1
|
Barnes CJ, Bahram M, Nicolaisen M, Gilbert MTP, Vestergård M. Microbiome selection and evolution within wild and domesticated plants. Trends Microbiol 2024:S0966-842X(24)00314-7. [PMID: 39701859 DOI: 10.1016/j.tim.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
Microbes are ubiquitously found across plant surfaces and even within their cells, forming the plant microbiome. Many of these microbes contribute to the functioning of the host and consequently affect its fitness. Therefore, in many contexts, including microbiome effects enables a better understanding of the phenotype of the plant rather than considering the genome alone. Changes in the microbiome composition are also associated with changes in the functioning of the host, and there has been considerable focus on how environmental variables regulate plant microbiomes. More recently, studies suggest that the host genome also preconditions the microbiome to the environment of the plant, and the microbiome is therefore subject to evolutionary forces. Here, we outline how plant microbiomes are governed by both environmental variables and evolutionary processes and how they can regulate plant health together.
Collapse
Affiliation(s)
- Christopher James Barnes
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, 4200, Denmark; Centre for Evolutionary Hologenomics, The Globe Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark.
| | - Mo Bahram
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, 4200, Denmark; Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Ulls väg 16, 756 51, Sweden; Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St., 51005, Tartu, Estonia
| | - Mogens Nicolaisen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, 4200, Denmark
| | - M Thomas P Gilbert
- Centre for Evolutionary Hologenomics, The Globe Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark; University Museum, NTNU, Trondheim, Norway
| | - Mette Vestergård
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, 4200, Denmark
| |
Collapse
|
2
|
Hoang KL, Salguero-Gómez R, Pike VL, King KC. The impacts of host association and perturbation on symbiont fitness. Symbiosis 2024; 92:439-451. [PMID: 38666134 PMCID: PMC11039428 DOI: 10.1007/s13199-024-00984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/04/2024] [Indexed: 04/28/2024]
Abstract
Symbiosis can benefit hosts in numerous ways, but less is known about whether interactions with hosts benefit symbionts-the smaller species in the relationship. To determine the fitness impact of host association on symbionts in likely mutualisms, we conducted a meta-analysis across 91 unique host-symbiont pairings under a range of spatial and temporal contexts. Specifically, we assess the consequences to symbiont fitness when in and out of symbiosis, as well as when the symbiosis is under suboptimal or varying environments and biological conditions (e.g., host age). We find that some intracellular symbionts associated with protists tend to have greater fitness when the symbiosis is under stressful conditions. Symbionts of plants and animals did not exhibit this trend, suggesting that symbionts of multicellular hosts are more robust to perturbations. Symbiont fitness also generally increased with host age. Lastly, we show that symbionts able to proliferate in- and outside host cells exhibit greater fitness than those found exclusively inside or outside cells. The ability to grow in multiple locations may thus help symbionts thrive. We discuss these fitness patterns in light of host-driven factors, whereby hosts exert influence over symbionts to suit their own needs. Supplementary Information The online version contains supplementary material available at 10.1007/s13199-024-00984-6.
Collapse
Affiliation(s)
- Kim L. Hoang
- Department of Biology, University of Oxford, Oxford, UK
- Emory University School of Medicine, Atlanta, GA USA
| | | | | | - Kayla C. King
- Department of Biology, University of Oxford, Oxford, UK
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Harrison TL, Parshuram ZA, Frederickson ME, Stinchcombe JR. Is there a latitudinal diversity gradient for symbiotic microbes? A case study with sensitive partridge peas. Mol Ecol 2024; 33:e17191. [PMID: 37941312 DOI: 10.1111/mec.17191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
Mutualism is thought to be more prevalent in the tropics than temperate zones and may therefore play an important role in generating and maintaining high species richness found at lower latitudes. However, results on the impact of mutualism on latitudinal diversity gradients are mixed, and few empirical studies sample both temperate and tropical regions. We investigated whether a latitudinal diversity gradient exists in the symbiotic microbial community associated with the legume Chamaecrista nictitans. We sampled bacteria DNA from nodules and the surrounding soil of plant roots across a latitudinal gradient (38.64-8.68 °N). Using 16S rRNA sequence data, we identified many non-rhizobial species within C. nictitans nodules that cannot form nodules or fix nitrogen. Species richness increased towards lower latitudes in the non-rhizobial portion of the nodule community but not in the rhizobial community. The microbe community in the soil did not effectively predict the non-rhizobia community inside nodules, indicating that host selection is important for structuring non-rhizobia communities in nodules. We next factorially manipulated the presence of three non-rhizobia strains in greenhouse experiments and found that co-inoculations of non-rhizobia strains with rhizobia had a marginal effect on nodule number and no effect on plant growth. Our results suggest that these non-rhizobia bacteria are likely commensals-species that benefit from associating with a host but are neutral for host fitness. Overall, our study suggests that temperate C. nictitans plants are more selective in their associations with the non-rhizobia community, potentially due to differences in soil nitrogen across latitude.
Collapse
Affiliation(s)
- Tia L Harrison
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Zoe A Parshuram
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Granada Agudelo M, Ruiz B, Capela D, Remigi P. The role of microbial interactions on rhizobial fitness. FRONTIERS IN PLANT SCIENCE 2023; 14:1277262. [PMID: 37877089 PMCID: PMC10591227 DOI: 10.3389/fpls.2023.1277262] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023]
Abstract
Rhizobia are soil bacteria that can establish a nitrogen-fixing symbiosis with legume plants. As horizontally transmitted symbionts, the life cycle of rhizobia includes a free-living phase in the soil and a plant-associated symbiotic phase. Throughout this life cycle, rhizobia are exposed to a myriad of other microorganisms that interact with them, modulating their fitness and symbiotic performance. In this review, we describe the diversity of interactions between rhizobia and other microorganisms that can occur in the rhizosphere, during the initiation of nodulation, and within nodules. Some of these rhizobia-microbe interactions are indirect, and occur when the presence of some microbes modifies plant physiology in a way that feeds back on rhizobial fitness. We further describe how these interactions can impose significant selective pressures on rhizobia and modify their evolutionary trajectories. More extensive investigations on the eco-evolutionary dynamics of rhizobia in complex biotic environments will likely reveal fascinating new aspects of this well-studied symbiotic interaction and provide critical knowledge for future agronomical applications.
Collapse
Affiliation(s)
- Margarita Granada Agudelo
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Bryan Ruiz
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Delphine Capela
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Philippe Remigi
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|
5
|
Nagpal S, Sirari A, Sharma P, Singh S, Mandahal KS, Singh H, Singh S. Marker trait association for biological nitrogen fixation traits in an interspecific cross of chickpea ( Cicer arietinum × Cicer reticulatum). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1005-1018. [PMID: 37649881 PMCID: PMC10462594 DOI: 10.1007/s12298-023-01335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 09/01/2023]
Abstract
A set of 165 Recombinant inbred lines (RILs) derived from an interspecific cross of chickpea was used to identify QTLs for key biological nitrogen fixation (BNF) traits. The phenotyping of BNF and related traits was done at two different agroclimatic zones viz., Central plain zone (Ludhiana) and Sub-Mountainous undulating zone (Gurdaspur) for 2 consecutive rabi seasons (2018-2020). Wild parent C. reticulatum ILWC292 showed significantly high performance in terms of biological nitrogen fixation (BNF) traits over the cultivated C. arietinum GPF-2. The triple interaction of genotypes × locations × years was significant (p 0.05) for all BNF traits in parental lines. Highly significant positive correlation was obtained between grain yield and key growth and symbiotic parameters at both the sites. Phenotypic analysis revealed nodule dry weight and leghaemoglobin content as key traits for BNF efficiency and contrasting DNA bulks were constituted on the basis of these traits. Out of 535 SSR markers, 139 exhibited polymorphism between the parental lines on polyacrylamide gel electrophoresis. A total of 30 SSR markers showed polymorphism between the higher and lower bulks for nodule dry weight and leghaemoglobin content. Out of these, 20 SSRs did not show any segregation distortion in RIL population as determined by chi square analysis (p < 0.05) and were used for quantitative trait loci (QTL) analysis. Using QTL cartographer, markers- CAGM02697, CAGM09835, CAGM09777, CAGM09227, CAGM09021, CAGM08679 were found linked with QTLs for BNF. These markers can be validated further for identification of genes for BNF traits and marker assisted selection in chickpea. To the best of our knowledge this is the first report on identification of genomic regions associated with key BNF traits in chickpea across different agro-climatic zones. Supplementary information The online version contains supplementary material available at 10.1007/s12298-023-01335-3.
