1
|
Jeong SJ, Nam BE, Jeong HJ, Jang JY, Joo Y, Kim JG. Age-dependent resistance of a perennial herb, Aristolochia contorta against specialist and generalist leaf-chewing herbivores. FRONTIERS IN PLANT SCIENCE 2023; 14:1145363. [PMID: 37324666 PMCID: PMC10265686 DOI: 10.3389/fpls.2023.1145363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
Plants need to balance investments in growth and defense throughout their life to increase their fitness. To optimize fitness, levels of defense against herbivores in perennial plants may vary according to plant age and season. However, secondary plant metabolites often have a detrimental effect on generalist herbivores, while many specialists have developed resistance to them. Therefore, varying levels of defensive secondary metabolites depending on plant age and season may have different effects on the performance of specialist and generalist herbivores colonizing the same host plants. In this study, we analyzed concentrations of defensive secondary metabolites (aristolochic acids) and the nutritional value (C/N ratios) of 1st-, 2nd- and 3rd-year Aristolochia contorta in July (the middle of growing season) and September (the end of growing season). We further assessed their effects on the performances of the specialist herbivore Sericinus montela (Lepidoptera: Papilionidae) and the generalist herbivore Spodoptera exigua (Lepidoptera: Noctuidae). Leaves of 1st-year A. contorta contained significantly higher concentrations of aristolochic acids than those of older plants, with concentrations tending to decrease over the first-year season. Therefore, when first year leaves were fed in July, all larvae of S. exigua died and S. montela showed the lowest growth rate compared to older leaves fed in July. However, the nutritional quality of A. contorta leaves was lower in September than July irrespective of plant age, which was reflected in lower larval performance of both herbivores in September. These results suggest that A. contorta invests in the chemical defenses of leaves especially at a young age, while the low nutritional value of leaves seems to limit the performance of leaf-chewing herbivores at the end of the season, regardless of plant age.
Collapse
Affiliation(s)
- Se Jong Jeong
- Department of Biology Education, Seoul National University, Seoul, Republic of Korea
| | - Bo Eun Nam
- Department of Biology Education, Seoul National University, Seoul, Republic of Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyeon Jin Jeong
- Department of Biology Education, Seoul National University, Seoul, Republic of Korea
- The Korea National Arboretum, Pocheon, Republic of Korea
| | - Jae Yeon Jang
- Department of Biology Education, Seoul National University, Seoul, Republic of Korea
| | - Youngsung Joo
- Research Institute of Basic Sciences, Seoul National University, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jae Geun Kim
- Department of Biology Education, Seoul National University, Seoul, Republic of Korea
- Center for Education Research, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Park HJ, Nam BE, Lee G, Kim SG, Joo Y, Kim JG. Ontogeny-dependent effects of elevated CO 2 and watering frequency on interaction between Aristolochia contorta and its herbivores. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156065. [PMID: 35597357 DOI: 10.1016/j.scitotenv.2022.156065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Effects of environmental change on plants can differ due to sequential changes in their life-history strategies (i.e., ontogenetic variations). The fitness of herbivorous insects by physiological changes of the host plant could be affected depending on their diet breadth. However, little is known regarding the combinational effects of plant ontogeny and climate change on plant-herbivore interactions. This study examined the plant ontogeny-dependent effects of climate change on the interaction between a host plant (Aristolochia contorta), its specialist herbivore (Sericinus montela), and a generalist herbivore (Spodoptera exigua). Plants were grown under a factorial design of two distinct CO2 concentrations (ambient, 400 ppm; elevated, 560 ppm) and two watering frequencies (control, once a week; increased, twice a week). Plant ontogeny ameliorated the effects of climate change by altering its defensive traits, where nutrient-related factors were cumulatively affected by climate change. Herbivore performance was assessed at three different plant ontogenetic stages (1st-year juvenile, 1st-year senescence, and 2nd-year juvenile). Elevated CO2 levels reduced the growth and survival of the specialist herbivore, whereas increased watering frequency partially alleviated this reduced performance. Generalist herbivore performance slightly increased under elevated CO2 levels with progressing ontogenetic stages. The effects of climate change, both elevated CO2 and increased watering frequency were weaker in 2nd-year juveniles than in 1st-year juveniles. Elevated CO2 levels detrimentally affected the nutritional quality of A. contorta leaves. The effects of climate change on both specialist and generalist herbivore performance differed as plant ontogenetic stage proceeded. Increased growth rates and survival of the generalist herbivore at the latter ontogenetic stage might negatively affect the population dynamics of a specialist herbivore. This study suggests that biases are possible when the plant-herbivore interaction under a changing environment is predicted from a singular plant ontogenetic stage.
