1
|
Schnabel E, Thomas J, El-Hawaz R, Gao Y, Poehlman WL, Chavan S, Pasha A, Esteban E, Provart N, Feltus FA, Frugoli J. Laser Capture Microdissection Transcriptome Reveals Spatiotemporal Tissue Gene Expression Patterns of Medicago truncatula Roots Responding to Rhizobia. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:805-820. [PMID: 37717250 DOI: 10.1094/mpmi-03-23-0029-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
We report a public resource for examining the spatiotemporal RNA expression of 54,893 Medicago truncatula genes during the first 72 h of response to rhizobial inoculation. Using a methodology that allows synchronous inoculation and growth of more than 100 plants in a single media container, we harvested the same segment of each root responding to rhizobia in the initial inoculation over a time course, collected individual tissues from these segments with laser capture microdissection, and created and sequenced RNA libraries generated from these tissues. We demonstrate the utility of the resource by examining the expression patterns of a set of genes induced very early in nodule signaling, as well as two gene families (CLE peptides and nodule specific PLAT-domain proteins) and show that despite similar whole-root expression patterns, there are tissue differences in expression between the genes. Using a rhizobial response dataset generated from transcriptomics on intact root segments, we also examined differential temporal expression patterns and determined that, after nodule tissue, the epidermis and cortical cells contained the most temporally patterned genes. We circumscribed gene lists for each time and tissue examined and developed an expression pattern visualization tool. Finally, we explored transcriptomic differences between the inner cortical cells that become nodules and those that do not, confirming that the expression of 1-aminocyclopropane-1-carboxylate synthases distinguishes inner cortical cells that become nodules and provide and describe potential downstream genes involved in early nodule cell division. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Elise Schnabel
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634, U.S.A
| | - Jacklyn Thomas
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634, U.S.A
| | - Rabia El-Hawaz
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634, U.S.A
| | - Yueyao Gao
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634, U.S.A
| | - William L Poehlman
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634, U.S.A
- Sage Bionetworks, Seattle, WA 98121, U.S.A
| | - Suchitra Chavan
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634, U.S.A
- Leidos, Inc., Atlanta, GA 30345, U.S.A
| | - Asher Pasha
- Department of Cell and Systems Biology, University of Toronto, ON M5S 3B2, Canada
| | - Eddi Esteban
- Department of Cell and Systems Biology, University of Toronto, ON M5S 3B2, Canada
| | - Nicholas Provart
- Department of Cell and Systems Biology, University of Toronto, ON M5S 3B2, Canada
| | - F Alex Feltus
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634, U.S.A
- Biomedical Data Science and Informatics Program, Clemson University, Clemson, SC 29634, U.S.A
- Clemson Center for Human Genetics, Clemson University, Greenwood, SC 29636, U.S.A
| | - Julia Frugoli
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634, U.S.A
| |
Collapse
|
2
|
Gao F, Yang J, Zhai N, Zhang C, Ren X, Zeng Y, Chen Y, Chen R, Pan H. NCR343 is required to maintain the viability of differentiated bacteroids in nodule cells in Medicago truncatula. THE NEW PHYTOLOGIST 2023; 240:815-829. [PMID: 37533094 DOI: 10.1111/nph.19180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
Bacteroid (name for rhizobia inside nodule cells) differentiation is a prerequisite for successful nitrogen-fixing symbiosis. In certain legumes, under the regulation of host proteins, for example, a large group of NCR (nodule cysteine rich) peptides, bacteroids undergo irreversible terminal differentiation. This process causes them to lose the ability to propagate inside nodule cells while boosting their competency for nitrogen fixation. How host cells maintain the viability of differentiated bacteroids while maximizing their nitrogen-reducing activities remains elusive. Here, through mutant screen, map-based cloning, and genetic complementation, we find that NCR343 is required for the viability of differentiated bacteroids. In Medicago truncatula debino1 mutant, differentiated bacteroids decay prematurely, and NCR343 is proved to be the casual gene for debino1. NCR343 is mainly expressed in the nodule fixation zone, where bacteroids are differentiated. In nodule cells, mature NCR343 peptide is secreted into the symbiosomes. RNA-Seq assay shows that many stress-responsive genes are significantly induced in debino1 bacteroids. Additionally, a group of stress response-related rhizobium proteins are identified as putative interacting partners of NCR343. In summary, our findings demonstrate that beyond promoting bacteroid differentiation, NCR peptides are also required in maintaining the viability of differentiated bacteroids.