Collapse
Affiliation(s)
- Sharon Nagpal
- Department of Microbiology, Punjab Agricultural University, Ludhiana, 141004 India
| | - Asmita Sirari
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| | - Poonam Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| | - Satinder Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| | | | - Harpreet Singh
- Regional Research Station, Punjab Agricultural University, Gurdaspur, 143521 India
| | - Sarvjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| |
Collapse
|
6
|
Riley AB, Grillo MA, Epstein B, Tiffin P, Heath KD. Discordant population structure among rhizobium divided genomes and their legume hosts. Mol Ecol 2023; 32:2646-2659. [PMID: 36161739 DOI: 10.1111/mec.16704] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022]
Abstract
Symbiosis often occurs between partners with distinct life history characteristics and dispersal mechanisms. Many bacterial symbionts have genomes comprising multiple replicons with distinct rates of evolution and horizontal transmission. Such differences might drive differences in population structure between hosts and symbionts and among the elements of the divided genomes of bacterial symbionts. These differences might, in turn, shape the evolution of symbiotic interactions and bacterial evolution. Here we use whole genome resequencing of a hierarchically structured sample of 191 strains of Sinorhizobium meliloti collected from 21 locations in southern Europe to characterize population structures of this bacterial symbiont, which forms a root nodule symbiosis with the host plant Medicago truncatula. S. meliloti genomes showed high local (within-site) variation and little isolation by distance. This was particularly true for the two symbiosis elements, pSymA and pSymB, which have population structures that are similar to each other, but distinct from both the bacterial chromosome and the host plant. Given limited recombination on the chromosome, compared to the symbiosis elements, distinct population structures may result from differences in effective gene flow. Alternatively, positive or purifying selection, with little recombination, may explain distinct geographical patterns at the chromosome. Discordant population structure between hosts and symbionts indicates that geographically and genetically distinct host populations in different parts of the range might interact with genetically similar symbionts, potentially minimizing local specialization.
Collapse
Affiliation(s)
- Alex B Riley
- Department of Plant Biology, University of Illinois, Urbana, Illinois, USA
| | - Michael A Grillo
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Brendan Epstein
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Katy D Heath
- Department of Plant Biology, University of Illinois, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
7
|
Burghardt LT, diCenzo GC. The evolutionary ecology of rhizobia: multiple facets of competition before, during, and after symbiosis with legumes. Curr Opin Microbiol 2023; 72:102281. [PMID: 36848712 DOI: 10.1016/j.mib.2023.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 02/27/2023]
Abstract
Rhizobial bacteria have complex lifestyles that involve growth and survival in bulk soil, plant rhizospheres and rhizoplanes, legume infection threads, and mature and senescing legume nodules. In nature, rhizobia coexist and compete with many other rhizobial strains and species to form host associations. We review recent work defining competitive interactions across these environments. We highlight the use of sophisticated measurement tools and sequencing technologies to examine competition mechanisms in planta, and highlight environments (e.g. soil and senescing nodules) where we still know exceedingly little. We argue that moving toward an explicitly ecological framework (types of competition, resources, and genetic differentiation) will clarify the evolutionary ecology of these foundational organisms and open doors for engineering sustainable, beneficial associations with hosts.
Collapse
Affiliation(s)
- Liana T Burghardt
- The Pennsylvania State University, Department of Plant Science, University Park, PA 16802, United States; The Pennsylvania State University, Ecology Graduate Program, University Park, PA 16802, United States.
| | - George C diCenzo
- Queen's University, Department of Biology, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
8
|
Jardinaud MF, Carrere S, Gourion B, Gamas P. Symbiotic Nodule Development and Efficiency in the Medicago truncatula Mtefd-1 Mutant Is Highly Dependent on Sinorhizobium Strains. PLANT & CELL PHYSIOLOGY 2023; 64:27-42. [PMID: 36151948 DOI: 10.1093/pcp/pcac134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Symbiotic nitrogen fixation (SNF) can play a key role in agroecosystems to reduce the negative impact of nitrogen fertilizers. Its efficiency is strongly affected by the combination of bacterial and plant genotypes, but the mechanisms responsible for the differences in the efficiency of rhizobium strains are not well documented. In Medicago truncatula, SNF has been mostly studied using model systems, such as M. truncatula A17 in interaction with Sinorhizobium meliloti Sm2011. Here we analyzed both the wild-type (wt) A17 and the Mtefd-1 mutant in interaction with five S. meliloti and two Sinorhizobium medicae strains. ETHYLENE RESPONSE FACTOR REQUIRED FOR NODULE DIFFERENTIATION (MtEFD) encodes a transcription factor, which contributes to the control of nodule number and differentiation in M. truncatula. We found that, in contrast to Sm2011, four strains induce functional (Fix+) nodules in Mtefd-1, although less efficient for SNF than in wt A17. In contrast, the Mtefd-1 hypernodulation phenotype is not strain-dependent. We compared the plant nodule transcriptomes in response to SmBL225C, a highly efficient strain with A17, versus Sm2011, in wt and Mtefd-1 backgrounds. This revealed faster nodule development with SmBL225C and early nodule senescence with Sm2011. These RNA sequencing analyses allowed us to identify candidate plant factors that could drive the differential nodule phenotype. In conclusion, this work shows the value of having a set of rhizobium strains to fully evaluate the biological importance of a plant symbiotic gene.
Collapse
Affiliation(s)
- Marie-Françoise Jardinaud
- LIPME, INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde Rouge, Auzeville-Tolosane 31320, France
| | - Sebastien Carrere
- LIPME, INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde Rouge, Auzeville-Tolosane 31320, France
| | - Benjamin Gourion
- LIPME, INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde Rouge, Auzeville-Tolosane 31320, France
| | - Pascal Gamas
- LIPME, INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde Rouge, Auzeville-Tolosane 31320, France
| |
Collapse
|
9
|
Quides KW, Lee Y, Hur T, Atamian HS. Evaluation of qPCR to Detect Shifts in Population Composition of the Rhizobial Symbiont Mesorhizobium japonicum during Serial in Planta Transfers. BIOLOGY 2023; 12:biology12020277. [PMID: 36829553 PMCID: PMC9953586 DOI: 10.3390/biology12020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023]
Abstract
Microbial symbionts range from mutualistic to commensal to antagonistic. While these roles are distinct in their outcome, they are also fluid in a changing environment. Here, we used the Lotus japonicus-Mesorhizobium japonicum symbiosis to investigate short-term and long-term shifts in population abundance using an effective, fast, and low-cost tracking methodology for M. japonicum. We use quantitative polymerase chain reaction (qPCR) to track previously generated signature-tagged M. japonicum mutants targeting the Tn5 transposon insertion and the flanking gene. We used a highly beneficial wild type and moderately beneficial and non-beneficial mutants of M. japonicum sp. nov. to demonstrate the specificity of these primers to estimate the relative abundance of each genotype within individual nodules and after serial transfers to new hosts. For the moderate and non-beneficial genotypes, qPCR allowed us to differentiate genotypes that are phenotypically indistinguishable and investigate host control with suboptimal symbionts. We consistently found the wild type increasing in the proportion of the population, but our data suggest a potential reproductive trade-off between the moderate and non-beneficial genotypes. The multi-generation framework we used, coupled with qPCR, can easily be scaled up to track dozens of M. japonicum mutants simultaneously. Moreover, these mutants can be used to explore M. japonicum genotype abundance in the presence of a complex soil community.
