1
|
Wang Y, Jiang Y, Feng F, Guo Y, Hao J, Huyan L, Du C, Xu L, Lu B. Transcriptome analysis reveals key genes and pathways for prickle development in Zanthoxylumarmatum. Heliyon 2024; 10:e27222. [PMID: 38486734 PMCID: PMC10937696 DOI: 10.1016/j.heliyon.2024.e27222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/10/2023] [Accepted: 02/26/2024] [Indexed: 03/17/2024] Open
Abstract
Zanthoxylum armatum is an economically important tree species. However, well-developed prickles on its stems and leaves pose serious challenges in terms of management and harvesting. To investigate the molecular mechanism underlying prickle development, we sequenced different stages of prickle morphological development and transcriptomes of different tissues in the root tips (Gen), leaf buds (Ya), and fruits of Z. armatum. The results revealed that proteins related to cell division and genes related to the growth hormone signaling pathway were highly expressed in the prickle just protrusion (PC1). In addition, a high expression of lignin biosynthesis genes was observed during the developmental onset of lignification (PC2) and prickle lignification (PC3). These findings indicate that phenylpropanoid biosynthesis and plant hormone signal transduction are key pathways for the completion of lignification development in the prickle. During prickle development, ZaMYB2 and ZaWRKY3 were significantly upregulated in PC2 and PC3, suggesting their possible involvement in prickle development. Transcriptome and qRT-PCR analyses revealed differential gene expression of zaPAL3, za4CLL1, zaCOMT1, ZaWRKY3, and ZaCCD31 in the Gen, Ya, newly formed fruit (ZaF1), newly oil-spotted fruits (ZaF2), PC1, PC2, and PC3 of Zarmatum. zaCCD31 was highly expressed in leaf buds, whereas Za4CLL1 was highly expressed in root tips. During the lignification of prickles, the relative expression of genes including zaMYB2 increased gradually; however, the relative expression of zaCCD31 decreased during this process. Therefore, we inferred that these genes might be closely related to prickle development. Notably, zaMYB2 was expressed at higher levels in PC2 and PC3 than in PC1 and was not expressed in Gen, Ya, ZaF1, and ZaF2. Therefore, zaMYB2 is a key gene involved in prickle development of Z. armatum that exhibited tissue-specific expression. This study establishes a foundation for future analyses of the molecular mechanism underlying prickle development in Z. armatum.
Collapse
Affiliation(s)
- Yi Wang
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| | - Yuhui Jiang
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
- Yunnan Agricultural University, School of Gardening and Horticulture, Kunming, 650201, China
| | - Fayu Feng
- Yibin Forestry and Bamboo Industry Research Institute, Yibin, 644000, China
| | - Yongqing Guo
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| | - Jiabo Hao
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| | - Li Huyan
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| | - Chunhua Du
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| | - Liang Xu
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| | - Bin Lu
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| |
Collapse
|
2
|
Karunarathne SI, Spokevicius AV, Bossinger G, Golz JF. Trees need closure too: Wound-induced secondary vascular tissue regeneration. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111950. [PMID: 38070652 DOI: 10.1016/j.plantsci.2023.111950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/03/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Trees play a pivotal role in terrestrial ecosystems as well as being an important natural resource. These attributes are primarily associated with the capacity of trees to continuously produce woody tissue from the vascular cambium, a ring of stem cells located just beneath the bark. Long-lived trees are exposed to a myriad of biological and environmental stresses that may result in wounding, leading to a loss of bark and the underlying vascular cambium. This affects both wood formation and the quality of timber arising from the tree. In addition, the exposed wound site is a potential entry point for pathogens that cause disease. In response to wounding, trees have the capacity to regenerate lost or damaged tissues at this site. Investigating gene expression changes associated with different stages of wound healing reveals complex and dynamic changes in the activity of transcription factors, signalling pathways and hormone responses. In this review we summarise these data and discuss how they relate to our current understanding of vascular cambium formation and xylem differentiation during secondary growth. Based on this analysis, a model for wound healing that provides the conceptual foundations for future studies aimed at understanding this intriguing process is proposed.
Collapse
Affiliation(s)
- Sachinthani I Karunarathne
- School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Antanas V Spokevicius
- School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gerd Bossinger
- School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - John F Golz
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
3
|
Zhang Y, Wang L, Wu Y, Wang D, He XQ. Gibberellin promotes cambium reestablishment during secondary vascular tissue regeneration after girdling in an auxin-dependent manner in Populus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:86-102. [PMID: 38051026 DOI: 10.1111/jipb.13591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023]
Abstract
Secondary vascular tissue (SVT) development and regeneration are regulated by phytohormones. In this study, we used an in vitro SVT regeneration system to demonstrate that gibberellin (GA) treatment significantly promotes auxin-induced cambium reestablishment. Altering GA content by overexpressing or knocking down ent-kaurene synthase (KS) affected secondary growth and SVT regeneration in poplar. The poplar DELLA gene GIBBERELLIC ACID INSENSITIVE (PtoGAI) is expressed in a specific pattern during secondary growth and cambium regeneration after girdling. Overexpression of PtoGAI disrupted poplar growth and inhibited cambium regeneration, and the inhibition of cambium regeneration could be partially restored by GA application. Further analysis of the PtaDR5:GUS transgenic plants, the localization of PIN-FORMED 1 (PIN1) and the expression of auxin-related genes found that an additional GA treatment could enhance the auxin response as well as the expression of PIN1, which mediates auxin transport during SVT regeneration. Taken together, these findings suggest that GA promotes cambium regeneration by stimulating auxin signal transduction.