Collapse
Affiliation(s)
- Fengzhan Gao
- College of Biology, Hunan University, Changsha, 410082, China
| | - Jian Yang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Niu Zhai
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Chao Zhang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Xinru Ren
- College of Biology, Hunan University, Changsha, 410082, China
| | - Yating Zeng
- College of Biology, Hunan University, Changsha, 410082, China
| | - Yuhui Chen
- College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Rujin Chen
- College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huairong Pan
- College of Biology, Hunan University, Changsha, 410082, China
| |
Collapse
|
3
|
Mangena P. Cell Mutagenic Autopolyploidy Enhances Salinity Stress Tolerance in Leguminous Crops. Cells 2023; 12:2082. [PMID: 37626892 PMCID: PMC10453822 DOI: 10.3390/cells12162082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/30/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Salinity stress affects plant growth and development by causing osmotic stress and nutrient imbalances through excess Na+, K+, and Cl- ion accumulations that induce toxic effects during germination, seedling development, vegetative growth, flowering, and fruit set. However, the effects of salt stress on growth and development processes, especially in polyploidized leguminous plants, remain unexplored and scantly reported compared to their diploid counterparts. This paper discusses the physiological and molecular response of legumes towards salinity stress-based osmotic and ionic imbalances in plant cells. A multigenic response involving various compatible solutes, osmolytes, ROS, polyamines, and antioxidant activity, together with genes encoding proteins involved in the signal transduction, regulation, and response mechanisms to this stress, were identified and discussed. This discussion reaffirms polyploidization as the driving force in plant evolution and adaptation to environmental stress constraints such as drought, feverish temperatures, and, in particular, salt stress. As a result, thorough physiological and molecular elucidation of the role of gene duplication through induced autopolyploidization and possible mechanisms regulating salinity stress tolerance in grain legumes must be further studied.
Collapse
Affiliation(s)
- Phetole Mangena
- Department of Biodiversity, School of Molecular and Life Sciences, Faculty of Science and Agriculture, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| |
Collapse
|
4
|
Jardinaud MF, Carrere S, Gourion B, Gamas P. Symbiotic Nodule Development and Efficiency in the Medicago truncatula Mtefd-1 Mutant Is Highly Dependent on Sinorhizobium Strains. PLANT & CELL PHYSIOLOGY 2023; 64:27-42. [PMID: 36151948 DOI: 10.1093/pcp/pcac134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Symbiotic nitrogen fixation (SNF) can play a key role in agroecosystems to reduce the negative impact of nitrogen fertilizers. Its efficiency is strongly affected by the combination of bacterial and plant genotypes, but the mechanisms responsible for the differences in the efficiency of rhizobium strains are not well documented. In Medicago truncatula, SNF has been mostly studied using model systems, such as M. truncatula A17 in interaction with Sinorhizobium meliloti Sm2011. Here we analyzed both the wild-type (wt) A17 and the Mtefd-1 mutant in interaction with five S. meliloti and two Sinorhizobium medicae strains. ETHYLENE RESPONSE FACTOR REQUIRED FOR NODULE DIFFERENTIATION (MtEFD) encodes a transcription factor, which contributes to the control of nodule number and differentiation in M. truncatula. We found that, in contrast to Sm2011, four strains induce functional (Fix+) nodules in Mtefd-1, although less efficient for SNF than in wt A17. In contrast, the Mtefd-1 hypernodulation phenotype is not strain-dependent. We compared the plant nodule transcriptomes in response to SmBL225C, a highly efficient strain with A17, versus Sm2011, in wt and Mtefd-1 backgrounds. This revealed faster nodule development with SmBL225C and early nodule senescence with Sm2011. These RNA sequencing analyses allowed us to identify candidate plant factors that could drive the differential nodule phenotype. In conclusion, this work shows the value of having a set of rhizobium strains to fully evaluate the biological importance of a plant symbiotic gene.
