1
|
Queiroz VF, Tatara JM, Botelho BB, Rodrigues RAL, Almeida GMDF, Abrahao JS. The consequences of viral infection on protists. Commun Biol 2024; 7:306. [PMID: 38462656 PMCID: PMC10925606 DOI: 10.1038/s42003-024-06001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/29/2024] [Indexed: 03/12/2024] Open
Abstract
Protists encompass a vast widely distributed group of organisms, surpassing the diversity observed in metazoans. Their diverse ecological niches and life forms are intriguing characteristics that render them valuable subjects for in-depth cell biology studies. Throughout history, viruses have played a pivotal role in elucidating complex cellular processes, particularly in the context of cellular responses to viral infections. In this comprehensive review, we provide an overview of the cellular alterations that are triggered in specific hosts following different viral infections and explore intricate biological interactions observed in experimental conditions using different host-pathogen groups.
Collapse
Affiliation(s)
- Victoria Fulgencio Queiroz
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Miranda Tatara
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Bruna Barbosa Botelho
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Araújo Lima Rodrigues
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel Magno de Freitas Almeida
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Jonatas Santos Abrahao
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
2
|
Trubl G, Stedman KM, Bywaters KF, Matula EE, Sommers P, Roux S, Merino N, Yin J, Kaelber JT, Avila-Herrera A, Johnson PA, Johnson JC, Borges S, Weber PK, Pett-Ridge J, Boston PJ. Astrovirology: how viruses enhance our understanding of life in the Universe. INTERNATIONAL JOURNAL OF ASTROBIOLOGY 2023; 22:247-271. [PMID: 38046673 PMCID: PMC10691837 DOI: 10.1017/s1473550423000058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Viruses are the most numerically abundant biological entities on Earth. As ubiquitous replicators of molecular information and agents of community change, viruses have potent effects on the life on Earth, and may play a critical role in human spaceflight, for life-detection missions to other planetary bodies and planetary protection. However, major knowledge gaps constrain our understanding of the Earth's virosphere: (1) the role viruses play in biogeochemical cycles, (2) the origin(s) of viruses and (3) the involvement of viruses in the evolution, distribution and persistence of life. As viruses are the only replicators that span all known types of nucleic acids, an expanded experimental and theoretical toolbox built for Earth's viruses will be pivotal for detecting and understanding life on Earth and beyond. Only by filling in these knowledge and technical gaps we will obtain an inclusive assessment of how to distinguish and detect life on other planetary surfaces. Meanwhile, space exploration requires life-support systems for the needs of humans, plants and their microbial inhabitants. Viral effects on microbes and plants are essential for Earth's biosphere and human health, but virus-host interactions in spaceflight are poorly understood. Viral relationships with their hosts respond to environmental changes in complex ways which are difficult to predict by extrapolating from Earth-based proxies. These relationships should be studied in space to fully understand how spaceflight will modulate viral impacts on human health and life-support systems, including microbiomes. In this review, we address key questions that must be examined to incorporate viruses into Earth system models, life-support systems and life detection. Tackling these questions will benefit our efforts to develop planetary protection protocols and further our understanding of viruses in astrobiology.
Collapse
Affiliation(s)
- Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kenneth M. Stedman
- Center for Life in Extreme Environments, Department of Biology, Portland State University, Portland, OR, USA
| | | | | | | | - Simon Roux
- DOE Joint Genome Institute, Berkeley, CA, USA
| | - Nancy Merino
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - John Yin
- Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason T. Kaelber
- Institute for Quantitative Biomedicine, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Aram Avila-Herrera
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Peter Anto Johnson
- Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | | | - Peter K. Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life & Environmental Sciences Department, University of California Merced, Merced, CA, USA
| | | |
Collapse
|
3
|
Durand PM, Ramsey G. The concepts and origins of cell mortality. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2023; 45:23. [PMID: 37289372 DOI: 10.1007/s40656-023-00581-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 05/16/2023] [Indexed: 06/09/2023]
Abstract
Organismal death is foundational to the evolution of life, and many biological concepts such as natural selection and life history strategy are so fashioned only because individuals are mortal. Organisms, irrespective of their organization, are composed of basic functional units-cells-and it is our understanding of cell death that lies at the heart of most general explanatory frameworks for organismal mortality. Cell death can be exogenous, arising from transmissible diseases, predation, or other misfortunes, but there are also endogenous forms of death that are sometimes the result of adaptive evolution. These endogenous forms of death-often labeled programmed cell death, PCD-originated in the earliest cells and are maintained across the tree of life. Here, we consider two problematic issues related to PCD (and cell mortality generally). First, we trace the original discoveries of cell death from the nineteenth century and place current conceptions of PCD in their historical context. Revisions of our understanding of PCD demand a reassessment of its origin. Our second aim is thus to structure the proposed origin explanations of PCD into coherent arguments. In our analysis we argue for the evolutionary concept of PCD and the viral defense-immunity hypothesis for the origin of PCD. We suggest that this framework offers a plausible account of PCD early in the history of life, and also provides an epistemic basis for the future development of a general evolutionary account of mortality.