Collapse
Affiliation(s)
- Yufei Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Lingyan Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yuexin Wu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Donghui Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xin-Qiang He
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
4
|
Zhang L, Xie S, Yang C, Cao D, Fan S, Zhang X. Comparative Transcriptome Analysis Reveals Candidate Genes and Pathways for Potential Branch Growth in Elm ( Ulmus pumila) Cultivars. BIOLOGY 2022; 11:711. [PMID: 35625439 PMCID: PMC9139171 DOI: 10.3390/biology11050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
Abstract
Wood plays a vital role in human life. It is important to study the thickening mechanism of tree branches and explore the mechanism of wood formation. Elm (Ulmus pumila) is a strong essential wood, and it is widely used in cabinets, sculptures, and ship making. In the present study, phenotypic and comparative transcriptomic analyses were performed in U. pumila fast- (UGu17 and UZuantian) and slow-growing cultivars (U81-07 and U82-39). Phenotypic observation showed that the thickness of secondary xylem of 2-year-old fast-growing branches was greater compared with slow-growing cultivars. A total of 9367 (up = 4363, down = 5004), 7159 (3413/3746), 7436 (3566/3870), and 5707 (2719/2988) differentially expressed genes (DEGs) were identified between fast- and slow-growing cultivars. Moreover, GO and KEGG enrichment analyses predicted that many pathways were involved in vascular development and transcriptional regulation in elm, such as "plant-type secondary cell wall biogenesis", "cell wall thickening", and "phenylpropanoid biosynthesis". NAC domain transcriptional factors (TFs) and their master regulators (VND1/MYB26), cellulose synthase catalytic subunits (CESAs) (such as IRX5/IRX3/IRX1), xylan synthesis, and secondary wall thickness (such as IRX9/IRX10/IRX8) were supposed to function in the thickening mechanism of elm branches. Our results indicated that the general phenylpropanoid pathway (such as PAL/C4H/4CL) and lignin metabolism (such as HCL/CSE/CCoAOMT/CCR/F5H) had vital functions in the growth of elm branches. Our transcriptome data were consistent with molecular results for branch thickening in elm cultivars.
Collapse
Affiliation(s)
| | | | | | | | - Shoujin Fan
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China; (L.Z.); (S.X.); (C.Y.); (D.C.)
| | - Xuejie Zhang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China; (L.Z.); (S.X.); (C.Y.); (D.C.)
| |
Collapse
|
5
|
Han Z, Yang T, Guo Y, Cui WH, Yao LJ, Li G, Wu AM, Li JH, Liu LJ. The transcription factor PagLBD3 contributes to the regulation of secondary growth in Populus. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7092-7106. [PMID: 34313722 DOI: 10.1093/jxb/erab351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
LATERAL ORGAN BOUNDARIES DOMAIN (LBD) genes encode plant-specific transcription factors that participate in regulating various developmental processes. In this study, we genetically characterized PagLBD3 encoding an important regulator of secondary growth in poplar (Populus alba × Populus glandulosa). Overexpression of PagLBD3 increased stem secondary growth in Populus with a significantly higher rate of cambial cell differentiation into phloem, while dominant repression of PagLBD3 significantly decreased the rate of cambial cell differentiation into phloem. Furthermore, we identified 1756 PagLBD3 genome-wide putative direct target genes (DTGs) through RNA sequencing (RNA-seq)-coupled DNA affinity purification followed by sequencing (DAP-seq) assays. Gene Ontology analysis revealed that genes regulated by PagLBD3 were enriched in biological pathways regulating meristem development, xylem development, and auxin transport. Several central regulator genes for vascular development, including PHLOEM INTERCALATED WITH XYLEM (PXY), WUSCHEL RELATED HOMEOBOX4 (WOX4), Secondary Wall-Associated NAC Domain 1s (SND1-B2), and Vascular-Related NAC-Domain 6s (VND6-B1), were identified as PagLBD3 DTGs. Together, our results indicate that PagLBD3 and its DTGs form a complex transcriptional network to modulate cambium activity and phloem/xylem differentiation.
