1
|
Zhang E, Wang Y, Chen S, Zhou D, Shangguan Z, Huang J, He JS, Wang Y, Sheng J, Tang L, Li X, Dong M, Wu Y, Hu S, Bai Y. Mycorrhizal Symbiosis Increases Plant Phylogenetic Diversity and Regulates Community Assembly in Grasslands. Ecol Lett 2024; 27:e14516. [PMID: 39354912 DOI: 10.1111/ele.14516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 09/01/2024] [Indexed: 10/03/2024]
Abstract
The intricate mechanisms controlling plant diversity and community composition are cornerstone of ecological understanding. Yet, the role of mycorrhizal symbiosis in influencing community composition has often been underestimated. Here, we use extensive species survey data from 1315 grassland sites in China to elucidate the influence of mycorrhizal symbiosis on plant phylogenetic diversity and community assembly. We show that increasing mycorrhizal symbiotic potential leads to greater phylogenetic dispersion within plant communities. Mycorrhizal species predominantly influence deterministic processes, suggesting a role in niche-based community assembly. Conversely, non-mycorrhizal species exert a stronger influence on stochastic processes, highlighting the importance of random events in shaping community structure. These results underscore the crucial but often hidden role of mycorrhizal symbiosis in driving plant community diversity and assembly. This study provides valuable insights into the mechanisms shaping ecological communities and the way for more informed conservation that acknowledges the complex interplay between symbiosis and community dynamics.
Collapse
Affiliation(s)
- Entao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shiping Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Daowei Zhou
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Zhouping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming in the Loess Plateau, Northwest A&F University, Yangling, China
| | - Jianhui Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jin-Sheng He
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, and College of Ecology, Lanzhou University, Lanzhou, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yanfen Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jiandong Sheng
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
| | - Lisong Tang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Xinrong Li
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Ming Dong
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yan Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Shuijin Hu
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Robinson DG, Ammer C, Polle A, Bauhus J, Aloni R, Annighöfer P, Baskin TI, Blatt MR, Bolte A, Bugmann H, Cohen JD, Davies PJ, Draguhn A, Hartmann H, Hasenauer H, Hepler PK, Kohnle U, Lang F, Löf M, Messier C, Munné-Bosch S, Murphy A, Puettmann KJ, Marchant IQ, Raven PH, Robinson D, Sanders D, Seidel D, Schwechheimer C, Spathelf P, Steer M, Taiz L, Wagner S, Henriksson N, Näsholm T. Mother trees, altruistic fungi, and the perils of plant personification. TRENDS IN PLANT SCIENCE 2024; 29:20-31. [PMID: 37735061 DOI: 10.1016/j.tplants.2023.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/23/2023]
Abstract
There are growing doubts about the true role of the common mycorrhizal networks (CMN or wood wide web) connecting the roots of trees in forests. We question the claims of a substantial carbon transfer from 'mother trees' to their offspring and nearby seedlings through the CMN. Recent reviews show that evidence for the 'mother tree concept' is inconclusive or absent. The origin of this concept seems to stem from a desire to humanize plant life but can lead to misunderstandings and false interpretations and may eventually harm rather than help the commendable cause of preserving forests. Two recent books serve as examples: The Hidden Life of Trees and Finding the Mother Tree.
Collapse
Affiliation(s)
- David G Robinson
- Centre for Organismal Studies, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.
| | - Christian Ammer
- Silvicuture and Forest Ecology of the Temperate Zones, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Jürgen Bauhus
- Chair of Silviculture, University of Freiburg, Tennenbacherstr. 4, 79085 Freiburg im Breisgau, Germany
| | - Roni Aloni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Peter Annighöfer
- Forest and Agroforest Systems, Technische Universität München, Hans-Carl-v.-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Tobias I Baskin
- Department of Biology, University of Massachusetts, 611 N. Pleasant St, Amherst, MA 01003, USA
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andreas Bolte
- Thünen Institute of Forest Ecosystems, A.-Möller-Str. 1, Haus 41/42, D-16225 Eberswalde, Germany
| | - Harald Bugmann
- Forest Ecology, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Jerry D Cohen
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Peter J Davies
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Andreas Draguhn
- Medical Faculty, Department of Neuro- and Senory Physiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Henrik Hartmann