Collapse
Affiliation(s)
- Kenjiro W. Quides
- Biological Sciences Program, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Yoobeen Lee
- Biological Sciences Program, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Teresa Hur
- Biological Sciences Program, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Hagop S. Atamian
- Biological Sciences Program, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
- Correspondence:
| |
Collapse
|
10
|
Genome-Wide Association Studies across Environmental and Genetic Contexts Reveal Complex Genetic Architecture of Symbiotic Extended Phenotypes. mBio 2022; 13:e0182322. [PMID: 36286519 PMCID: PMC9765617 DOI: 10.1128/mbio.01823-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A goal of modern biology is to develop the genotype-phenotype (G→P) map, a predictive understanding of how genomic information generates trait variation that forms the basis of both natural and managed communities. As microbiome research advances, however, it has become clear that many of these traits are symbiotic extended phenotypes, being governed by genetic variation encoded not only by the host's own genome, but also by the genomes of myriad cryptic symbionts. Building a reliable G→P map therefore requires accounting for the multitude of interacting genes and even genomes involved in symbiosis. Here, we use naturally occurring genetic variation in 191 strains of the model microbial symbiont Sinorhizobium meliloti paired with two genotypes of the host Medicago truncatula in four genome-wide association studies (GWAS) to determine the genomic architecture of a key symbiotic extended phenotype-partner quality, or the fitness benefit conferred to a host by a particular symbiont genotype, within and across environmental contexts and host genotypes. We define three novel categories of loci in rhizobium genomes that must be accounted for if we want to build a reliable G→P map of partner quality; namely, (i) loci whose identities depend on the environment, (ii) those that depend on the host genotype with which rhizobia interact, and (iii) universal loci that are likely important in all or most environments. IMPORTANCE Given the rapid rise of research on how microbiomes can be harnessed to improve host health, understanding the contribution of microbial genetic variation to host phenotypic variation is pressing, and will better enable us to predict the evolution of (and select more precisely for) symbiotic extended phenotypes that impact host health. We uncover extensive context-dependency in both the identity and functions of symbiont loci that control host growth, which makes predicting the genes and pathways important for determining symbiotic outcomes under different conditions more challenging. Despite this context-dependency, we also resolve a core set of universal loci that are likely important in all or most environments, and thus, serve as excellent targets both for genetic engineering and future coevolutionary studies of symbiosis.
Collapse
|
11
|
Klein M, Stewart JD, Porter SS, Weedon JT, Kiers ET. Evolution of manipulative microbial behaviors in the rhizosphere. Evol Appl 2022; 15:1521-1536. [PMID: 36330300 PMCID: PMC9624083 DOI: 10.1111/eva.13333] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 01/01/2023] Open
Abstract
The rhizosphere has been called "one of the most complex ecosystems on earth" because it is a hotspot for interactions among millions of microbial cells. Many of these are microbes are also participating in a dynamic interplay with host plant tissues, signaling pathways, and metabolites. Historically, breeders have employed a plant-centric perspective when trying to harness the potential of microbiome-derived benefits to improve productivity and resilience of economically important plants. This is potentially problematic because: (i) the evolution of the microbes themselves is often ignored, and (ii) it assumes that the fitness of interacting plants and microbes is strictly aligned. In contrast, a microbe-centric perspective recognizes that putatively beneficial microbes are still under selection to increase their own fitness, even if there are costs to the host. This can lead to the evolution of sophisticated, potentially subtle, ways for microbes to manipulate the phenotype of their hosts, as well as other microbes in the rhizosphere. We illustrate this idea with a review of cases where rhizosphere microbes have been demonstrated to directly manipulate host root growth, architecture and exudation, host nutrient uptake systems, and host immunity and defense. We also discuss indirect effects, whereby fitness outcomes for the plant are a consequence of ecological interactions between rhizosphere microbes. If these consequences are positive for the plant, they can potentially be misconstrued as traits that have evolved to promote host growth, even if they are a result of selection for unrelated functions. The ubiquity of both direct microbial manipulation of hosts and context-dependent, variable indirect effects leads us to argue that an evolutionary perspective on rhizosphere microbial ecology will become increasingly important as we continue to engineer microbial communities for crop production.
Collapse
Affiliation(s)
- Malin Klein
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Justin D. Stewart
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Stephanie S. Porter
- School of Biological SciencesWashington State UniversityVancouverWashingtonUSA
| | - James T. Weedon
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - E. Toby Kiers
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
12
|
Burghardt LT, Epstein B, Hoge M, Trujillo DI, Tiffin P. Host-Associated Rhizobial Fitness: Dependence on Nitrogen, Density, Community Complexity, and Legume Genotype. Appl Environ Microbiol 2022; 88:e0052622. [PMID: 35852362 PMCID: PMC9361818 DOI: 10.1128/aem.00526-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022] Open
Abstract
The environmental context of the nitrogen-fixing mutualism between leguminous plants and rhizobial bacteria varies over space and time. Variation in resource availability, population density, and composition likely affect the ecology and evolution of rhizobia and their symbiotic interactions with hosts. We examined how host genotype, nitrogen addition, rhizobial density, and community complexity affected selection on 68 rhizobial strains in the Sinorhizobium meliloti-Medicago truncatula mutualism. As expected, host genotype had a substantial effect on the size, number, and strain composition of root nodules (the symbiotic organ). The understudied environmental variable of rhizobial density had a stronger effect on nodule strain frequency than the addition of low nitrogen levels. Higher inoculum density resulted in a nodule community that was less diverse and more beneficial but only in the context of the more selective host genotype. Higher density resulted in more diverse and less beneficial nodule communities with the less selective host. Density effects on strain composition deserve additional scrutiny as they can create feedback between ecological and evolutionary processes. Finally, we found that relative strain rankings were stable across increasing community complexity (2, 3, 8, or 68 strains). This unexpected result suggests that higher-order interactions between strains are rare in the context of nodule formation and development. Our work highlights the importance of examining mechanisms of density-dependent strain fitness and developing theoretical predictions that incorporate density dependence. Furthermore, our results have translational relevance for overcoming establishment barriers in bioinoculants and motivating breeding programs that maintain beneficial plant-microbe interactions across diverse agroecological contexts. IMPORTANCE Legume crops establish beneficial associations with rhizobial bacteria that perform biological nitrogen fixation, providing nitrogen to plants without the economic and greenhouse gas emission costs of chemical nitrogen inputs. Here, we examine the influence of three environmental factors that vary in agricultural fields on strain relative fitness in nodules. In addition to manipulating nitrogen, we also use two biotic variables that have rarely been examined: the rhizobial community's density and complexity. Taken together, our results suggest that (i) breeding legume varieties that select beneficial strains despite environmental variation is possible, (ii) changes in rhizobial population densities that occur routinely in agricultural fields could drive evolutionary changes in rhizobial populations, and (iii) the lack of higher-order interactions between strains will allow the high-throughput assessments of rhizobia winners and losers during plant interactions.
Collapse
Affiliation(s)
- Liana T. Burghardt
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
- Plant Science Department, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brendan Epstein
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Michelle Hoge
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Diana I. Trujillo
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
13
|
Wekesa C, Jalloh AA, Muoma JO, Korir H, Omenge KM, Maingi JM, Furch ACU, Oelmüller R. Distribution, Characterization and the Commercialization of Elite Rhizobia Strains in Africa. Int J Mol Sci 2022; 23:ijms23126599. [PMID: 35743041 PMCID: PMC9223902 DOI: 10.3390/ijms23126599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Grain legumes play a significant role in smallholder farming systems in Africa because of their contribution to nutrition and income security and their role in fixing nitrogen. Biological Nitrogen Fixation (BNF) serves a critical role in improving soil fertility for legumes. Although much research has been conducted on rhizobia in nitrogen fixation and their contribution to soil fertility, much less is known about the distribution and diversity of the bacteria strains in different areas of the world and which of the strains achieve optimal benefits for the host plants under specific soil and environmental conditions. This paper reviews the distribution, characterization, and commercialization of elite rhizobia strains in Africa.
Collapse
Affiliation(s)
- Clabe Wekesa
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany; (C.W.); (K.M.O.); (A.C.U.F.)
| | - Abdul A. Jalloh
- International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi 00100, Kenya;
| | - John O. Muoma
- Department of Biological Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya;
| | - Hezekiah Korir
- Crops, Horticulture and Soils Department, Egerton University, P.O. Box 536, Egerton 20115, Kenya;
| | - Keziah M. Omenge
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany; (C.W.); (K.M.O.); (A.C.U.F.)
| | - John M. Maingi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya;
| | - Alexandra C. U. Furch
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany; (C.W.); (K.M.O.); (A.C.U.F.)
