNA analysis to determine the optimal approach for studying the profiles of circRNAs in Arabidopsis thaliana. Then using the optimized strategy, we determined the accumulation of circular and corresponding linear transcripts in plant seedlings and organs. We observed that only a small fraction of circRNAs was reproducibly generated. Among them, two groups of circRNAs were discovered: ubiquitous and organ-specific. The highest number of circRNAs with significantly increased accumulation in comparison to other organs/seedlings was found in roots. The circRNAs in seedlings, leaves and flowers originated mainly from genes involved in photosynthesis and the response to stimulus. The levels of circular and linear transcripts were not correlated. Although RNase R treatment enriches the analyzed RNA samples in circular transcripts, it may also have a negative impact on the stability of some of the circRNAs. We also showed that the normalization of NGS data by the library size is not proper for circRNAs quantification. Alternatively, we proposed four other normalization types whose accuracy was confirmed by ddPCR. Moreover, we provided a comprehensive characterization of circRNAs in A. thaliana organs and in seedlings. Our analyses revealed that plant circRNAs are formed in both stochastic and controlled processes. The latter are less frequent and likely engage circRNA-specific mechanisms. Only a few circRNAs were organ-specific. The lack of correlation between the accumulation of linear and circular transcripts indicated that their biogenesis depends on different mechanisms.
Collapse
Affiliation(s)
- Anna Philips
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Katarzyna Nowis
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Michal Stelmaszczuk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Paulina Jackowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Jan Podkowiński
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Luiza Handschuh
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| |
Collapse
|
45
|
Wang X, Chang X, Jing Y, Zhao J, Fang Q, Sun M, Zhang Y, Li W, Li Y. Identification and functional prediction of soybean CircRNAs involved in low-temperature responses. JOURNAL OF PLANT PHYSIOLOGY 2020; 250:153188. [PMID: 32450394 DOI: 10.1016/j.jplph.2020.153188] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 05/22/2023]
Abstract
Circular RNAs (circRNAs) are a newly characterized type of noncoding RNA and play important roles in microRNA (miRNA) function and transcriptional control. To unravel the mechanism of soybean circRNAs in low-temperature (LT) stress response, genome-wide identification of soybean circRNAs was conducted under LT (4 °C) treatment via deep sequencing. In this study, the existence of backsplicing sites was validated and circRNAs exhibited specific expression patterns in response to LT. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that circRNAs could participate in LT-responsive processes. Our study revealed a new circRNA-miRNA-mRNA network, which is involved in LT responses. Furthermore, soybean circRNAs were predicted to have potential to encode polypeptides or protein. Taken together, our results indicate that soybean circRNAs might encode proteins and be involved in the regulation of LT responses, providing clues regarding the molecular LT-responsive mechanisms in soybean.
Collapse
Affiliation(s)
- Xuesong Wang
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China.
| | - Xingchao Chang
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China.
| | - Ya Jing
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China.
| | - Jialiang Zhao
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China.
| | - Qingwei Fang
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China.
| | - Mingyang Sun
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China.
| | - Yanzheng Zhang
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China.
| | - Wenbin Li
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China.
| | - Yongguang Li
- College of Agronomy, Northeast Agricultural University, Harbin, China; Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, China.