- Julius Kühn Institute Federal Research Centre for Cultivated Plants, Institute for Forest Protection, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Hubert Hasenauer
- Institute of Silviculture, Department of Forest- and Soil Sciences, BOKU - University of Natural Resources and Life Sciences, Vienna, Peter-Jordan-Straße 82/II 1190, Wien, Austria
| | - Peter K Hepler
- Department of Biology, University of Massachusetts, 611 N. Pleasant St, Amherst, MA 01003, USA
| | - Ulrich Kohnle
- Department of Forest Growth, Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg, Wonnhaldestraße 4, 79100 Freiburg, Germany
| | - Friederike Lang
- Chair of Soil Ecology, University of Freiburg, Bertholdstr. 17, 79098 Freiburg im Breisgau, Germany
| | - Magnus Löf
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Sundsvägen 3, P.O. Box 190, SE-234 22 Lomma, Sweden
| | - Christian Messier
- University of Quebec in Montréal (UQAM) and in Outaouais (UQO), Quebec, Canada
| | | | - Angus Murphy
- Plant Science and Landscape Architecture, University of Maryland, 5140 Plant Sciences Building 4291 Fieldhouse Drive College Park, MD 20742, USA
| | - Klaus J Puettmann
- Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331, USA
| | - Iván Quiroz Marchant
- Instituto Forestal, Calle Nueva Uno 3570 LT 4 Michaihue, San Pedro de la Paz, Concepción Chile, Chile
| | - Peter H Raven
- President Emeritus, Missouri Botanical Garden, 1037 Cy Ann Drive, Town and Country, MO 63017-8402, USA
| | - David Robinson
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - Dale Sanders
- Department of Biology, University of York, Heslington York, YO10 5DD, UK
| | - Dominik Seidel
- Department for Spatial Structures and Digitization of Forests, Georg-August-Universität Göttingen, Büsgenweg 1, 37077 Göttingen, Germany
| | - Claus Schwechheimer
- Plant Systems Biology, Technische Universität München, Emil-Ramann-Straße 8, 85354 Freising, Germany
| | - Peter Spathelf
- Applied Silviculture, Eberswalde University for Sustainable Development, Alfred-Möller-Strasse 1, 16225 Eberswalde, Germany
| | - Martin Steer
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lincoln Taiz
- Molecular, Cell and Developmental Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Sven Wagner
- Chair of Silviculture, Technische Universität Dresden, Pienner Str. 8, 01737 Tharandt, Germany
| | - Nils Henriksson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umea, Sweden
| | - Torgny Näsholm
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umea, Sweden
| |
Collapse
|
3
|
Tian M, Li D, Cisse EHM, Miao L, Zhou J, Yang W, Chen B, Li L, Tian H, Ye B, Yang F. Intra- and interspecific ecophysiological responses to waterlogging stress in two contrasting waterlogging-tolerant arbor species. FRONTIERS IN PLANT SCIENCE 2023; 14:1257730. [PMID: 38023841 PMCID: PMC10679334 DOI: 10.3389/fpls.2023.1257730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023]
Abstract
At present, establishing planted forests, typically composed of not more than two tree species, to avoid forest losses has received increasing attention. In addition, investigating the impact of environmental stress such as waterlogging on different planting patterns is essential for improving wetland ecosystem resilience. Knowledge about the impact of waterlogging on planted forests is crucial for developing strategies to mitigate its adverse effects. Here, we conducted experimentally a simulated pure and mixed planting system composed of two contrasting WL-tolerant species (Cleistocalyx operculatus and Syzygium cumini) to determine their ecophysiological responses based on the type of interaction. Results showed that the aboveground growth performance of S. cumini was better than that of C. operculatus under well-watered conditions regardless of the planting model, which is contrary to the belowground accumulation that was significantly improved in C. operculatus. Intra- and interspecific interactions in different planting models facilitated the growth performance of C. operculatus while provoking a significant competition in S. cumini under waterlogging. Such phenomenon was explained through the remarkable ability of C. operculatus to naturally increase its root network under stress on non-stress conditions compared with S. cumini. In this study, two main factors are proposed to play key roles in the remarkable performance of C. operculatus compared with S. cumini following the planting model under waterlogging. The high level of nitrogen and phosphor absorption through C. operculatus primary roots and the significant starch biosynthesis constituted the key element that characterized the facilitation or competition within the intra- or interspecific interactions shown in C. operculatus compared with S. cumini. Furthermore, the intraspecific competition is more pronounced in S. cumini than in C. operculatus when grown in a pure planting pattern, particularly when subjected to waterlogging. However, when the two species are planted together, this competition is alleviated, resulting in enhanced waterlogging tolerance.