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany; (C.W.); (K.M.O.); (A.C.U.F.)
- Correspondence: ; Tel.: +49-3641949232
| |
Collapse
|
14
|
Cangioli L, Vaccaro F, Fini M, Mengoni A, Fagorzi C. Scent of a Symbiont: The Personalized Genetic Relationships of Rhizobium-Plant Interaction. Int J Mol Sci 2022; 23:3358. [PMID: 35328782 PMCID: PMC8954435 DOI: 10.3390/ijms23063358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 01/24/2023] Open
Abstract
Many molecular signals are exchanged between rhizobia and host legume plants, some of which are crucial for symbiosis to take place, while others are modifiers of the interaction, which have great importance in the competition with the soil microbiota and in the genotype-specific perception of host plants. Here, we review recent findings on strain-specific and host genotype-specific interactions between rhizobia and legumes, discussing the molecular actors (genes, gene products and metabolites) which play a role in the establishment of symbiosis, and highlighting the need for research including the other components of the soil (micro)biota, which could be crucial in developing rational-based strategies for bioinoculants and synthetic communities' assemblage.
Collapse
Affiliation(s)
- Lisa Cangioli
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Francesca Vaccaro
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Margherita Fini
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Camilla Fagorzi
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
15
|
Non-Specific Interactions of Rhizospheric Microbial Communities Support the Establishment of Mimosa acutistipula var. ferrea in an Amazon Rehabilitating Mineland. Processes (Basel) 2021. [DOI: 10.3390/pr9112079] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mimosa acutistipula var. ferrea (Fabaceae) is endemic to ferruginous tropical rocky outcrops in the eastern Amazon, also known as canga. Canga are often associated with mining activities and are the target of protection and rehabilitation projects. M. acutistipula stands out in this biodiversity hotspot with high growth rates, even in rehabilitating minelands (RMs). However, little is known about the diversity of soil microorganisms interacting with M. acutistipula in canga and RMs. This study analyzed the rhizosphere-associated bacterial and fungal microbial communities associated with M. acutistipula growing in an RM and a native shrub canga. The fungal phylum Ascomycota was the dominant taxa identified in the rhizosphere of the canga (RA: 98.1) and RM (RA: 93.1). The bacterial phyla Proteobacteria (RA: 54.3) and Acidobacteria (RA: 56.2) were the dominant taxa identified in the rhizosphere in the canga and RM, respectively. Beneficial genera such as Bradyrhizobium, Rhodoplanes, and Paraconiothyrium were identified in the rhizosphere of M. acutistipula in both areas. However, the analyses showed that the fungal and bacterial diversity differed between the rhizosphere of the canga and RM, and that the microbial taxa adapted to the canga (i.e., Rasamsonia, Scytalidium, Roseiarcus, and Rhodomicrobium) were lacking in the RM. This influences the microbe-mediated soil processes, affecting long-term rehabilitation success. The results showed that M. acutistipula established non-specific interactions with soil microorganisms, including beneficial taxa such as nitrogen-fixing bacteria, mycorrhizal fungi, and other beneficial endophytes, well known for their importance in plant adaptation and survival. High levels of microbe association and a plant’s ability to recruit a wide range of soil microorganisms help to explain M. acutistipula’s success in rehabilitating minelands.
Collapse
|
16
|
Huo D, Li H, Cai F, Guo X, Qiao Z, Wang W, Yu G, Li R. Genome Evolution of Filamentous Cyanobacterium Nostoc Species: From Facultative Symbiosis to Free Living. Microorganisms 2021; 9:microorganisms9102015. [PMID: 34683336 PMCID: PMC8539589 DOI: 10.3390/microorganisms9102015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 11/16/2022] Open
Abstract
In contrast to obligate bacteria, facultative symbiotic bacteria are mainly characterized by genome enlargement. However, the underlying relationship of this feature with adaptations to various habitats remains unclear. In this study, we used the global genome data of Nostoc strains, including 10 novel genomes sequenced in this study and 26 genomes available from public databases, and analyzed their evolutionary history. The evolutionary boundary of the real clade of Nostoc species was identified and was found to be consistent with the results of polyphasic taxonomy. The initial ancestral species of Nostoc was demonstrated to be consistent with a facultative symbiotic population. Further analyses revealed that Nostoc strains tended to shift from facultative symbiosis to a free-living one, along with an increase in genome sizes during the dispersal of each exterior branch. Intracellular symbiosis was proved to be essentially related to Nostoc evolution, and the adaptation of its members to free-living environments was coupled with a large preference for gene acquisition involved in gene repair and recombination. These findings provided unique evidence of genomic mechanisms by which homologous microbes adapt to distinct life manners and external environments.
Collapse
Affiliation(s)
- Da Huo
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (D.H.); (H.L.); (F.C.); (X.G.)
| | - Hua Li
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (D.H.); (H.L.); (F.C.); (X.G.)
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810016, China
| | - Fangfang Cai
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (D.H.); (H.L.); (F.C.); (X.G.)
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoyu Guo
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (D.H.); (H.L.); (F.C.); (X.G.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyi Qiao
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China;
| | - Weibo Wang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China;
| | - Gongliang Yu
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (D.H.); (H.L.); (F.C.); (X.G.)
- Correspondence: (G.Y.); (R.L.); Tel.: +86-027-68780067 (G.Y.); +86-027-68780080 (R.L.); Fax: +86-027-68780123 (G.Y.)
| | - Renhui Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325000, China
- Correspondence: (G.Y.); (R.L.); Tel.: +86-027-68780067 (G.Y.); +86-027-68780080 (R.L.); Fax: +86-027-68780123 (G.Y.)
| |
Collapse
|
17
|
Boivin S, Mahé F, Debellé F, Pervent M, Tancelin M, Tauzin M, Wielbo J, Mazurier S, Young P, Lepetit M. Genetic Variation in Host-Specific Competitiveness of the Symbiont Rhizobium leguminosarum Symbiovar viciae. FRONTIERS IN PLANT SCIENCE 2021; 12:719987. [PMID: 34567032 PMCID: PMC8457355 DOI: 10.3389/fpls.2021.719987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/29/2021] [Indexed: 05/25/2023]
Abstract
Legumes of the Fabeae tribe form nitrogen-fixing root nodules resulting from symbiotic interaction with the soil bacteria Rhizobium leguminosarum symbiovar viciae (Rlv). These bacteria are all potential symbionts of the Fabeae hosts but display variable partner choice when co-inoculated in mixture. Because partner choice and symbiotic nitrogen fixation mostly behave as genetically independent traits, the efficiency of symbiosis is often suboptimal when Fabeae legumes are exposed to natural Rlv populations present in soil. A core collection of 32 Rlv bacteria was constituted based on the genomic comparison of a collection of 121 genome sequences, representative of known worldwide diversity of Rlv. A variable part of the nodD gene sequence was used as a DNA barcode to discriminate and quantify each of the 32 bacteria in mixture. This core collection was co-inoculated on a panel of nine genetically diverse Pisum sativum, Vicia faba, and Lens culinaris genotypes. We estimated the relative Early Partner Choice (EPC) of the bacteria with the Fabeae hosts by DNA metabarcoding on the nodulated root systems. Comparative genomic analyses within the bacterial core collection identified molecular markers associated with host-dependent symbiotic partner choice. The results revealed emergent properties of rhizobial populations. They pave the way to identify genes related to important symbiotic traits operating at this level.
