1
|
Van Nuland ME, Qin C, Pellitier PT, Zhu K, Peay KG. Climate mismatches with ectomycorrhizal fungi contribute to migration lag in North American tree range shifts. Proc Natl Acad Sci U S A 2024; 121:e2308811121. [PMID: 38805274 PMCID: PMC11161776 DOI: 10.1073/pnas.2308811121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 04/05/2024] [Indexed: 05/30/2024] Open
Abstract
Climate change will likely shift plant and microbial distributions, creating geographic mismatches between plant hosts and essential microbial symbionts (e.g., ectomycorrhizal fungi, EMF). The loss of historical interactions, or the gain of novel associations, can have important consequences for biodiversity, ecosystem processes, and plant migration potential, yet few analyses exist that measure where mycorrhizal symbioses could be lost or gained across landscapes. Here, we examine climate change impacts on tree-EMF codistributions at the continent scale. We built species distribution models for 400 EMF species and 50 tree species, integrating fungal sequencing data from North American forest ecosystems with tree species occurrence records and long-term forest inventory data. Our results show the following: 1) tree and EMF climate suitability to shift toward higher latitudes; 2) climate shifts increase the size of shared tree-EMF habitat overall, but 35% of tree-EMF pairs are at risk of declining habitat overlap; 3) climate mismatches between trees and EMF are projected to be greater at northern vs. southern boundaries; and 4) tree migration lag is correlated with lower richness of climatically suitable EMF partners. This work represents a concentrated effort to quantify the spatial extent and location of tree-EMF climate envelope mismatches. Our findings also support a biotic mechanism partially explaining the failure of northward tree species migrations with climate change: reduced diversity of co-occurring and climate-compatible EMF symbionts at higher latitudes. We highlight the conservation implications for identifying areas where tree and EMF responses to climate change may be highly divergent.
Collapse
Affiliation(s)
- Michael E. Van Nuland
- Department of Biology, Stanford University, Stanford, CA94305
- Society for the Protection of Underground Networks, Dover, DE19901
| | - Clara Qin
- Society for the Protection of Underground Networks, Dover, DE19901
- Department of Environmental Studies, University of California Santa Cruz, Santa Cruz, CA95064
| | | | - Kai Zhu
- Department of Environmental Studies, University of California Santa Cruz, Santa Cruz, CA95064
- Institute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI48109
| | - Kabir G. Peay
- Department of Biology, Stanford University, Stanford, CA94305
- Department of Earth System Science, Stanford University, Stanford, CA94305
| |
Collapse
|
2
|
Razgulin SM. Mycorrhizal Complexes and Their Role in the Ecology of Boreal Forests (Review). BIOL BULL+ 2022. [DOI: 10.1134/s1062359022060140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Fungal Perspective of Pine and Oak Colonization in Mediterranean Degraded Ecosystems. FORESTS 2022. [DOI: 10.3390/f13010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Forest restoration has become one of the most important challenges for restoration ecology in the recent years. In this regard, soil fungi are fundamental drivers of forest ecosystem processes, with significant implications for plant growth and survival. However, the post-disturbance recovery of belowground communities has been rarely assessed, especially in highly degraded systems such as mines. Our aim was to compare forests and mined systems for biomass and structure of fungal communities in soil during early stages of tree establishment after disturbance. We performed ergosterol analysis and PacBio and Illumina sequencing of internal transcribed spacer 2 amplicons across soil layers in P. sylvestris, Q. robur and Q. ilex (holm oak) forests and naturally revegetated mined sites. In pine forests, total fungal biomass was significantly higher in litter and humus compared to mineral layers, with dominance of the mycorrhizal genera Tomentella, Inocybe and Tricholoma. Conversely, in oak forests the most abundant mycorrhizal genera were Tomentella, Cortinarius and Sebacina, but the biomass of saprotrophic fungi was greater in the litter layer compared to mycorrhizal fungi, with the genus Preussia being the most abundant. In the revegetated mined sites, ectomycorrhizal fungi dominated in the humus and mineral layers, with the mycorrhizal genus Oidiodendron being dominant. In contrast, in holm oak forests saprotrophic fungi dominated both soil humus and mineral layers, with the genera of Alternaria, Bovista and Mycena dominating the soil humus forest layer, while the genus Cadophora dominated the mineral layer. The habitat-specific differences in soil fungal community composition and putative functions suggest that an understanding of soil–plant–microbial interactions for different tree species and use of specific soil/litter inoculum upon planting/seeding might help to increase the effectiveness of tree restoration strategies in Mediterranean degraded sites.