Collapse
Affiliation(s)
- Marie-Françoise Jardinaud
- LIPME, INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde Rouge, Auzeville-Tolosane 31320, France
| | - Sebastien Carrere
- LIPME, INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde Rouge, Auzeville-Tolosane 31320, France
| | - Benjamin Gourion
- LIPME, INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde Rouge, Auzeville-Tolosane 31320, France
| | - Pascal Gamas
- LIPME, INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde Rouge, Auzeville-Tolosane 31320, France
| |
Collapse
|
5
|
Jain D, Jones L, Roy S. Gene editing to improve legume-rhizobia symbiosis in a changing climate. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102324. [PMID: 36535148 DOI: 10.1016/j.pbi.2022.102324] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
In the last three years, several gene editing techniques have been developed for both model and crop legumes. CRISPR-Cas9-based tools, in particular, are outpacing other comparable gene editing technologies used in legume hosts and their microbial symbionts to understand the molecular basis of symbiotic nitrogen-fixation. Gene editing has helped identify new gene functions, validate genetic screens, resolve gene redundancy, examine the role of tandemly duplicated genes, and investigate symbiotic signaling networks in non-model plants. In this review, we discuss the advances made in understanding the legume-rhizobia symbiosis through the use of gene editing and highlight studies conducted under varying environmental conditions. We reason that future climate-hardy legumes must be able to better integrate environmental signals with nitrogen fixation by fine-tuning long distance signaling, continuing to select efficient rhizobial partners, and adjusting their molecular circuitry to function optimally under variable light and nutrient availability and rising atmospheric carbon dioxide.
Collapse
Affiliation(s)
- Divya Jain
- College of Agriculture, Tennessee State University, Nashville, TN 37209, USA
| | - Lauren Jones
- Noble Research Institute, LLC, Ardmore, OK 73401, USA
| | - Sonali Roy
- College of Agriculture, Tennessee State University, Nashville, TN 37209, USA.
| |
Collapse
|
6
|
Ul Haq SI, Zheng D, Feng N, Jiang X, Qiao F, He JS, Qiu QS. Progresses of CRISPR/Cas9 genome editing in forage crops. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153860. [PMID: 36371870 DOI: 10.1016/j.jplph.2022.153860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mediated-genome editing has evolved into a powerful tool that is widely used in plant species to induce editing in the genome for analyzing gene function and crop improvement. CRISPR/Cas9 is an RNA-guided genome editing tool consisting of a Cas9 nuclease and a single-guide RNA (sgRNA). The CRISPR/Cas9 system enables more accurate and efficient genome editing in crops. In this review, we summarized the advances of the CRISPR/Cas9 technology in plant genome editing and its applications in forage crops. We described briefly about the development of CRISPR/Cas9 technology in plant genome editing. We assessed the progress of CRISPR/Cas9-mediated targeted-mutagenesis in various forage crops, including alfalfa, Medicago truncatula, Hordeum vulgare, Sorghum bicolor, Setaria italica and Panicum virgatum. The potentials and challenges of CRISPR/Cas9 in forage breeding were discussed.
Collapse
Affiliation(s)
- Syed Inzimam Ul Haq
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Xingyu Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Feng Qiao
- Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810016, China
| | - Jin-Sheng He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, 730000, China; Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810016, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| |
Collapse
|
7
|
Dinkins RD, Hancock JA, Bickhart DM, Sullivan ML, Zhu H. Expression and Variation of the Genes Involved in Rhizobium Nodulation in Red Clover. PLANTS (BASEL, SWITZERLAND) 2022; 11:2888. [PMID: 36365339 PMCID: PMC9655500 DOI: 10.3390/plants11212888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Red clover (Trifolium pratense L.) is an important forage crop and serves as a major contributor of nitrogen input in pasture settings because of its ability to fix atmospheric nitrogen. During the legume-rhizobial symbiosis, the host plant undergoes a large number of gene expression changes, leading to development of root nodules that house the rhizobium bacteria as they are converted into nitrogen-fixing bacteroids. Many of the genes involved in symbiosis are conserved across legume species, while others are species-specific with little or no homology across species and likely regulate the specific plant genotype/symbiont strain interactions. Red clover has not been widely used for studying symbiotic nitrogen fixation, primarily due to its outcrossing nature, making genetic analysis rather complicated. With the addition of recent annotated genomic resources and use of RNA-seq tools, we annotated and characterized a number of genes that are expressed only in nodule forming roots. These genes include those encoding nodule-specific cysteine rich peptides (NCRs) and nodule-specific Polycystin-1, Lipoxygenase, Alpha toxic (PLAT) domain proteins (NPDs). Our results show that red clover encodes one of the highest number of NCRs and ATS3-like/NPDs, which are postulated to increase nitrogen fixation efficiency, in the Inverted-Repeat Lacking Clade (IRLC) of legumes. Knowledge of the variation and expression of these genes in red clover will provide more insights into the function of these genes in regulating legume-rhizobial symbiosis and aid in breeding of red clover genotypes with increased nitrogen fixation efficiency.