Collapse
Affiliation(s)
- Hyun Jun Park
- Department of Biology Education, Seoul National University, Seoul 08826, Republic of Korea
| | - Bo Eun Nam
- Department of Biology Education, Seoul National University, Seoul 08826, Republic of Korea; Department of Biology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Gisuk Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Youngsung Joo
- Department of Biology, Chungbuk National University, Cheongju 28644, Republic of Korea; Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Jae Geun Kim
- Department of Biology Education, Seoul National University, Seoul 08826, Republic of Korea; Center for Education Research, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Villamil N, Boege K, Stone GN. Defensive mutualists affect outcross pollen transfer and male fitness in their host plant. OIKOS 2022. [DOI: 10.1111/oik.08788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Nora Villamil
- Inst. of Evolutionary Biology, Univ. of Edinburgh, Ashworth Laboratories, The King's Buildings Edinburgh UK
- Dept of Ecology and Evolution, Univ. de Lausanne Biophore Lausanne Switzerland
| | - Karina Boege
- Inst. de Ecología, Univ. Nacional Autónoma de México, Ciudad Universitaria Ciudad De México México
| | - Graham N. Stone
- Inst. of Evolutionary Biology, Univ. of Edinburgh, Ashworth Laboratories, The King's Buildings Edinburgh UK
| |
Collapse
|
4
|
Horta P, Raposeira H, Baños A, Ibáñez C, Razgour O, Rebelo H, Juste J. Counteracting forces of introgressive hybridization and interspecific competition shape the morphological traits of cryptic Iberian Eptesicus bats. Sci Rep 2022; 12:11695. [PMID: 35803997 PMCID: PMC9270368 DOI: 10.1038/s41598-022-15412-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Cryptic species that coexist in sympatry are likely to simultaneously experience strong competition and hybridization. The first phenomenon would lead to character displacement, whereas the second can potentially promote morphological similarity through adaptive introgression. The main goal of this work was to investigate the effect of introgressive hybridization on the morphology of cryptic Iberian Eptesicus bats when facing counteracting evolutionary forces from interspecific competition. We found substantial overlap both in dentition and in wing morphology traits, though mainly in individuals in sympatry. The presence of hybrids contributes to a fifth of this overlap, with hybrids showing traits with intermediate morphometry. Thus, introgressive hybridization may contribute to species adaptation to trophic and ecological space responding directly to the macro-habitats characteristics of the sympatric zone and to local prey availability. On the other hand, fur shade tended to be browner and brighter in hybrids than parental species. Colour differences could result from partitioning of resources as an adaptation to environmental factors such as roost and microhabitats. We argue that a balance between adaptive introgression and niche partitioning shapes species interactions with the environment through affecting morphological traits under selection.
Collapse
Affiliation(s)
- Pedro Horta
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal. .,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal. .,OII - Observatório Inovação Investigação, Seia, Portugal. .,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
| | - Helena Raposeira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal.,OII - Observatório Inovação Investigação, Seia, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | | | - Carlos Ibáñez
- Departmento de Ecología Evolutiva, Estación Biológica de Doñana (CSIC), Avda. Américo Vespucio 26, 41092, Sevilla, Spain.,CIBER de Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
| | | | - Hugo Rebelo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal.,ESS, Polytechnic Institute of Setúbal, Setúbal, Portugal, Campus do IPS - Estefanilha, 2910-761 Setúbal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Javier Juste
- Departmento de Ecología Evolutiva, Estación Biológica de Doñana (CSIC), Avda. Américo Vespucio 26, 41092, Sevilla, Spain.,CIBER de Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
| |
Collapse
|
5
|
Fernández de Bobadilla M, Vitiello A, Erb M, Poelman EH. Plant defense strategies against attack by multiple herbivores. TRENDS IN PLANT SCIENCE 2022; 27:528-535. [PMID: 35027280 DOI: 10.1016/j.tplants.2021.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 05/21/2023]
Abstract
Plants may effectively tailor defenses by recognizing their attackers and reprogramming their physiology. Although most plants are under attack by a large diversity of herbivores, surprisingly little is known about the physiological capabilities of plants to deal with attack by multiple herbivores. Studies on dual herbivore attack identified that defense against one attacker may cause energetic and physiological constraints to deal with a second attacker. How these constraints shape plant plasticity in defense to their full community of attackers is a major knowledge gap in plant science. Here, we provide a framework for plant defense to multiherbivore attack by defining the repertoire of plastic defense strategies that may allow plants to optimize their defenses against a multitude of stressors.