Collapse
Affiliation(s)
- Pierre M Durand
- Department of Philosophy, Stellenbosch University, Stellenbosch, South Africa.
| | - Grant Ramsey
- Institute of Philosophy, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Schwartz DA, Shoemaker WR, Măgălie A, Weitz JS, Lennon JT. Bacteria-phage coevolution with a seed bank. THE ISME JOURNAL 2023:10.1038/s41396-023-01449-2. [PMID: 37286738 DOI: 10.1038/s41396-023-01449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Dormancy is an adaptation to living in fluctuating environments. It allows individuals to enter a reversible state of reduced metabolic activity when challenged by unfavorable conditions. Dormancy can also influence species interactions by providing organisms with a refuge from predators and parasites. Here we test the hypothesis that, by generating a seed bank of protected individuals, dormancy can modify the patterns and processes of antagonistic coevolution. We conducted a factorially designed experiment where we passaged a bacterial host (Bacillus subtilis) and its phage (SPO1) in the presence versus absence of a seed bank consisting of dormant endospores. Owing in part to the inability of phages to attach to spores, seed banks stabilized population dynamics and resulted in minimum host densities that were 30-fold higher compared to bacteria that were unable to engage in dormancy. By supplying a refuge to phage-sensitive strains, we show that seed banks retained phenotypic diversity that was otherwise lost to selection. Dormancy also stored genetic diversity. After characterizing allelic variation with pooled population sequencing, we found that seed banks retained twice as many host genes with mutations, whether phages were present or not. Based on mutational trajectories over the course of the experiment, we demonstrate that seed banks can dampen bacteria-phage coevolution. Not only does dormancy create structure and memory that buffers populations against environmental fluctuations, it also modifies species interactions in ways that can feed back onto the eco-evolutionary dynamics of microbial communities.
Collapse
Affiliation(s)
- Daniel A Schwartz
- Department of Biology, Indiana University, Bloomington, Indiana, IN, USA
| | - William R Shoemaker
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy
| | - Andreea Măgălie
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Institut de Biologie, École Normale Supérieure, Paris, France
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, Indiana, IN, USA.
| |
Collapse
|
5
|
Gene expression during the formation of resting spores induced by nitrogen starvation in the marine diatom Chaetoceros socialis. BMC Genomics 2023; 24:106. [PMID: 36899305 PMCID: PMC9999646 DOI: 10.1186/s12864-023-09175-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/09/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Dormancy is widespread in both multicellular and unicellular organisms. Among diatoms, unicellular microalgae at the base of all aquatic food webs, several species produce dormant cells (spores or resting cells) that can withstand long periods of adverse environmental conditions. RESULTS We present the first gene expression study during the process of spore formation induced by nitrogen depletion in the marine planktonic diatom Chaetoceros socialis. In this condition, genes related to photosynthesis and nitrate assimilation, including high-affinity nitrate transporters (NTRs), were downregulated. While the former result is a common reaction among diatoms under nitrogen stress, the latter seems to be exclusive of the spore-former C. socialis. The upregulation of catabolic pathways, such as tricarboxylic acid cycle, glyoxylate cycle and fatty acid beta-oxidation, suggests that this diatom could use lipids as a source of energy during the process of spore formation. Furthermore, the upregulation of a lipoxygenase and several aldehyde dehydrogenases (ALDHs) advocates the presence of oxylipin-mediated signaling, while the upregulation of genes involved in dormancy-related pathways conserved in other organisms (e.g. serine/threonine-protein kinases TOR and its inhibitor GATOR) provides interesting avenues for future explorations. CONCLUSIONS Our results demonstrate that the transition from an active growth phase to a resting one is characterized by marked metabolic changes and provides evidence for the presence of signaling pathways related to intercellular communication.