Collapse
|
4
|
Ceola G, Goss-Souza D, Alves J, Alves da Silva A, Stürmer SL, Baretta D, Sousa JP, Klauberg-Filho O. Biogeographic Patterns of Arbuscular Mycorrhizal Fungal Communities Along a Land-Use Intensification Gradient in the Subtropical Atlantic Forest Biome. MICROBIAL ECOLOGY 2021; 82:942-960. [PMID: 33656687 DOI: 10.1007/s00248-021-01721-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Information concerning arbuscular mycorrhizal (AM) fungal geographical distribution in tropical and subtropical soils from the Atlantic Forest (a global hotspot of biodiversity) are scarce and often restricted to the evaluation of richness and abundance of AM fungal species at specific ecosystems or local landscapes. In this study, we hypothesized that AM fungal diversity and community composition in subtropical soils would display fundamental differences in their geographical patterns, shaped by spatial distance and land-use change, at local and regional scales. AM fungal community composition was examined by spore-based taxonomic analysis, using soil trap cultures. Acaulospora koskei and Glomus were found as generalists, regardless of mesoregions and land uses. Other Acaulospora species were also found generalists within mesoregions. Land-use change and intensification did not influence AM fungal composition, partially rejecting our first hypothesis. We then calculated the distance-decay of similarities among pairs of AM fungal communities and the distance-decay relationship within and over mesoregions. We also performed the Mantel test and redundancy analysis to discriminate the main environmental drivers of AM fungal diversity and composition turnover. Overall, we found significant distance-decays for all land uses. We also observed a distance-decay relationship within the mesoregion scale (< 104 km) and these changes were correlated mainly to soil type (not land use), with the secondary influence of both total organic carbon and clay contents. AM fungal species distribution presented significant distance-decays, regardless of land uses, which was indicative of dispersal limitation, a stochastic neutral process. Although, we found evidence that, coupled with dispersal limitation, niche differentiation also played a role in structuring AM fungal communities, driven by long-term historical contingencies, as represented by soil type, resulting from different soil origin and mineralogy across mesoregions.
Collapse
Affiliation(s)
- Gessiane Ceola
- Department of Soils and Natural Resources, Santa Catarina State University, Lages, SC, 88520-000, Brazil
| | - Dennis Goss-Souza
- Department of Soils and Natural Resources, Santa Catarina State University, Lages, SC, 88520-000, Brazil
| | - Joana Alves
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, 3000-456, Portugal
| | - António Alves da Silva
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, 3000-456, Portugal
| | - Sidney Luiz Stürmer
- Departament of Natural Sciences, Regional University of Blumenau, Blumenau, SC, 89030-903, Brazil
| | - Dilmar Baretta
- Department of Soils and Sustainability, Santa Catarina State University, Chapecó, SC, 89815-630, Brazil
| | - José Paulo Sousa
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, 3000-456, Portugal
| | - Osmar Klauberg-Filho
- Department of Soils and Natural Resources, Santa Catarina State University, Lages, SC, 88520-000, Brazil.
- Agroveterinary Centre, Santa Catarina State University, Av. Luis de Camões, 2090, Lages, SC, 88520-000, Brazil.
| |
Collapse
|
5
|
Lang AK, Jevon FV, Vietorisz CR, Ayres MP, Hatala Matthes J. Fine roots and mycorrhizal fungi accelerate leaf litter decomposition in a northern hardwood forest regardless of dominant tree mycorrhizal associations. THE NEW PHYTOLOGIST 2021; 230:316-326. [PMID: 33341954 DOI: 10.1111/nph.17155] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
●Fine roots and mycorrhizal fungi may either stimulate leaf litter decomposition by providing free-living decomposers with root-derived carbon, or may slow decomposition through nutrient competition between mycorrhizal and saprotrophic fungi. ●We reduced the presence of fine roots and their associated mycorrhizal fungi in a northern hardwood forest in New Hampshire, USA by soil trenching. Plots spanned a mycorrhizal gradient from 96% arbuscular mycorrhizal (AM) associations to 100% ectomycorrhizal (ECM)-associated tree basal area. We incubated four species of leaf litter within these plots in areas with reduced access to roots and mycorrhizal fungi and in adjacent areas with intact roots and mycorrhizal fungi. ●Over a period of 608 d, we found that litter decayed more rapidly in the presence of fine roots and mycorrhizal hyphae regardless of the dominant tree mycorrhizal association. Root and mycorrhizal exclusion reduced the activity of acid phosphatase on decomposing litter. ●Our results indicate that both AM- and ECM-associated fine roots stimulate litter decomposition in this system. These findings suggest that the effect of fine roots and mycorrhizal fungi on litter decay in a particular ecosystem likely depends on whether interactions between mycorrhizal roots and saprotrophic fungi are antagonistic or facilitative.
Collapse
Affiliation(s)
- Ashley K Lang
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Fiona V Jevon
- Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
| | | | - Matthew P Ayres
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | | |
Collapse
|