Collapse
Affiliation(s)
- Randy D. Dinkins
- Forage-Animal Production Research Unit, USDA-ARS, Lexington, KY 40506, USA
| | - Julie A. Hancock
- College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40508, USA
| | | | | | - Hongyan Zhu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
8
|
Baloglu MC, Celik Altunoglu Y, Baloglu P, Yildiz AB, Türkölmez N, Özden Çiftçi Y. Gene-Editing Technologies and Applications in Legumes: Progress, Evolution, and Future Prospects. Front Genet 2022; 13:859437. [PMID: 35836569 PMCID: PMC9275826 DOI: 10.3389/fgene.2022.859437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/13/2022] [Indexed: 12/22/2022] Open
Abstract
Legumes are rich in protein and phytochemicals and have provided a healthy diet for human beings for thousands of years. In recognition of the important role they play in human nutrition and agricultural production, the researchers have made great efforts to gain new genetic traits in legumes such as yield, stress tolerance, and nutritional quality. In recent years, the significant increase in genomic resources for legume plants has prepared the groundwork for applying cutting-edge breeding technologies, such as transgenic technologies, genome editing, and genomic selection for crop improvement. In addition to the different genome editing technologies including the CRISPR/Cas9-based genome editing system, this review article discusses the recent advances in plant-specific gene-editing methods, as well as problems and potential benefits associated with the improvement of legume crops with important agronomic properties. The genome editing technologies have been effectively used in different legume plants including model legumes like alfalfa and lotus, as well as crops like soybean, cowpea, and chickpea. We also discussed gene-editing methods used in legumes and the improvements of agronomic traits in model and recalcitrant legumes. Despite the immense opportunities genome editing can offer to the breeding of legumes, governmental regulatory restrictions present a major concern. In this context, the comparison of the regulatory framework of genome editing strategies in the European Union and the United States of America was also discussed. Gene-editing technologies have opened up new possibilities for the improvement of significant agronomic traits in legume breeding.
Collapse
Affiliation(s)
- Mehmet Cengiz Baloglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Yasemin Celik Altunoglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Pinar Baloglu
- Research and Application Center, Kastamonu University, Kastamonu, Turkey
| | - Ali Burak Yildiz
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Turkey
| | - Nil Türkölmez
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Turkey
| | - Yelda Özden Çiftçi
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Turkey
- Smart Agriculture Research and Application Center, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
9
|
Yu L, Huang T, Qi X, Yu J, Wu T, Luo Z, Zhou L, Li Y. Genome-Wide Analysis of Long Non-coding RNAs Involved in Nodule Senescence in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2022; 13:917840. [PMID: 35707611 PMCID: PMC9189404 DOI: 10.3389/fpls.2022.917840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Plant long non-coding RNAs (lncRNAs) are widely accepted to play crucial roles during diverse biological processes. In recent years, thousands of lncRNAs related to the establishment of symbiosis, root nodule organogenesis and nodule development have been identified in legumes. However, lncRNAs involved in nodule senescence have not been reported. In this study, senescence-related lncRNAs were investigated in Medicago truncatula nodules by high-throughput strand-specific RNA-seq. A total of 4576 lncRNAs and 126 differentially expressed lncRNAs (DElncRNAs) were identified. We found that more than 60% lncRNAs were associated with transposable elements, especially TIR/Mutator and Helitron DNA transposons families. In addition, 49 DElncRNAs were predicted to be the targets of micro RNAs. Functional analysis showed that the largest sub-set of differently expressed target genes of DElncRNAs were associated with the membrane component. Of these, nearly half genes were related to material transport, suggesting that an important function of DElncRNAs during nodule senescence is the regulation of substance transport across membranes. Our findings will be helpful for understanding the functions of lncRNAs in nodule senescence and provide candidate lncRNAs for further research.