Collapse
|
6
|
Bachy C, Baudoux AC. [Diversity and ecological importance of viruses in the marine environment]. Med Sci (Paris) 2022; 38:1008-1015. [PMID: 36692280 DOI: 10.1051/medsci/2022165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ocean is the largest reservoir of viruses on the planet with estimates of up to several billions per liter. These viruses represent a major driving force not only for the evolution and for structuring the microbial world, but also for the functioning and the balance of marine ecosystems. With the advances in high throughput sequencing techniques, we are beginning to uncover the diversity and the complexity of this marine virosphere. This review synthesizes milestones in the field of marine viral ecology, including the diversity of these fascinating microorganisms, their impact on microbial mortality and cycling of nutrients and energy in the ocean.
Collapse
Affiliation(s)
- Charles Bachy
- Sorbonne Université, CNRS, FR2424, Station biologique de Roscoff, Roscoff, 29680, France
| | - Anne-Claire Baudoux
- Sorbonne université, CNRS, Station biologique de Roscoff, Laboratoire adaptation et diversité en milieu marin, UMR7144, Roscoff, 29680, France
| |
Collapse
|
7
|
Locke H, Bidle KD, Thamatrakoln K, Johns CT, Bonachela JA, Ferrell BD, Wommack KE. Marine viruses and climate change: Virioplankton, the carbon cycle, and our future ocean. Adv Virus Res 2022; 114:67-146. [PMID: 39492214 DOI: 10.1016/bs.aivir.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interactions between marine viruses and microbes are a critical part of the oceanic carbon cycle. The impacts of virus-host interactions range from short-term disruptions in the mobility of microbial biomass carbon to higher trophic levels through cell lysis (i.e., the viral shunt) to long-term reallocation of microbial biomass carbon to the deep sea through accelerating the biological pump (i.e., the viral shuttle). The biogeochemical backdrop of the ocean-the physical, chemical, and biological landscape-influences the likelihood of both virus-host interactions and particle formation, and the fate and flow of carbon. As climate change reshapes the oceanic landscape through large-scale shifts in temperature, circulation, stratification, and acidification, virus-mediated carbon flux is likely to shift in response. Dynamics in the directionality and magnitude of changes in how, where, and when viruses mediate the recycling or storage of microbial biomass carbon is largely unknown. Integrating viral infection dynamics data obtained from experimental models and field systems, with particle motion microphysics and global observations of oceanic biogeochemistry, into improved ecosystem models will enable viral oceanographers to better predict the role of viruses in marine carbon cycling in the future ocean.
Collapse
Affiliation(s)
- Hannah Locke
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States
| | - Kay D Bidle
- Rutgers Univ., Dept. of Marine & Coastal Sciences, New Brunswick, NJ, United States
| | | | - Christopher T Johns
- Rutgers Univ., Dept. of Marine & Coastal Sciences, New Brunswick, NJ, United States
| | - Juan A Bonachela
- Rutgers Univ., Dept. of Ecology, Evolution & Natural Resources, New Brunswick, NJ, United States
| | - Barbra D Ferrell
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States
| | - K Eric Wommack
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States.
| |
Collapse
|
8
|
Flynn KJ, Mitra A, Wilson WH, Kimmance SA, Clark DR, Pelusi A, Polimene L. 'Boom-and-busted' dynamics of phytoplankton-virus interactions explain the paradox of the plankton. THE NEW PHYTOLOGIST 2022; 234:990-1002. [PMID: 35179778 PMCID: PMC9313554 DOI: 10.1111/nph.18042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/04/2022] [Indexed: 05/13/2023]
Abstract
Rapid virus proliferation can exert a powerful control on phytoplankton host populations, playing a significant role in marine biogeochemistry and ecology. We explore how marine lytic viruses impact phytoplankton succession, affecting host and nonhost populations. Using an in silico food web we conducted simulation experiments under a range of different abiotic and biotic conditions, exploring virus-host-grazer interactions and manipulating competition, allometry, motility and cyst cycles. Virus-host and predator-prey interactions, and interactions with competitors, generate bloom dynamics with a pronounced 'boom-and-busted' dynamic (BBeD) which leads to the suppression of otherwise potentially successful phytoplankton species. The BBeD is less pronounced at low nutrient loading through distancing of phytoplankton hosts, while high sediment loading and high nonhost biomass decrease the abundance of viruses through adsorption. Larger hosts are inherently more distanced, but motility increases virus attack, while cyst cycles promote spatial and temporal distancing. Virus control of phytoplankton bloom development appears more important than virus-induced termination of those blooms. This affects plankton succession - not only the growth of species infected by the virus, but also those that compete for the same resources and are collectively subjected to common grazer control. The role of viruses in structuring plankton communities via BBeDs can thus provide an explanation for the paradox of the plankton.