Collapse
Affiliation(s)
- Mengjie Tian
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, China
| | - Dadong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, China
- School of Life Sciences, Hainan University, Haikou, China
| | - El-Hadji Malick Cisse
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, China
- School of Life Sciences, Hainan University, Haikou, China
| | - Lingfeng Miao
- School of Plant Protection, Hainan University, Haikou, China
| | - Jingjing Zhou
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, China
| | - Weizong Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, China
| | - Boshen Chen
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, China
| | - Lijun Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, China
| | - Huimin Tian
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, China
| | - Bingbing Ye
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, China
| | - Fan Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou, China
| |
Collapse
|
4
|
Cortese AM, Horton TR. Islands in the shade: scattered ectomycorrhizal trees influence soil inoculum and heterospecific seedling response in a northeastern secondary forest. MYCORRHIZA 2023; 33:33-44. [PMID: 36752845 PMCID: PMC9907180 DOI: 10.1007/s00572-023-01104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The eastern deciduous forest is a mix of arbuscular (AM) and ectomycorrhizal (EM) trees, but land use legacies have increased the abundance of AM trees like Acer spp. (maple). Although these legacies have not changed the abundance of some EM trees like Betula spp. (birch), EM conifers like Tsuga canadensis (hemlock), and Pinus strobus (pine) have declined. We used a soil bioassay to investigate if the microbial community near EM birch (birch soil) contains a greater abundance and diversity of EM fungal propagules compatible with T. canadensis and P. strobus compared to the community associated with the surrounding AM-dominated secondary forest matrix (maple soil). We also tested the effectiveness of inoculation with soil from a nearby EM-dominated old-growth forest as a restoration tool to reintroduce EM fungi into secondary forest soils. Finally, we examined how seedling growth responded to EM fungi associated with each treatment. Seedlings grown with birch soil were colonized by EM fungi mostly absent from the surrounding maple forest. Hemlock seedlings grown with birch soil grew larger than hemlock seedlings grown with maple soil, but pine seedling growth did not differ with soil treatment. The addition of old-growth soil inoculum increased hemlock and pine growth in both soils. Our results found that EM trees are associated with beneficial EM fungi that are mostly absent from the surrounding AM-dominated secondary forest, but inoculation with old-growth soil is effective in promoting the growth of seedlings by reintroducing native EM fungi to the AM-dominated forests.
Collapse
Affiliation(s)
- Andrew M Cortese
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA.
| | - Thomas R Horton
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA
| |
Collapse
|
5
|
González C. Evolution of the concept of ecological integrity and its study through networks. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2022.110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
6
|
Duarte M, Verdú M, Cavieres LA, Bustamante RO. Plant–plant facilitation increases with reduced phylogenetic relatedness along an elevation gradient. OIKOS 2020. [DOI: 10.1111/oik.07680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Milen Duarte
- Dept de Ciencias Ecológicas, Facultad de Ciencias, Univ. de Chile Santiago Chile
- Inst. de Ecología y Biodiversidad Santiago Chile
| | - Miguel Verdú
- Centro de Investigaciones sobre Desertificación (CIDE CSIC‐UV‐GV), Apartado Oficial Moncada Valencia Spain
| | - Lohengrin A. Cavieres
- Inst. de Ecología y Biodiversidad Santiago Chile
- Dept de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Univ. de Concepción Chile
| | - Ramiro O. Bustamante
- Dept de Ciencias Ecológicas, Facultad de Ciencias, Univ. de Chile Santiago Chile
- Inst. de Ecología y Biodiversidad Santiago Chile
| |
Collapse
|
7
|
Koga W, Suzuki A, Masaka K, Seiwa K. Conspecific distance-dependent seedling performance, and replacement of conspecific seedlings by heterospecifics in five hardwood, temperate forest species. Oecologia 2020; 193:937-947. [PMID: 32783114 DOI: 10.1007/s00442-020-04725-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/29/2020] [Indexed: 12/01/2022]
Abstract
The mechanisms driving species diversity in the context of Janzen-Connell model are best understood by evaluating not only conspecific distance-dependent (CDD) seedling performance, but also replacement of conspecific seedlings by heterospecific seedlings beneath adult trees. We evaluated CDD and replacement as a log response ratio of seedling performance (height, age) directly beneath and at a distance from adult plants in a temperate forest, and examined the log response ratio of that between conspecifics and heterospecifics beneath adults for five hardwood species with different ecological traits (e.g., seed size, mycorrhizal type, relative abundance). CDD was greater in three small-seeded species with arbuscular mycorrhizae (AM) associations than it was in two large-seeded species with ectomycorrhizae (EM) associations. Replacement was also higher for small-seeded AM species compared to large-seeded EM species, resulting in a strong, positive relationship between CDD and replacement. The traits suggest that small-seeded AM seedlings are more likely to be replaced by heterologous seedlings beneath the adults than large-seeded EM seedlings, probably due to that the small-seeded AM species are more susceptible to attack by plant natural enemies (e.g., soil pathogens, leaf diseases). As a result, small-seeded AM species had lower relative abundances compared to large-seeded EM species. This study suggests that either seed size or associations with microorganisms play an important role in driving forest diversity by regulating replacement and CDD, although relative importance of the two traits (i.e., seed size, mycorrhizal type) remains unclear, because of the autocorrelation between the two traits for the five species studied.
Collapse
Affiliation(s)
- Wataru Koga
- Graduate School of Agricultural Science, Tohoku University, Naruko-onsen, Osaki, Miyagi, 989-6711, Japan
| | - Aya Suzuki
- Graduate School of Agricultural Science, Tohoku University, Naruko-onsen, Osaki, Miyagi, 989-6711, Japan
| | - Kazuhiko Masaka
- Faculty of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Kenji Seiwa
- Graduate School of Agricultural Science, Tohoku University, Naruko-onsen, Osaki, Miyagi, 989-6711, Japan.
| |
Collapse
|