Collapse
|
10
|
Gao Y, Selee B, Schnabel EL, Poehlman WL, Chavan SA, Frugoli JA, Feltus FA. Time Series Transcriptome Analysis in Medicago truncatula Shoot and Root Tissue During Early Nodulation. FRONTIERS IN PLANT SCIENCE 2022; 13:861639. [PMID: 35463395 PMCID: PMC9021838 DOI: 10.3389/fpls.2022.861639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
In response to colonization by rhizobia bacteria, legumes are able to form nitrogen-fixing nodules in their roots, allowing the plants to grow efficiently in nitrogen-depleted environments. Legumes utilize a complex, long-distance signaling pathway to regulate nodulation that involves signals in both roots and shoots. We measured the transcriptional response to treatment with rhizobia in both the shoots and roots of Medicago truncatula over a 72-h time course. To detect temporal shifts in gene expression, we developed GeneShift, a novel computational statistics and machine learning workflow that addresses the time series replicate the averaging issue for detecting gene expression pattern shifts under different conditions. We identified both known and novel genes that are regulated dynamically in both tissues during early nodulation including leginsulin, defensins, root transporters, nodulin-related, and circadian clock genes. We validated over 70% of the expression patterns that GeneShift discovered using an independent M. truncatula RNA-Seq study. GeneShift facilitated the discovery of condition-specific temporally differentially expressed genes in the symbiotic nodulation biological system. In principle, GeneShift should work for time-series gene expression profiling studies from other systems.
Collapse
Affiliation(s)
- Yueyao Gao
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
| | - Bradley Selee
- Department of Electrical and Computer Engineering, Clemson University, Clemson, SC, United States
| | - Elise L. Schnabel
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
| | - William L. Poehlman
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Sage Bionetworks, Seattle, WA, United States
| | - Suchitra A. Chavan
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
| | - Julia A. Frugoli
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
| | - Frank Alex Feltus
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Biomedical Data Science and Informatics Program, Clemson University, Clemson, SC, United States
- Clemson Center for Human Genetics, Greenwood, SC, United States
| |
Collapse
|
11
|
Rathi D, Verma JK, Pareek A, Chakraborty S, Chakraborty N. Dissection of grasspea (Lathyrus sativus L.) root exoproteome reveals critical insights and novel proteins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111161. [PMID: 35151446 DOI: 10.1016/j.plantsci.2021.111161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/20/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
The plant exoproteome is crucial because its constituents greatly influence plant phenotype by regulating physiological characteristics to adapt to environmental stresses. The root exudates constitute a dynamic aspect of plant exoproteome, as its molecular composition ensures a beneficial rhizosphere in a species-specific manner. We investigated the root exoproteome of grasspea, a stress-resilient pulse and identified 2861 non-redundant proteins, belonging to a myriad of functional classes, including root development, rhizosphere augmentation as well as defense functions against soil-borne pathogens. Significantly, we identified 1986 novel exoproteome constituents of grasspea, potentially involved in cell-to-cell communication and root meristem maintenance, among other critical roles. Sequence-based comparison revealed that grasspea shares less than 30 % of its exoproteome with the reports so far from model plants as well as crop species. Further, the exoproteome revealed 65 % proteins to be extracellular in nature and of these, 37 % constituents were predicted to follow unconventional protein secretion (UPS) mode. We validated the UPS for four stress-responsive proteins, which were otherwise predicted to follow classical protein secretion (CPS). Conclusively, we recognized not only the highest number of root exudate proteins, but also pinpointed novel signatures of dicot root exoproteome.
Collapse
Affiliation(s)
- Divya Rathi
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra Kumar Verma
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Akanksha Pareek
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
12
|
Characteristics and Research Progress of Legume Nodule Senescence. PLANTS 2021; 10:plants10061103. [PMID: 34070891 PMCID: PMC8227080 DOI: 10.3390/plants10061103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022]
Abstract
Delaying the nodule senescence of legume crops can prolong the time of nitrogen fixation and attenuate the lack of fertilizer in the later stage of legume crop cultivation, resulting in improved crop yield and reduced usage of nitrogen fertilizer. However, effective measures to delay the nodule senescence of legume crops in agriculture are relatively lacking. In the present review, we summarized the structural and physiological characteristics of nodule senescence, as well as the corresponding detection methods, providing technical support for the identification of nodule senescence phenotype. We then outlined the key genes currently known to be involved in the regulation of nodule senescence, offering the molecular genetic information for breeding varieties with delayed nodule senescence. In addition, we reviewed various abiotic factors affecting nodule senescence, providing a theoretical basis for the interaction between molecular genetics and abiotic factors in the regulation of nodule senescence. Finally, we briefly prospected research foci of nodule senescence in the future.