Collapse
Affiliation(s)
- Kevin J. Flynn
- Plymouth Marine LaboratoryProspect Place, West HoePlymouthPL1 3DHUK
| | - Aditee Mitra
- School of Earth and Environmental SciencesCardiff UniversityCardiffCF10 3ATUK
| | - William H. Wilson
- Marine Biological Association of the UK, The LaboratoryCitadel HillPlymouthPL1 2PBUK
- School of Biological and Marine SciencesUniversity of PlymouthPL4 8AAUK
| | | | - Darren R. Clark
- Plymouth Marine LaboratoryProspect Place, West HoePlymouthPL1 3DHUK
| | - Angela Pelusi
- School of Earth and Environmental SciencesCardiff UniversityCardiffCF10 3ATUK
| | - Luca Polimene
- Plymouth Marine LaboratoryProspect Place, West HoePlymouthPL1 3DHUK
| |
Collapse
|
9
|
Annunziata R, Mele BH, Marotta P, Volpe M, Entrambasaguas L, Mager S, Stec K, d’Alcalà MR, Sanges R, Finazzi G, Iudicone D, Montresor M, Ferrante MI. Trade-off between sex and growth in diatoms: Molecular mechanisms and demographic implications. SCIENCE ADVANCES 2022; 8:eabj9466. [PMID: 35044817 PMCID: PMC8769554 DOI: 10.1126/sciadv.abj9466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Diatoms are fast-growing and winning competitors in aquatic environments, possibly due to optimized growth performance. However, their life cycles are complex, heteromorphic, and not fully understood. Here, we report on the fine control of cell growth and physiology during the sexual phase of the marine diatom Pseudo-nitzschia multistriata. We found that mating, under nutrient replete conditions, induces a prolonged growth arrest in parental cells. Transcriptomic analyses revealed down-regulation of genes related to major metabolic functions from the early phases of mating. Single-cell photophysiology also pinpointed an inhibition of photosynthesis and storage lipids accumulated in the arrested population, especially in gametes and zygotes. Numerical simulations revealed that growth arrest affects the balance between parental cells and their siblings, possibly favoring the new generation. Thus, in addition to resources availability, life cycle traits contribute to shaping the species ecological niches and must be considered to describe and understand the structure of plankton communities.
Collapse
Affiliation(s)
- Rossella Annunziata
- Stazione Zoologica Anton Dohrn, Napoli, Italy
- Corresponding author. (R.A.); (M.I.F.)
| | | | | | | | | | | | | | | | - Remo Sanges
- International School for Advanced Studies (SISSA), Via Bonomea 265, Trieste 34136, Italy
| | - Giovanni Finazzi
- Université Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique, Energies Alternatives (CEA), Institut National Recherche Agriculture, Alimentation, Environnement (INRAE), Interdisciplinary Research Institute of Grenoble, IRIG-Laboratoire de Physiologie Cellulaire et Végétale, Grenoble, France
| | | | | | | |
Collapse
|
10
|
Deng Y, Vallet M, Pohnert G. Temporal and Spatial Signaling Mediating the Balance of the Plankton Microbiome. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:239-260. [PMID: 34437810 DOI: 10.1146/annurev-marine-042021-012353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The annual patterns of plankton succession in the ocean determine ecological and biogeochemical cycles. The temporally fluctuating interplay between photosynthetic eukaryotes and the associated microbiota balances the composition of aquatic planktonic ecosystems. In addition to nutrients and abiotic factors, chemical signaling determines the outcome of interactions between phytoplankton and their associated microbiomes. Chemical mediators control essential processes, such as the development of key morphological, physiological, behavioral, and life-history traits during algal growth. These molecules thus impact species succession and community composition across time and space in processes that are highlighted in this review. We focus on spatial, seasonal, and physiological dynamics that occur during the early association of algae with bacteria, the exponential growth of a bloom, and its decline and recycling. We also discuss how patterns from field data and global surveys might be linked to the actions of metabolic markers in natural phytoplankton assemblages.
Collapse
Affiliation(s)
- Yun Deng
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Marine Vallet
- Research Group Phytoplankton Community Interactions, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany;
- Research Group Phytoplankton Community Interactions, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|