Collapse
Affiliation(s)
- Stéphane Boivin
- Laboratoire des Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Frederic Mahé
- Biologie et Génétique des Interactions Plante-Parasite, CIRAD, INRAE, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Frédéric Debellé
- Laboratoire des Interactions Plantes-Microorganismes, INRAE, CNRS, University of Toulouse, Castanet-Tolosan, France
| | - Marjorie Pervent
- Laboratoire des Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Mathilde Tancelin
- Laboratoire des Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Marc Tauzin
- Laboratoire des Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Jerzy Wielbo
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Sylvie Mazurier
- Agroecology, AgroSup Dijon, INRAE, University Burgundy Franche-Comté, Dijon, France
| | - Peter Young
- Department of Biology, University of York, York, United Kingdom
| | - Marc Lepetit
- Laboratoire des Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, Montpellier SupAgro, University of Montpellier, Montpellier, France
- Institut Sophia Agrobiotech, INRAE, CNRS, Côte d’Azur University, Sophia-Antipolis, France
| |
Collapse
|
18
|
Bellabarba A, Bacci G, Decorosi F, Aun E, Azzarello E, Remm M, Giovannetti L, Viti C, Mengoni A, Pini F. Competitiveness for Nodule Colonization in Sinorhizobium meliloti: Combined In Vitro-Tagged Strain Competition and Genome-Wide Association Analysis. mSystems 2021. [PMID: 34313466 DOI: 10.1101/2020.09.15.298034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
Associations between leguminous plants and symbiotic nitrogen-fixing rhizobia are a classic example of mutualism between a eukaryotic host and a specific group of prokaryotic microbes. Although this symbiosis is in part species specific, different rhizobial strains may colonize the same nodule. Some rhizobial strains are commonly known as better competitors than others, but detailed analyses that aim to predict rhizobial competitive abilities based on genomes are still scarce. Here, we performed a bacterial genome-wide association (GWAS) analysis to define the genomic determinants related to the competitive capabilities in the model rhizobial species Sinorhizobium meliloti. For this, 13 tester strains were green fluorescent protein (GFP) tagged and assayed versus 3 red fluorescent protein (RFP)-tagged reference competitor strains (Rm1021, AK83, and BL225C) in a Medicago sativa nodule occupancy test. Competition data and strain genomic sequences were employed to build a model for GWAS based on k-mers. Among the k-mers with the highest scores, 51 k-mers mapped on the genomes of four strains showing the highest competition phenotypes (>60% single strain nodule occupancy; GR4, KH35c, KH46, and SM11) versus BL225C. These k-mers were mainly located on the symbiosis-related megaplasmid pSymA, specifically on genes coding for transporters, proteins involved in the biosynthesis of cofactors, and proteins related to metabolism (e.g., fatty acids). The same analysis was performed considering the sum of single and mixed nodules obtained in the competition assays versus BL225C, retrieving k-mers mapped on the genes previously found and on vir genes. Therefore, the competition abilities seem to be linked to multiple genetic determinants and comprise several cellular components. IMPORTANCE Decoding the competitive pattern that occurs in the rhizosphere is challenging in the study of bacterial social interaction strategies. To date, the single-gene approach has mainly been used to uncover the bases of nodulation, but there is still a knowledge gap regarding the main features that a priori characterize rhizobial strains able to outcompete indigenous rhizobia. Therefore, tracking down which traits make different rhizobial strains able to win the competition for plant infection over other indigenous rhizobia will improve the strain selection process and, consequently, plant yield in sustainable agricultural production systems. We proved that a k-mer-based GWAS approach can efficiently identify the competition determinants of a panel of strains previously analyzed for their plant tissue occupancy using double fluorescent labeling. The reported strategy will be useful for detailed studies on the genomic aspects of the evolution of bacterial symbiosis and for an extensive evaluation of rhizobial inoculants.
Collapse
Affiliation(s)
- Agnese Bellabarba
- Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
- Genexpress Laboratory, Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
| | - Giovanni Bacci
- Department of Biology, University of Florencegrid.8404.8, Sesto Fiorentino, Italy
| | - Francesca Decorosi
- Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
- Genexpress Laboratory, Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
| | - Erki Aun
- Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartugrid.10939.32, Tartu, Estonia
| | - Elisa Azzarello
- Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
| | - Maido Remm
- Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartugrid.10939.32, Tartu, Estonia
| | - Luciana Giovannetti
- Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
- Genexpress Laboratory, Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
| | - Carlo Viti
- Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
- Genexpress Laboratory, Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florencegrid.8404.8, Sesto Fiorentino, Italy
| | - Francesco Pini
- Department of Biology, University of Bari Aldo Morogrid.7644.1, Bari, Italy
| |
Collapse
|
19
|
Competitiveness for Nodule Colonization in Sinorhizobium meliloti: Combined In Vitro-Tagged Strain Competition and Genome-Wide Association Analysis. mSystems 2021; 6:e0055021. [PMID: 34313466 PMCID: PMC8407117 DOI: 10.1128/msystems.00550-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Associations between leguminous plants and symbiotic nitrogen-fixing rhizobia are a classic example of mutualism between a eukaryotic host and a specific group of prokaryotic microbes. Although this symbiosis is in part species specific, different rhizobial strains may colonize the same nodule. Some rhizobial strains are commonly known as better competitors than others, but detailed analyses that aim to predict rhizobial competitive abilities based on genomes are still scarce. Here, we performed a bacterial genome-wide association (GWAS) analysis to define the genomic determinants related to the competitive capabilities in the model rhizobial species Sinorhizobium meliloti. For this, 13 tester strains were green fluorescent protein (GFP) tagged and assayed versus 3 red fluorescent protein (RFP)-tagged reference competitor strains (Rm1021, AK83, and BL225C) in a Medicago sativa nodule occupancy test. Competition data and strain genomic sequences were employed to build a model for GWAS based on k-mers. Among the k-mers with the highest scores, 51 k-mers mapped on the genomes of four strains showing the highest competition phenotypes (>60% single strain nodule occupancy; GR4, KH35c, KH46, and SM11) versus BL225C. These k-mers were mainly located on the symbiosis-related megaplasmid pSymA, specifically on genes coding for transporters, proteins involved in the biosynthesis of cofactors, and proteins related to metabolism (e.g., fatty acids). The same analysis was performed considering the sum of single and mixed nodules obtained in the competition assays versus BL225C, retrieving k-mers mapped on the genes previously found and on vir genes. Therefore, the competition abilities seem to be linked to multiple genetic determinants and comprise several cellular components. IMPORTANCE Decoding the competitive pattern that occurs in the rhizosphere is challenging in the study of bacterial social interaction strategies. To date, the single-gene approach has mainly been used to uncover the bases of nodulation, but there is still a knowledge gap regarding the main features that a priori characterize rhizobial strains able to outcompete indigenous rhizobia. Therefore, tracking down which traits make different rhizobial strains able to win the competition for plant infection over other indigenous rhizobia will improve the strain selection process and, consequently, plant yield in sustainable agricultural production systems. We proved that a k-mer-based GWAS approach can efficiently identify the competition determinants of a panel of strains previously analyzed for their plant tissue occupancy using double fluorescent labeling. The reported strategy will be useful for detailed studies on the genomic aspects of the evolution of bacterial symbiosis and for an extensive evaluation of rhizobial inoculants.
Collapse
|
20
|
Goyal RK, Mattoo AK, Schmidt MA. Rhizobial-Host Interactions and Symbiotic Nitrogen Fixation in Legume Crops Toward Agriculture Sustainability. Front Microbiol 2021; 12:669404. [PMID: 34177848 PMCID: PMC8226219 DOI: 10.3389/fmicb.2021.669404] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Symbiotic nitrogen fixation (SNF) process makes legume crops self-sufficient in nitrogen (N) in sharp contrast to cereal crops that require an external input by N-fertilizers. Since the latter process in cereal crops results in a huge quantity of greenhouse gas emission, the legume production systems are considered efficient and important for sustainable agriculture and climate preservation. Despite benefits of SNF, and the fact that chemical N-fertilizers cause N-pollution of the ecosystems, the focus on improving SNF efficiency in legumes did not become a breeder’s priority. The size and stability of heritable effects under different environment conditions weigh significantly on any trait useful in breeding strategies. Here we review the challenges and progress made toward decoding the heritable components of SNF, which is considerably more complex than other crop allelic traits since the process involves genetic elements of both the host and the symbiotic rhizobial species. SNF-efficient rhizobial species designed based on the genetics of the host and its symbiotic partner face the test of a unique microbiome for its success and productivity. The progress made thus far in commercial legume crops with relevance to the dynamics of host–rhizobia interaction, environmental impact on rhizobial performance challenges, and what collectively determines the SNF efficiency under field conditions are also reviewed here.