Collapse
Affiliation(s)
| | - Alessia Vitiello
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
6
|
Zhang Y, Song R, Yuan H, Li T, Wang L, Lu K, Guo J, Liu W. Overexpressing the N-terminus of CATALASE2 enhances plant jasmonic acid biosynthesis and resistance to necrotrophic pathogen Botrytis cinerea B05.10. MOLECULAR PLANT PATHOLOGY 2021; 22:1226-1238. [PMID: 34247446 PMCID: PMC8435237 DOI: 10.1111/mpp.13106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 05/31/2023]
Abstract
Salicylic acid (SA) acts antagonistically to jasmonic acid (JA) in plant immunity. We previously reported that CATALASE2 (CAT2) promotes JA-biosynthetic acyl-CoA oxidase (ACX) activity to enhance plant resistance to necrotrophic Botrytis cinerea, and SA represses JA biosynthesis through inhibiting CAT2 activity, while the underlying mechanism remains to be further elucidated. Here, we report that the truncated CAT2 N-terminus (CAT2-N) interacts with and promotes ACX2/3, and CAT2-N-overexpressing plants have increased JA accumulation and enhanced resistance to B. cinerea B05.10, but compromised antagonism of SA on JA. Catalase inhibitor treatment or mutating CAT2 active amino acids abolished CAT2 H2 O2 -decomposing activity but did not affect its promotion of ACX2/3 activity via interaction. CAT2-N, a truncated protein with no catalase activity, interacted with and promoted ACX2/3. Overexpressing CAT2-N in Arabidopsis plants resulted in increased ACX activity, higher JA accumulation, and stronger resistance to B. cinerea B05.10 infection. Additionally, SA dramatically repressed JA biosynthesis and resistance to B. cinerea in the wild type but not in the CAT2-N-overexpressing plants. Together, our study reveals that CAT2-N can be utilized as an accelerator for JA biosynthesis during plant resistance to B. cinerea B05.10, and this truncated protein partly relieves SA repression of JA biosynthesis in plant defence responses.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| | - Ru‐Feng Song
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| | - Hong‐Mei Yuan
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Ting‐Ting Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound ScreeningJiangsu Ocean UniversityLianyungangChina
| | - Lin‐Feng Wang
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| | - Kai‐Kai Lu
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| | - Jia‐Xing Guo
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| | - Wen‐Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| |
Collapse
|
7
|
Life stage-dependent genetic traits as drivers of plant-herbivore interactions. Curr Opin Biotechnol 2021; 70:234-240. [PMID: 34224938 DOI: 10.1016/j.copbio.2021.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022]
Abstract
In recent decades, we have come to understand in great detail the mechanisms that allow plants and herbivorous arthropods to withstand each other. Research into these interactions often focuses on specific life stages of plants and animals, often for pragmatic reasons. Yet it is well known that the lifecycles of plants and herbivores are accompanied by niche shifts that can change their interactions. The occurrence of changes in the defensive regulatory and metabolic networks of plants during their development as driver of plant-herbivore interactions is mainly inferred from behavioral patterns, but there is increasingly molecular-mechanistic data to support the causality. In particular, understanding the molecular-mechanistic signatures of ontogenetic niche shifts, and their genetic basis, may prove to be critical for the design of knowledge-based crop protection strategies.
Collapse
|
8
|
Capó M, Roig-Oliver M, Cardona C, Cursach J, Bartolomé J, Rita J, Baraza E. Historic exposure to herbivores, not constitutive traits, explains plant tolerance to herbivory in the case of two Medicago species (Fabaceae). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 307:110890. [PMID: 33902851 DOI: 10.1016/j.plantsci.2021.110890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Mechanisms that allow plants to survive and reproduce after herbivory are considered to play a key role in plant evolution. In this study, we evaluated how tolerance varies in species with different historic exposure to herbivores considering ontogeny. We exposed the range-restricted species Medicago citrina and its closely related and widespread species M. arborea to one and two herbivory simulations (80 % aerial biomass loss). Physiological and growth parameters related to tolerance capacity were assessed to evaluate constitutive values (without herbivory) and induced tolerance after damage. Constitutive traits were not always related to greater tolerance, and each species compensated for herbivory through different traits. Herbivory damage only led to mortality in M. citrina; adults exhibited root biomass loss and increased oxidative stress after damage, but also compensated aerial biomass. Despite seedlings showed a lower death percentage than adults after herbivory in M. citrina, they showed less capacity to recover control values than adults. Moderate tolerance to M. arborea herbivory and low tolerance to M. citrina is found. Thus, although the constitutive characteristics are maintained in the lineage, the tolerance of plants decreases in M. citrina. That represents how plants respond to the lack of pressure from herbivores in their habitat.