| |
Collapse
|
46
|
Wang H, Wang H, Zhang H, Liu S, Wang Y, Gao Y, Xi F, Zhao L, Liu B, Reddy ASN, Lin C, Gu L. The interplay between microRNA and alternative splicing of linear and circular RNAs in eleven plant species. Bioinformatics 2020; 35:3119-3126. [PMID: 30689723 DOI: 10.1093/bioinformatics/btz038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 01/02/2019] [Accepted: 01/21/2019] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION MicroRNA (miRNA) and alternative splicing (AS)-mediated post-transcriptional regulation has been extensively studied in most eukaryotes. However, the interplay between AS and miRNAs has not been explored in plants. To our knowledge, the overall profile of miRNA target sites in circular RNAs (circRNA) generated by alternative back splicing has never been reported previously. To address the challenge, we identified miRNA target sites located in alternatively spliced regions of the linear and circular splice isoforms using the up-to-date single-molecule real-time (SMRT) isoform sequencing (Iso-Seq) and Illumina sequencing data in eleven plant species. RESULTS In total, we identified 399 401 and 114 574 AS events from linear and circular RNAs, respectively. Among them, there were 64 781 and 41 146 miRNA target sites located in linear and circular AS region, respectively. In addition, we found 38 913 circRNAs to be overlapping with 45 648 AS events of its own parent isoforms, suggesting circRNA regulation of AS of linear RNAs by forming R-loop with the genomic locus. Here, we present a comprehensive database of miRNA targets in alternatively spliced linear and circRNAs (ASmiR) and a web server for deposition and identification of miRNA target sites located in the alternatively spliced region of linear and circular RNAs. This database is accompanied by an easy-to-use web query interface for meaningful downstream analysis. Plant research community can submit user-defined datasets to the web service to search AS regions harboring small RNA target sites. In conclusion, this study provides an unprecedented resource to understand regulatory relationships between miRNAs and AS in both gymnosperms and angiosperms. AVAILABILITY AND IMPLEMENTATION The readily accessible database and web-based tools are available at http://forestry.fafu.edu.cn/bioinfor/db/ASmiR. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Huiyuan Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology
| | - Huihui Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology
| | - Hangxiao Zhang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology
| | - Sheng Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongsheng Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology.,College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yubang Gao
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology.,College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feihu Xi
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology.,College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liangzhen Zhao
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology
| | - Bo Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Anireddy S N Reddy
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Chentao Lin
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology.,Department of Molecular Cell & Developmental Biology, University of California, Los Angeles, CA, USA
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology
| |
Collapse
|
47
|
Zhang P, Li S, Chen M. Characterization and Function of Circular RNAs in Plants. Front Mol Biosci 2020; 7:91. [PMID: 32509801 PMCID: PMC7248317 DOI: 10.3389/fmolb.2020.00091] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
CircRNAs are covalently closed-loop single-stranded RNA molecules ubiquitously expressing in eukaryotes. As an important member of the endogenous ncRNA family, circRNAs are associated with diverse biological processes and can regulate transcription, modulate alternative splicing, and interact with miRNAs or proteins. Compared to abundant advances in animals, studies of circRNAs in plants are rapidly emerging. The databases and analysis tools for plant circRNAs are constantly being developed. Large numbers of circRNAs have been identified and characterized in plants and proved to play regulatory roles in plant growth, development, and stress responses. Here, we review the biogenesis, characteristics, bioinformatics resources, and biological functions of plant circRNAs, and summarize the distinct circularization features and differentially expression patterns comparison with animal-related results.
Collapse
Affiliation(s)
- Peijing Zhang
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sida Li
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ming Chen
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
48
|
Luo Z, Qian J, Chen S, Li L. Dynamic patterns of circular and linear RNAs in maize hybrid and parental lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:593-604. [PMID: 31784779 DOI: 10.1007/s00122-019-03489-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Hybrid vigor, also known as heterosis, has been widely utilized in agronomic production of maize (Zea mays L.) and other crops. However, the molecular mechanisms underlying heterosis are still not fully understood. To provide a more complete understanding of the transcriptomic dynamics associated with heterosis, we collected a comprehensive set of sequence data on linear mRNA transcripts and circular RNAs (circRNAs) from seedling leaves of two widely used maize inbred lines and their F1 hybrid at the V4 growth stage. We detected over 25,000 expressed genes with more than 1200 circRNAs that showed dramatic and distinct variations in expression level across the three genotypes. Although most linear and circular transcripts exhibited additive expression in the hybrid, the expression of circRNAs was more likely to be nonadditive. Interestingly, the levels of linear transcripts and their corresponding circRNAs from the same loci showed a significant relationship and coordinated expression mode across all three genotypes. Notably, in the hybrid, allele-specific expression of linear transcripts was significantly associated with the expression of circRNAs from the same locus, suggesting potential regulatory cross talk between linear and circular transcripts. Our study provides a deeper understanding of dynamic variations for both the linear and circular transcriptome in a classical hybrid triplet of maize.