Collapse
Affiliation(s)
- Ravinder K Goyal
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB, Canada
| | - Autar K Mattoo
- Sustainable Agricultural Systems Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, MD, United States
| | - Maria Augusta Schmidt
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB, Canada
| |
Collapse
|
21
|
Fields B, Moffat EK, Friman VP, Harrison E. The impact of intra-specific diversity in the rhizobia-legume symbiosis. MICROBIOLOGY-SGM 2021; 167. [PMID: 33829985 PMCID: PMC8289218 DOI: 10.1099/mic.0.001051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Rhizobia - nitrogen-fixing, root-nodulating bacteria - play a critical role in both plant ecosystems and sustainable agriculture. Rhizobia form intracellular infections within legumes roots where they produce plant accessible nitrogen from atmospheric nitrogen and thus reduce the reliance on industrial inputs. The rhizobia-legume symbiosis is often treated as a pairwise relationship between single genotypes, both in research and in the production of rhizobial inoculants. However in nature individual plants are infected by a high diversity of rhizobia symbionts. How this diversity affects productivity within the symbiosis is unclear. Here, we use a powerful statistical approach to assess the impact of diversity within the Rhizobium leguminosarum - clover symbiosis using a biodiversity-ecosystem function framework. Statistically, we found no significant impact of rhizobium diversity. However this relationship was weakly positive - rather than negative - indicating that there is no significant cost to increasing inoculant diversity. Productivity was influenced by the identity of the strains within an inoculant; strains with the highest individual performance showed a significant positive contribution within mixed inoculants. Overall, inoculant effectiveness was best predicted by the individual performance of the best inoculant member, and only weakly predicted by the worst performing member. Collectively, our data suggest that the Rhizobium leguminosarum - clover symbiosis displays a weak diversity-function relationship, but that inoculant performance can be improved through the inclusion of high performing strains. Given the wide environmental dependence of rhizobial inoculant quality, multi-strain inoculants could be highly successful as they increase the likelihood of including a strain well adapted to local conditions across different environments.
Collapse
Affiliation(s)
- Bryden Fields
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Emma K Moffat
- Department of Animal Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ville-Petri Friman
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Ellie Harrison
- Department of Animal Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
22
|
Hailu Gunnabo A, Geurts R, Wolde-meskel E, Degefu T, E. Giller K, van Heerwaarden J. Phylogeographic distribution of rhizobia nodulating common bean (Phaseolus vulgaris L.) in Ethiopia. FEMS Microbiol Ecol 2021; 97:fiab046. [PMID: 33724341 PMCID: PMC8016211 DOI: 10.1093/femsec/fiab046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/13/2021] [Indexed: 11/19/2022] Open
Abstract
Rhizobia are soilborne bacteria that form symbiotic relations with legumes and fix atmospheric nitrogen. The nitrogen fixation potential depends on several factors such as the type of host and symbionts and on environmental factors that affect the distribution of rhizobia. We isolated bacteria nodulating common bean in Southern Ethiopia to evaluate their genetic diversity and phylogeography at nucleotide, locus (gene/haplotype) and species levels of genetic hierarchy. Phylogenetically, eight rhizobial genospecies (including previous collections) were determined that had less genetic diversity than found among reference strains. The limited genetic diversity of the Ethiopian collections was due to absence of many of the Rhizobium lineages known to nodulate beans. Rhizobium etli and Rhizobiumphaseoli were predominant strains of bean-nodulating rhizobia in Ethiopia. We found no evidence for a phylogeographic pattern in strain distribution. However, joint analysis of the current and previous collections revealed differences between the two collections at nucleotide level of genetic hierarchy. The differences were due to genospecies Rhizobium aethiopicum that was only isolated in the earlier collection.
Collapse
Affiliation(s)
- Ashenafi Hailu Gunnabo
- Plant Production Systems Group, Wageningen University & Research, Wageningen, Gelderland, The Netherlands, Postal code: 6708 PB
| | - Rene Geurts
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Gelderland, The Netherlands, Postal code: 6708 PB
| | - Endalkachew Wolde-meskel
- World Agroforestry Centre (ICRAF), c/o ILRI Campus, Gurd Shola PO Box 5689, Addis Ababa, 4 Ethiopia
| | - Tulu Degefu
- International Crops Research Institute for the Semi-Arid Tropics, c/o ILRI Campus, Gurd Shola PO Box 5689, Addis Ababa, Ethiopia
| | - Ken E. Giller
- Plant Production Systems Group, Wageningen University & Research, Wageningen, Gelderland, The Netherlands, Postal code: 6708 PB
| | - Joost van Heerwaarden
- Plant Production Systems Group, Wageningen University & Research, Wageningen, Gelderland, The Netherlands, Postal code: 6708 PB
| |
Collapse
|
23
|
Alfalfa for a Sustainable Ovine Farming System: Proposed Research for a New Feeding Strategy Based on Alfalfa and Ecological Leftovers in Drought Conditions. SUSTAINABILITY 2021. [DOI: 10.3390/su13073880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In the past 10 years, the average demand for meat and milk across the world has significantly increased, especially in developing countries. Therefore, to support the production of animal-derived food products, a huge quantity of feed resources is needed. This paper does not present original research, but rather provides a conceptual strategy to improve primary production in a sustainable way, in relation to forthcoming issues linked to climate change. Increases in meat and milk production could be achieved by formulating balanced diets for ovines based on alfalfa integrated with local agricultural by-products. As the central component of the diet is alfalfa, one goal of the project is increasing the yield of alfalfa in a sustainable way via inoculating seeds with symbiotic rhizobia (i.e., Sinorhizobium meliloti). Seed inoculants are already present on the market but have not been optimized for arid soils. Furthermore, a part of the project is focused on the selection of elite symbiotic strains that show increased resistance to salt stress and competitiveness. The second component of the experimental diets is bio-waste, especially that obtained from olive oil manufacturing (i.e., pomace). The addition of agro-by-products allows us to use such waste as a resource for animal feeding, and possibly, to modulate rumen metabolism, thereby increasing the nutritional quality of milk and meat.
Collapse
|
24
|
Ramoneda J, Roux JJL, Frossard E, Frey B, Gamper HA. Geographical patterns of root nodule bacterial diversity in cultivated and wild populations of a woody legume crop. FEMS Microbiol Ecol 2021; 96:5874250. [PMID: 32691840 DOI: 10.1093/femsec/fiaa145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022] Open
Abstract
There is interest in understanding how cultivation, plant genotype, climate and soil conditions influence the biogeography of root nodule bacterial communities of legumes. For crops from regions with relict wild populations, this is of even greater interest because the effects of cultivation on symbiont communities can be revealed, which is of particular interest for bacteria such as rhizobia. Here, we determined the structure of root nodule bacterial communities of rooibos (Aspalathus linearis), a leguminous shrub endemic to South Africa. We related the community dissimilarities of the root nodule bacteria of 18 paired cultivated and wild rooibos populations to pairwise geographical distances, plant ecophysiological characteristics and soil physicochemical parameters. Using next-generation sequencing data, we identified region-, cultivation- and farm-specific operational taxonomic units for four distinct classes of root nodule bacterial communities, dominated by members of the genus Mesorhizobium. We found that while bacterial richness was locally increased by organic cultivation, strong biogeographical differentiation in the bacterial communities of wild rooibos disappeared with cultivation of one single cultivar across its entire cultivation range. This implies that expanding rooibos farming has the potential to endanger wild rooibos populations through the homogenisation of root nodule bacterial diversity.