Collapse
Affiliation(s)
- Miquel Capó
- Research Group on Plant Biology under Mediterranean Conditions, Department of Biology, Faculty of Sciences, University of Balearic Islands, Palma, 07122, Spain.
| | - Margalida Roig-Oliver
- Research Group on Plant Biology under Mediterranean Conditions, Department of Biology, Faculty of Sciences, University of Balearic Islands, Palma, 07122, Spain
| | - Carles Cardona
- Centre Forestal de les Illes Balears, Institut Balear de la Natura, Gremi Corredors, 10, Pol. Son Rossinyol, Palma, 07009, Spain
| | - Joana Cursach
- Research Group on Plant Biology under Mediterranean Conditions, Department of Biology, Faculty of Sciences, University of Balearic Islands, Palma, 07122, Spain
| | - Jordi Bartolomé
- Small Ruminant Research Group, Department of Animal and Food Science, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Juan Rita
- Research Group on Plant Biology under Mediterranean Conditions, Department of Biology, Faculty of Sciences, University of Balearic Islands, Palma, 07122, Spain
| | - Elena Baraza
- Research Group on Plant Biology under Mediterranean Conditions, Department of Biology, Faculty of Sciences, University of Balearic Islands, Palma, 07122, Spain
| |
Collapse
|
9
|
Paul RL, Pearse IS, Ode PJ. Fine‐scale plant defence variability increases top‐down control of an herbivore. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryan L. Paul
- Graduate Degree Program in Ecology and Department of Agricultural Biology Colorado State University Fort Collins CO USA
| | - Ian S. Pearse
- U.S. Geological SurveyFort Collins Science Center Fort Collins CO USA
| | - Paul J. Ode
- Graduate Degree Program in Ecology and Department of Agricultural Biology Colorado State University Fort Collins CO USA
| |
Collapse
|
10
|
Gaia AM, Yamaguchi LF, Guerrero-Perilla C, Kato MJ. Ontogenetic Changes in the Chemical Profiles of Piper Species. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10061085. [PMID: 34071315 PMCID: PMC8227164 DOI: 10.3390/plants10061085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
The chemical composition of seedlings and adult plants of several Piper species were analyzed by 1H NMR spectroscopy combined with principal component analysis (PCA) and HPLC-DAD, HPLC-HRESIMS and GC-MS data. The chromatographic profile of crude extracts from leaves of Piper species showed remarkable differences between seedlings and adult plants. Adult leaves of P. regnellii accumulate dihydrobenzofuran neolignans, P. solmsianum contain tetrahydrofuran lignans, and prenylated benzoic acids are found in adult leaves of P. hemmendorffii and P. caldense. Seedlings produced an entirely different collection of compounds. Piper gaudichaudianum and P. solmsianum seedlings contain the phenylpropanoid dillapiole. Piper regnellii and P. hemmendorffii produce another phenylpropanoid, apiol, while isoasarone is found in P. caldense. Piper richadiaefolium and P. permucronatum contain dibenzylbutyrolactones lignans or flavonoids in adult leaves. Seedlings of P. richardiaefolium produce multiple amides, while P. permucronatum seedlings contain a new long chain ester. Piper tuberculatum, P. reticulatum and P. amalago produce amides, and their chemistry changes less during ontogeny. The chemical variation we documented opens questions about changes in herbivore pressure across ontogeny.