Collapse
Affiliation(s)
- Zhen Han
- College of Forestry, State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, Shandong Agriculture University, Taian, Shandong 271018, China
| | - Tong Yang
- College of Forestry, State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, Shandong Agriculture University, Taian, Shandong 271018, China
| | - Ying Guo
- College of Forestry, State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, Shandong Agriculture University, Taian, Shandong 271018, China
| | - Wen-Hui Cui
- College of Forestry, State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, Shandong Agriculture University, Taian, Shandong 271018, China
| | - Li-Juan Yao
- College of Forestry, State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, Shandong Agriculture University, Taian, Shandong 271018, China
| | - Gang Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agriculture University, Taian, Shandong 271018, China
| | - Ai-Min Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Ji-Hong Li
- College of Forestry, State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, Shandong Agriculture University, Taian, Shandong 271018, China
| | - Li-Jun Liu
- College of Forestry, State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, Shandong Agriculture University, Taian, Shandong 271018, China
| |
Collapse
|
6
|
Abstract
More than 60% of tree phytomass is concentrated in stem wood, which is the result of periodic activity of the cambium. Nevertheless, there are few attempts to quantitatively describe cambium dynamics. In this study, we develop a state-of-the-art band model of cambium development, based on the kinetic heterogeneity of the cambial zone and the connectivity of the cell structure. The model describes seasonal cambium development based on an exponential function under climate forcing which can be effectively used to estimate the seasonal cell production for individual trees. It was shown that the model is able to simulate different cell production for fast-, middle- and slow-growing trees under the same climate forcing. Based on actual measurements of cell production for two contrasted trees, the model effectively reconstructed long-term cell production variability (up to 75% of explained variance) of both tree-ring characteristics over the period 1937−2012. The new model significantly simplifies the assessment of seasonal cell production for individual trees of a studied forest stand and allows the entire range of individual absolute variability in the ring formation of any tree in the stand to be quantified, which can lead to a better understanding of the anatomy of xylem formation, a key component of the carbon cycle.
Collapse
|
7
|
Mazzoni-Putman SM, Brumos J, Zhao C, Alonso JM, Stepanova AN. Auxin Interactions with Other Hormones in Plant Development. Cold Spring Harb Perspect Biol 2021; 13:a039990. [PMID: 33903155 PMCID: PMC8485746 DOI: 10.1101/cshperspect.a039990] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Auxin is a crucial growth regulator that governs plant development and responses to environmental perturbations. It functions at the heart of many developmental processes, from embryogenesis to organ senescence, and is key to plant interactions with the environment, including responses to biotic and abiotic stimuli. As remarkable as auxin is, it does not act alone, but rather solicits the help of, or is solicited by, other endogenous signals, including the plant hormones abscisic acid, brassinosteroids, cytokinins, ethylene, gibberellic acid, jasmonates, salicylic acid, and strigolactones. The interactions between auxin and other hormones occur at multiple levels: hormones regulate one another's synthesis, transport, and/or response; hormone-specific transcriptional regulators for different pathways physically interact and/or converge on common target genes; etc. However, our understanding of this crosstalk is still fragmentary, with only a few pieces of the gigantic puzzle firmly established. In this review, we provide a glimpse into the complexity of hormone interactions that involve auxin, underscoring how patchy our current understanding is.
Collapse
Affiliation(s)
- Serina M Mazzoni-Putman
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Javier Brumos
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Chengsong Zhao
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
8
|
Suh JH, Tang X, Zhang Y, Gmitter FG, Wang Y. Metabolomic Analysis Provides New Insight Into Tolerance of Huanglongbing in Citrus. FRONTIERS IN PLANT SCIENCE 2021; 12:710598. [PMID: 34421957 PMCID: PMC8371912 DOI: 10.3389/fpls.2021.710598] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/30/2021] [Indexed: 05/17/2023]
Abstract
There have been efforts to develop citrus cultivars that are tolerant of Huanglongbing (HLB), a catastrophic phloem-limited disease. Previous studies demonstrated that continuous plant growth with phloem regeneration is one of the major characteristics of HLB tolerance. In this study, the metabolic mechanisms of HLB tolerance in citrus were elucidated using a multiple pathway-targeted metabolomic approach. Comparative analysis of healthy and infected HLB-tolerant and HLB-sensitive mandarin cultivars (Citrus reticulata) revealed differentially expressed metabolic responses among different groups. Pathway enrichment analysis indicated aspartate and glutamate metabolism, purine metabolism, and biosynthesis of plant hormones were upregulated in the tolerant group, except salicylic acid signaling. Catabolic pathways linked to energy-yielding metabolism were also upregulated in the tolerant group. These metabolisms and pathways were interconnected with each other, unveiling a pivotal metabolic network associated with HLB tolerance. In the network, auxins and cytokinins, the plant hormones responsible for plant growth and phloem regeneration, were accumulated. In addition, purine metabolites serving as energy carriers and nitrogen sources of plants were increased. Only salicylic acid-related metabolites for plant defense responses were decreased in the tolerant group. Our findings may evidence the strategy of HLB-tolerant cultivars that sustain plant growth and phloem formation rather than displaying direct plant defense to overcome the disease.
Collapse
Affiliation(s)
| | | | | | | | - Yu Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| |
Collapse
|