Collapse
Affiliation(s)
- Josep Ramoneda
- Department of Environmental Systems Science, ETH Zurich, Eschikon 33, 8315 Lindau, Zurich, Switzerland
| | - Johannes J Le Roux
- Department of Biological Sciences, Macquarie University, Balaclava Rd, Macquarie Park NSW 2109, Sydney, Australia
| | - Emmanuel Frossard
- Department of Environmental Systems Science, ETH Zurich, Eschikon 33, 8315 Lindau, Zurich, Switzerland
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Hannes Andres Gamper
- Department of Environmental Systems Science, ETH Zurich, Eschikon 33, 8315 Lindau, Zurich, Switzerland.,Faculty of Science and Technology, Free University of Bolzen-Bolzano, Piazza Università, 1, 39100 Bolzano BZ, Italy
| |
Collapse
|
25
|
Fagorzi C, Bacci G, Huang R, Cangioli L, Checcucci A, Fini M, Perrin E, Natali C, diCenzo GC, Mengoni A. Nonadditive Transcriptomic Signatures of Genotype-by-Genotype Interactions during the Initiation of Plant-Rhizobium Symbiosis. mSystems 2021. [PMID: 33436514 DOI: 10.1101/2020.06.15.152710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
Rhizobia are ecologically important, facultative plant-symbiotic microbes. In nature, there is a large variability in the association of rhizobial strains and host plants of the same species. Here, we evaluated whether plant and rhizobial genotypes influence the initial transcriptional response of rhizobium following perception of a host plant. RNA sequencing of the model rhizobium Sinorhizobium meliloti exposed to root exudates or luteolin (an inducer of nod genes, involved in the early steps of symbiotic interaction) was performed on a combination of three S. meliloti strains and three alfalfa varieties as host plants. The response to root exudates involved hundreds of changes in the rhizobium transcriptome. Of the differentially expressed genes, 35% were influenced by the strain genotype, 16% were influenced by the plant genotype, and 29% were influenced by strain-by-host plant genotype interactions. We also examined the response of a hybrid S. meliloti strain in which the symbiotic megaplasmid (∼20% of the genome) was mobilized between two of the above-mentioned strains. Dozens of genes were upregulated in the hybrid strain, indicative of nonadditive variation in the transcriptome. In conclusion, this study demonstrated that transcriptional responses of rhizobia upon perception of legumes are influenced by the genotypes of both symbiotic partners and their interaction, suggesting a wide spectrum of genetic determinants involved in the phenotypic variation of plant-rhizobium symbiosis.IMPORTANCE A sustainable way for meeting the need of an increased global food demand should be based on a holobiont perspective, viewing crop plants as intimately associated with their microbiome, which helps improve plant nutrition, tolerance to pests, and adverse climate conditions. However, the genetic repertoire needed for efficient association with plants by the microbial symbionts is still poorly understood. The rhizobia are an exemplary model of facultative plant symbiotic microbes. Here, we evaluated whether genotype-by-genotype interactions could be identified in the initial transcriptional response of rhizobium perception of a host plant. We performed an RNA sequencing study to analyze the transcriptomes of different rhizobial strains elicited by root exudates of three alfalfa varieties as a proxy of an early step of the symbiotic interaction. The results indicated strain- and plant variety-dependent variability in the observed transcriptional changes, providing fundamentally novel insights into the genetic basis of rhizobium-plant interactions. Our results provide genetic insights and perspective to aid in the exploitation of natural rhizobium variation for improvement of legume growth in agricultural ecosystems.
Collapse
Affiliation(s)
- Camilla Fagorzi
- Department of Biology, University of Florence, Florence, Italy
| | - Giovanni Bacci
- Department of Biology, University of Florence, Florence, Italy
| | - Rui Huang
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Lisa Cangioli
- Department of Biology, University of Florence, Florence, Italy
| | - Alice Checcucci
- Department of Biology, University of Florence, Florence, Italy
| | - Margherita Fini
- Department of Biology, University of Florence, Florence, Italy
| | - Elena Perrin
- Department of Biology, University of Florence, Florence, Italy
| | - Chiara Natali
- Department of Biology, University of Florence, Florence, Italy
| | | | - Alessio Mengoni
- Department of Biology, University of Florence, Florence, Italy
| |
Collapse
|
26
|
Nonadditive Transcriptomic Signatures of Genotype-by-Genotype Interactions during the Initiation of Plant-Rhizobium Symbiosis. mSystems 2021; 6:6/1/e00974-20. [PMID: 33436514 PMCID: PMC7901481 DOI: 10.1128/msystems.00974-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Rhizobia are ecologically important, facultative plant-symbiotic microbes. In nature, there is a large variability in the association of rhizobial strains and host plants of the same species. Here, we evaluated whether plant and rhizobial genotypes influence the initial transcriptional response of rhizobium following perception of a host plant. RNA sequencing of the model rhizobium Sinorhizobium meliloti exposed to root exudates or luteolin (an inducer of nod genes, involved in the early steps of symbiotic interaction) was performed on a combination of three S. meliloti strains and three alfalfa varieties as host plants. The response to root exudates involved hundreds of changes in the rhizobium transcriptome. Of the differentially expressed genes, 35% were influenced by the strain genotype, 16% were influenced by the plant genotype, and 29% were influenced by strain-by-host plant genotype interactions. We also examined the response of a hybrid S. meliloti strain in which the symbiotic megaplasmid (∼20% of the genome) was mobilized between two of the above-mentioned strains. Dozens of genes were upregulated in the hybrid strain, indicative of nonadditive variation in the transcriptome. In conclusion, this study demonstrated that transcriptional responses of rhizobia upon perception of legumes are influenced by the genotypes of both symbiotic partners and their interaction, suggesting a wide spectrum of genetic determinants involved in the phenotypic variation of plant-rhizobium symbiosis.IMPORTANCE A sustainable way for meeting the need of an increased global food demand should be based on a holobiont perspective, viewing crop plants as intimately associated with their microbiome, which helps improve plant nutrition, tolerance to pests, and adverse climate conditions. However, the genetic repertoire needed for efficient association with plants by the microbial symbionts is still poorly understood. The rhizobia are an exemplary model of facultative plant symbiotic microbes. Here, we evaluated whether genotype-by-genotype interactions could be identified in the initial transcriptional response of rhizobium perception of a host plant. We performed an RNA sequencing study to analyze the transcriptomes of different rhizobial strains elicited by root exudates of three alfalfa varieties as a proxy of an early step of the symbiotic interaction. The results indicated strain- and plant variety-dependent variability in the observed transcriptional changes, providing fundamentally novel insights into the genetic basis of rhizobium-plant interactions. Our results provide genetic insights and perspective to aid in the exploitation of natural rhizobium variation for improvement of legume growth in agricultural ecosystems.
Collapse
|
27
|
Tyrosine Nitration of Flagellins: a Response of Sinorhizobium meliloti to Nitrosative Stress. Appl Environ Microbiol 2020; 87:AEM.02210-20. [PMID: 33067191 DOI: 10.1128/aem.02210-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Rhizobia are bacteria which can either live as free organisms in the soil or interact with plants of the legume family with, as a result, the formation of root organs called nodules in which differentiated endosymbiotic bacteria fix atmospheric nitrogen to the plant's benefit. In both lifestyles, rhizobia are exposed to nitric oxide (NO) which can be perceived as a signaling or toxic molecule. NO can act at the transcriptional level but can also modify proteins by S-nitrosylation of cysteine or nitration of tyrosine residues. However, only a few molecular targets of NO have been described in bacteria and none of them have been characterized in rhizobia. Here, we examined tyrosine nitration of Sinorhizobium meliloti proteins induced by NO. We found three tyrosine-nitrated proteins in S. meliloti grown under free-living conditions, in response to an NO donor. Two nitroproteins were identified by mass spectrometry and correspond to flagellins A and B. We showed that one of the nitratable tyrosines is essential to flagellin function in motility.IMPORTANCE Rhizobia are found as free-living bacteria in the soil or in interaction with plants and are exposed to nitric oxide (NO) in both environments. NO is known to have many effects on animals, plants, and bacteria where only a few molecular targets of NO have been described so far. We identified flagellin A and B by mass spectrometry as tyrosine-nitrated proteins in Sinorhizobium meliloti in vivo We also showed that one of the nitratable tyrosines is essential to flagellin function in motility. The results enhanced our understanding of NO effects on rhizobia. Identification of bacterial flagellin nitration opens a new possible role of NO in plant-microbe interactions.