Collapse
|
11
|
Cole CT, Morrow CJ, Barker HL, Rubert-Nason KF, Riehl JFL, Köllner TG, Lackus ND, Lindroth RL. Growing up aspen: ontogeny and trade-offs shape growth, defence and reproduction in a foundation species. ANNALS OF BOTANY 2021; 127:505-517. [PMID: 32296821 PMCID: PMC7988516 DOI: 10.1093/aob/mcaa070] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/13/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS Intraspecific variation in foundation species of forest ecosystems can shape community and ecosystem properties, particularly when that variation has a genetic basis. Traits mediating interactions with other species are predicted by simple allocation models to follow ontogenetic patterns that are rarely studied in trees. The aim of this research was to identify the roles of genotype, ontogeny and genotypic trade-offs shaping growth, defence and reproduction in aspen. METHODS We established a common garden replicating >500 aspen genets in Wisconsin, USA. Trees were measured through the juvenile period into the onset of reproduction, for growth, defence chemistry (phenolic glycosides and condensed tannins), nitrogen, extrafloral nectaries, leaf morphology (specific leaf area), flower production and foliar herbivory and disease. We also assayed the TOZ19 sex marker and heterozygosity at ten microsatellite loci. KEY RESULTS We found high levels of genotypic variation for all traits, and high heritabilities for both the traits and their ontogenetic trajectories. Ontogeny strongly shaped intraspecific variation, and trade-offs among growth, defence and reproduction supported some predictions while contradicting others. Both direct resistance (chemical defence) and indirect defence (extrafloral nectaries) declined during the juvenile stage, prior to the onset of reproduction. Reproduction was higher in trees that were larger, male and had higher individual heterozygosity. Growth was diminished by genotypic allocation to both direct and indirect defence as well as to reproduction, but we found no evidence of trade-offs between defence and reproduction. CONCLUSIONS Key traits affecting the ecological communities of aspen have high levels of genotypic variation and heritability, strong patterns of ontogeny and clear trade-offs among growth, defence and reproduction. The architecture of aspen's community genetics - its ontogeny, trade-offs and especially its great variability - is shaped by both its broad range and the diverse community of associates, and in turn further fosters that diversity.
Collapse
Affiliation(s)
- Christopher T Cole
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI, USA
| | - Clay J Morrow
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI, USA
| | - Hilary L Barker
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI, USA
| | - Kennedy F Rubert-Nason
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI, USA
- Department of Natural and Behavioral Sciences, University of Maine at Ft. Kent, 23 University Drive, Fort Kent, ME, USA
| | - Jennifer F L Riehl
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI, USA
| | - Tobias G Köllner
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Strasse 8, Jena, Germany
| | - Nathalie D Lackus
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Strasse 8, Jena, Germany
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI, USA
| |
Collapse
|
12
|
Mertens D, Boege K, Kessler A, Koricheva J, Thaler JS, Whiteman NK, Poelman EH. Predictability of Biotic Stress Structures Plant Defence Evolution. Trends Ecol Evol 2021; 36:444-456. [PMID: 33468354 DOI: 10.1016/j.tree.2020.12.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022]
Abstract
To achieve ecological and reproductive success, plants need to mitigate a multitude of stressors. The stressors encountered by plants are highly dynamic but typically vary predictably due to seasonality or correlations among stressors. As plants face physiological and ecological constraints in responses to stress, it can be beneficial for plants to evolve the ability to incorporate predictable patterns of stress in their life histories. Here, we discuss how plants predict adverse conditions, which plant strategies integrate predictability of biotic stress, and how such strategies can evolve. We propose that plants commonly optimise responses to correlated sequences or combinations of herbivores and pathogens, and that the predictability of these patterns is a key factor governing plant strategies in dynamic environments.
Collapse
Affiliation(s)
- Daan Mertens
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Karina Boege
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-275, Coyoacán, C.P. 04510, Ciudad de México, Mexico
| | - André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Julia Koricheva
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | | | - Noah K Whiteman
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| |
Collapse
|
13
|
Associational effects of plant ontogeny on damage by a specialist insect herbivore. Oecologia 2020; 193:593-602. [PMID: 32621031 DOI: 10.1007/s00442-020-04702-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
Intraspecific variation in plant traits is a major cause of variation in herbivore feeding and performance. Plant defensive traits change as a plant grows, such that ontogeny may account for a substantial portion of intraspecific trait variation. We tested how the ontogenic stage of an individual plant, of an individual in the context of its neighboring plants, and of a patch of plants with mixed or uniform stages affect plant-herbivore interactions. To do this, we conducted an experimental study of the interactions between Lepidium draba, a perennial brassicaceous weed, and Plutella xylostella, a common herbivore of L. draba. We found that L. draba foliar glucosinolates, secondary metabolites often implicated in defense, decreased in concentration with plant age. In single-stage patches, herbivores performed similarly on L. draba plants of different ages. Furthermore, we found no difference in the cumulative performance of herbivores reared on mixed- or even-staged patches of L. draba. However, in mixed-stage patches, the damage experienced by a focal plant depended on the stage of neighboring plants, suggesting a preference hierarchy of the herbivore among plant stages. In our study, the amount of herbivory depended on the ontogenic neighborhood in which the plant grew. However, from the herbivore's perspective, variation in plant ontogenic stage was unimportant to its success in terms of feeding rate and final weight.
Collapse
|