Collapse
Affiliation(s)
- Zi Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia Qian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sijia Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
49
|
Identification and Characterization of circRNAs Responsive to Methyl Jasmonate in Arabidopsis thaliana. Int J Mol Sci 2020; 21:ijms21030792. [PMID: 31991793 PMCID: PMC7037704 DOI: 10.3390/ijms21030792] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/09/2020] [Accepted: 01/23/2020] [Indexed: 12/23/2022] Open
Abstract
Circular RNAs (circRNAs) are endogenous noncoding RNAs with covalently closed continuous loop structures that are formed by 3′–5′ ligation during splicing. These molecules are involved in diverse physiological and developmental processes in eukaryotic cells. Jasmonic acid (JA) is a critical hormonal regulator of plant growth and defense. However, the roles of circRNAs in the JA regulatory network are unclear. In this study, we performed high-throughput sequencing of Arabidopsis thaliana at 24 h, 48 h, and 96 h after methyl JA (MeJA) treatment. A total of 8588 circRNAs, which were distributed on almost all chromosomes, were identified, and the majority of circRNAs had lengths between 200 and 800 bp. We identified 385 differentially expressed circRNAs (DEcircRNAs) by comparing data between MeJA-treated and untreated samples. Gene Ontology (GO) enrichment analysis of the host genes that produced the DEcircRNAs showed that the DEcircRNAs are mainly involved in response to stimulation and metabolism. Additionally, some DEcircRNAs were predicted to act as miRNA decoys. Eight DEcircRNAs were validated by qRT-PCR with divergent primers, and the junction sites of five DEcircRNAs were validated by PCR analysis and Sanger sequencing. Our results provide insight into the potential roles of circRNAs in the MeJA regulation network.
Collapse
|
50
|
Guria A, Sharma P, Natesan S, Pandi G. Circular RNAs-The Road Less Traveled. Front Mol Biosci 2020; 6:146. [PMID: 31998746 PMCID: PMC6965350 DOI: 10.3389/fmolb.2019.00146] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022] Open
Abstract
Circular RNAs are the most recent addition in the non-coding RNA family, which has started to gain recognition after a decade of obscurity. The first couple of reports that emerged at the beginning of this decade and the amount of evidence that has accumulated thereafter has, however, encouraged RNA researchers to navigate further in the quest for the exploration of circular RNAs. The joining of 5′ and 3′ ends of RNA molecules through backsplicing forms circular RNAs during co-transcriptional or post-transcriptional processes. These molecules are capable of effectively sponging microRNAs, thereby regulating the cellular processes, as evidenced by numerous animal and plant systems. Preliminary studies have shown that circular RNA has an imperative role in transcriptional regulation and protein translation, and it also has significant therapeutic potential. The high stability of circular RNA is rendered by its closed ends; they are nevertheless prone to degradation by circulating endonucleases in serum or exosomes or by microRNA-mediated cleavage due to their high complementarity. However, the identification of circular RNAs involves diverse methodologies and the delineation of its possible role and mechanism in the regulation of cellular and molecular architecture has provided a new direction for the continuous research into circular RNA. In this review, we discuss the possible mechanism of circular RNA biogenesis, its structure, properties, degradation, and the growing amount of evidence regarding the detection methods and its role in animal and plant systems.
Collapse
Affiliation(s)
- Ashirbad Guria
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Priyanka Sharma
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Sankar Natesan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Gopal Pandi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| |
Collapse
|