Collapse
|
28
|
Ramoneda J, Le Roux JJ, Frossard E, Frey B, Gamper HA. Experimental assembly reveals ecological drift as a major driver of root nodule bacterial diversity in a woody legume crop. FEMS Microbiol Ecol 2020; 96:5828728. [PMID: 32364226 DOI: 10.1093/femsec/fiaa083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/01/2020] [Indexed: 12/31/2022] Open
Abstract
Understanding how plant-associated microbial communities assemble and the role they play in plant performance are major goals in microbial ecology. For nitrogen-fixing rhizobia, community assembly is generally driven by host plant selection and soil conditions. Here, we aimed to determine the relative importance of neutral and deterministic processes in the assembly of bacterial communities of root nodules of a legume shrub adapted to extreme nutrient limitation, rooibos (Aspalathus linearis Burm. Dahlgren). We grew rooibos seedlings in soil from cultivated land and wild habitats, and mixtures of these soils, sampled from a wide geographic area, and with a fertilization treatment. Bacterial communities were characterized using next generation sequencing of part of the nodA gene (i.e. common to the core rhizobial symbionts of rooibos), and part of the gyrB gene (i.e. common to all bacterial taxa). Ecological drift alone was a major driver of taxonomic turnover in the bacterial communities of root nodules (62.6% of gyrB communities). In contrast, the assembly of core rhizobial communities (genus Mesorhizobium) was driven by dispersal limitation in concert with drift (81.1% of nodA communities). This agrees with a scenario of rooibos-Mesorhizobium specificity in spatially separated subpopulations, and low host filtering of other bacteria colonizing root nodules in a stochastic manner.
Collapse
Affiliation(s)
- Josep Ramoneda
- Department of Environmental Systems Science, ETH Zurich, Eschikon 33, 8315 Lindau, Zurich, Switzerland
| | - Johannes J Le Roux
- Department of Biological Sciences, Macquarie University, Balaclava Rd, Macquarie Park NSW 2109, Sydney, Australia
| | - Emmanuel Frossard
- Department of Environmental Systems Science, ETH Zurich, Eschikon 33, 8315 Lindau, Zurich, Switzerland
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Hannes Andres Gamper
- Faculty of Science and Technology, Free University of Bolzen-Bolzano,Piazza Università, 1, 39100 Bolzano BZ, Italy
| |
Collapse
|
29
|
Lennon S, Dolan L. The New Phytologist Tansley Medal 2018 - Liana Burghardt and Jana Sperschneider. THE NEW PHYTOLOGIST 2020; 228:5. [PMID: 33448393 DOI: 10.1111/nph.16870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 06/12/2023]
|
30
|
Soumare A, Diedhiou AG, Thuita M, Hafidi M, Ouhdouch Y, Gopalakrishnan S, Kouisni L. Exploiting Biological Nitrogen Fixation: A Route Towards a Sustainable Agriculture. PLANTS 2020; 9:plants9081011. [PMID: 32796519 PMCID: PMC7464700 DOI: 10.3390/plants9081011] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022]
Abstract
For all living organisms, nitrogen is an essential element, while being the most limiting in ecosystems and for crop production. Despite the significant contribution of synthetic fertilizers, nitrogen requirements for food production increase from year to year, while the overuse of agrochemicals compromise soil health and agricultural sustainability. One alternative to overcome this problem is biological nitrogen fixation (BNF). Indeed, more than 60% of the fixed N on Earth results from BNF. Therefore, optimizing BNF in agriculture is more and more urgent to help meet the demand of the food production needs for the growing world population. This optimization will require a good knowledge of the diversity of nitrogen-fixing microorganisms, the mechanisms of fixation, and the selection and formulation of efficient N-fixing microorganisms as biofertilizers. Good understanding of BNF process may allow the transfer of this ability to other non-fixing microorganisms or to non-leguminous plants with high added value. This minireview covers a brief history on BNF, cycle and mechanisms of nitrogen fixation, biofertilizers market value, and use of biofertilizers in agriculture. The minireview focuses particularly on some of the most effective microbial products marketed to date, their efficiency, and success-limiting in agriculture. It also highlights opportunities and difficulties of transferring nitrogen fixation capacity in cereals.
Collapse
Affiliation(s)
- Abdoulaye Soumare
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco; (M.H.); (Y.O.); (L.K.)
- Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar 1386, Senegal
- Correspondence: (A.S.); (A.G.D.)
| | - Abdala G. Diedhiou
- Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar 1386, Senegal
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD) de Dakar, Dakar 1386, Senegal
- Centre d’Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA-AGRISAN), UCAD, Dakar 18524, Senegal
- Correspondence: (A.S.); (A.G.D.)
| | - Moses Thuita
- International Institute of Tropical Agriculture, Nairobi PO BOX 30772-00100, Kenya;
| | - Mohamed Hafidi
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco; (M.H.); (Y.O.); (L.K.)
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Yedir Ouhdouch
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco; (M.H.); (Y.O.); (L.K.)
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | | | - Lamfeddal Kouisni
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco; (M.H.); (Y.O.); (L.K.)
| |
Collapse
|
31
|
Doin de Moura GG, Remigi P, Masson-Boivin C, Capela D. Experimental Evolution of Legume Symbionts: What Have We Learnt? Genes (Basel) 2020; 11:E339. [PMID: 32210028 PMCID: PMC7141107 DOI: 10.3390/genes11030339] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Rhizobia, the nitrogen-fixing symbionts of legumes, are polyphyletic bacteria distributed in many alpha- and beta-proteobacterial genera. They likely emerged and diversified through independent horizontal transfers of key symbiotic genes. To replay the evolution of a new rhizobium genus under laboratory conditions, the symbiotic plasmid of Cupriavidus taiwanensis was introduced in the plant pathogen Ralstonia solanacearum, and the generated proto-rhizobium was submitted to repeated inoculations to the C. taiwanensis host, Mimosa pudica L.. This experiment validated a two-step evolutionary scenario of key symbiotic gene acquisition followed by genome remodeling under plant selection. Nodulation and nodule cell infection were obtained and optimized mainly via the rewiring of regulatory circuits of the recipient bacterium. Symbiotic adaptation was shown to be accelerated by the activity of a mutagenesis cassette conserved in most rhizobia. Investigating mutated genes led us to identify new components of R. solanacearum virulence and C. taiwanensis symbiosis. Nitrogen fixation was not acquired in our short experiment. However, we showed that post-infection sanctions allowed the increase in frequency of nitrogen-fixing variants among a non-fixing population in the M. pudica-C. taiwanensis system and likely allowed the spread of this trait in natura. Experimental evolution thus provided new insights into rhizobium biology and evolution.
Collapse
Affiliation(s)
| | | | | | - Delphine Capela
- LIPM, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31320, France; (G.G.D.d.M.); (P.R.); (C.M.-B.)
| |
Collapse
|
32
|
Clarke L, Pelin A, Phan M, Wong A. The effect of environmental heterogeneity on the fitness of antibiotic resistance mutations in Escherichia coli. Evol Ecol 2020. [DOI: 10.1007/s10682-019-10027-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Burghardt LT, Epstein B, Tiffin P. Legacy of prior host and soil selection on rhizobial fitness in planta. Evolution 2019; 73:2013-2023. [PMID: 31334838 DOI: 10.1111/evo.13807] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 01/03/2023]
Abstract
Measuring selection acting on microbial populations in natural or even seminatural environments is challenging because many microbial populations experience variable selection. The majority of rhizobial bacteria are found in the soil. However, they also live symbiotically inside nodules of legume hosts and each nodule can release thousands of daughter cells back into the soil. We tested how past selection (i.e., legacies) by two plant genotypes and by the soil alone affected selection and genetic diversity within a population of 101 strains of Ensifer meliloti. We also identified allelic variants most strongly associated with soil- and host-dependent fitness. In addition to imposing direct selection on rhizobia populations, soil and host environments had lasting effects across host generations. Host presence and genotype during the legacy period explained 22% and 12% of the variance in the strain composition of nodule communities in the second cohort, respectively. Although strains with high host fitness in the legacy cohort tended to be enriched in the second cohort, the diversity of the strain community was greater when the second cohort was preceded by host rather than soil legacies. Our results indicate the potential importance of soil selection driving the evolution of these plant-associated microbes.
Collapse
Affiliation(s)
- Liana T Burghardt
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, 55108
| | - Brendan Epstein
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, 55108
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, 55108
| |
Collapse
|