Collapse
|
13
|
Bradyrhizobium diazoefficiens USDA110 Nodulation of Aeschynomene afraspera Is Associated with Atypical Terminal Bacteroid Differentiation and Suboptimal Symbiotic Efficiency. mSystems 2021; 6:6/3/e01237-20. [PMID: 33975972 PMCID: PMC8125078 DOI: 10.1128/msystems.01237-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Legume-rhizobium symbiosis is a major ecological process in the nitrogen cycle, responsible for the main input of fixed nitrogen into the biosphere. The efficiency of this symbiosis relies on the coevolution of the partners. Legume plants can form root organs called nodules where they house intracellular symbiotic rhizobium bacteria. Within nodule cells, rhizobia differentiate into bacteroids, which fix nitrogen for the benefit of the plant. Depending on the combination of host plants and rhizobial strains, the output of rhizobium-legume interactions varies from nonfixing associations to symbioses that are highly beneficial for the plant. Bradyrhizobium diazoefficiens USDA110 was isolated as a soybean symbiont, but it can also establish a functional symbiotic interaction with Aeschynomene afraspera. In contrast to soybean, A. afraspera triggers terminal bacteroid differentiation, a process involving bacterial cell elongation, polyploidy, and increased membrane permeability, leading to a loss of bacterial viability while plants increase their symbiotic benefit. A combination of plant metabolomics, bacterial proteomics, and transcriptomics along with cytological analyses were used to study the physiology of USDA110 bacteroids in these two host plants. We show that USDA110 establishes a poorly efficient symbiosis with A. afraspera despite the full activation of the bacterial symbiotic program. We found molecular signatures of high levels of stress in A. afraspera bacteroids, whereas those of terminal bacteroid differentiation were only partially activated. Finally, we show that in A. afraspera, USDA110 bacteroids undergo atypical terminal differentiation hallmarked by the disconnection of the canonical features of this process. This study pinpoints how a rhizobium strain can adapt its physiology to a new host and cope with terminal differentiation when it did not coevolve with such a host. IMPORTANCE Legume-rhizobium symbiosis is a major ecological process in the nitrogen cycle, responsible for the main input of fixed nitrogen into the biosphere. The efficiency of this symbiosis relies on the coevolution of the partners. Some, but not all, legume plants optimize their return on investment in the symbiosis by imposing on their microsymbionts a terminal differentiation program that increases their symbiotic efficiency but imposes a high level of stress and drastically reduces their viability. We combined multi-omics with physiological analyses to show that the symbiotic couple formed by Bradyrhizobium diazoefficiens USDA110 and Aeschynomene afraspera, in which the host and symbiont did not evolve together, is functional but displays a low symbiotic efficiency associated with a disconnection of terminal bacteroid differentiation features.
Collapse
|
14
|
Lima RM, Kylarová S, Mergaert P, Kondorosi É. Unexplored Arsenals of Legume Peptides With Potential for Their Applications in Medicine and Agriculture. Front Microbiol 2020; 11:1307. [PMID: 32625188 PMCID: PMC7314904 DOI: 10.3389/fmicb.2020.01307] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
During endosymbiosis, bacteria live intracellularly in the symbiotic organ of their host. The host controls the proliferation of endosymbionts and prevents their spread to other tissues and organs. In Rhizobium-legume symbiosis the major host effectors are secreted nodule-specific cysteine-rich (NCR) peptides, produced exclusively in the symbiotic cells. NCRs have evolved in the Inverted Repeat Lacking Clade (IRLC) of the Leguminosae family. They are secreted peptides that mediate terminal differentiation of the endosymbionts, forming polyploid, non-cultivable cells with increased membrane permeability. NCRs form an extremely large family of peptides, which have four or six conserved cysteines but otherwise highly diverse amino acid sequences, resulting in a wide variety of anionic, neutral and cationic peptides. In vitro, many synthetic NCRs have strong antimicrobial activities against both Gram-negative and Gram-positive bacteria, including the ESKAPE strains and pathogenic fungi. The spectra and minimal bactericidal and anti-fungal concentrations of NCRs differ, indicating that, in addition to their charge, the amino acid composition and sequence also play important roles in their antimicrobial activity. NCRs attack the bacteria and fungi at the cell envelope and membrane as well as intracellularly, forming interactions with multiple essential cellular machineries. NCR-like peptides with similar symbiotic functions as the NCRs also exist in other branches of the Leguminosae family. Thus, legumes provide countless and so far unexplored sources of symbiotic peptides representing an enormous resource of pharmacologically interesting molecules.
Collapse
Affiliation(s)
- Rui M Lima
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Salome Kylarová
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Peter Mergaert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Éva Kondorosi
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| |
Collapse
|