1
|
Tao X, Yang L, Zhang M, Li Y, Xiao H, Yu L, Jiang C, Long Z, Zhang Y. Shallow water seeding cultivation enhances cold tolerance in tobacco seedlings. BMC PLANT BIOLOGY 2024; 24:698. [PMID: 39044176 PMCID: PMC11267769 DOI: 10.1186/s12870-024-05422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Cold stress can impact plant biology at both the molecular and morphological levels. We cultivated two different types of tobacco seedlings using distinct seeding methods, observing significant differences in their cold tolerance at 4 °C. After 12 h cold stress, shallow water seeding cultivation treatment demonstrates a relatively good growth state with slight wilting of the leaves. Tobacco grown using the float system exhibited short, thick roots, while those cultivated through shallow water seeding had elongated roots with more tips and forks. After cold stress, the shallow water seeding cultivation treatment demonstrated higher antioxidant enzyme activity, and lower malondialdehyde (MDA) content.Transcriptome analysis was performed on the leaves of these tobacco seedlings at three stages of cold treatment (before cold stress, after cold stress, and after 3 days of recovery). Upon analyzing the raw data, we found that the shallow water seeding cultivation treatment was associated with significant functional enrichment of nicotinamide adenine dinucleotide (NAD) biosynthesis and NAD metabolism before cold stress, enrichment of functions related to the maintenance of cellular structure after cold stress, and substantial functional enrichment related to photosynthesis during the recovery period. Weighted gene co-expression network analysis (WGCNA) was conducted, identifying several hub genes that may contribute to the differences in cold tolerance between the two tobacco seedlings. Hub genes related to energy conversion were predominantly identified in shallow water seeding cultivation treatment during our analysis, surpassing findings in other areas. These include the AS gene, which controls the synthesis of NAD precursors, the PED1 gene, closely associated with fatty acid β-oxidation, and the RROP1 gene, related to ATP production.Overall, our study provides a valuable theoretical basis for exploring improved methods of cultivating tobacco seedlings. Through transcriptome sequencing technology, we have elucidated the differences in gene expression in different tobacco seedlings at three time points, identifying key genes affecting cold tolerance in tobacco and providing possibilities for future gene editing.
Collapse
Affiliation(s)
- Xuan Tao
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Lei Yang
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Mingfa Zhang
- Xiangxi Branch of Hunan Provincial Tobacco Corporation, Xiangxi, China
| | - Yangyang Li
- Hunan Research Institute of Tobacco Science, Changsha, China
- Hunan Provincial Tobacco Corporation, Changsha, China
| | - Hanqian Xiao
- Hunan Research Institute of Tobacco Science, Changsha, China
- Hunan Provincial Tobacco Corporation, Changsha, China
| | - Lingyi Yu
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Chaowei Jiang
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Zeyu Long
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yiyang Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
2
|
Ludman M, Anita S, Fátyol K. Deficiency of multiple RNA silencing-associated genes may contribute to the increased susceptibility of Nicotiana benthamiana to viruses. PLANT CELL REPORTS 2024; 43:177. [PMID: 38898307 PMCID: PMC11186921 DOI: 10.1007/s00299-024-03262-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
KEY MESSAGE Recently published high-quality reference genome assemblies indicate that, in addition to RDR1-deficiency, the loss of several key RNA silencing-associated genes may contribute to the hypersusceptibility of Nicotiana benthamiana to viruses.
Collapse
Affiliation(s)
- Márta Ludman
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A0020U 4, Gödöllő, 2100, Hungary
| | - Schamberger Anita
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A0020U 4, Gödöllő, 2100, Hungary
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest, 1117, Hungary
| | - Károly Fátyol
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A0020U 4, Gödöllő, 2100, Hungary.
| |
Collapse
|
3
|
Song H, Gao X, Song L, Jiao Y, Shen L, Yang J, Li C, Shang J, Wang H, Zhang S, Li Y. Unraveling the regulatory network of miRNA expression in Potato Y virus-infected of Nicotiana benthamiana using integrated small RNA and transcriptome sequencing. Front Genet 2024; 14:1290466. [PMID: 38259624 PMCID: PMC10800900 DOI: 10.3389/fgene.2023.1290466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Potato virus Y (PVY) disease is a global problem that causes significant damage to crop quality and yield. As traditional chemical control methods are ineffective against PVY, it is crucial to explore new control strategies. MicroRNAs (miRNAs) play a crucial role in plant and animal defense responses to biotic and abiotic stresses. These endogenous miRNAs act as a link between antiviral gene pathways and host immunity. Several miRNAs target plant immune genes and are involved in the virus infection process. In this study, we conducted small RNA sequencing and transcriptome sequencing on healthy and PVY-infected N. benthamiana tissues (roots, stems, and leaves). Through bioinformatics analysis, we predicted potential targets of differentially expressed miRNAs using the N. benthamiana reference genome and the PVY genome. We then compared the identified differentially expressed mRNAs with the predicted target genes to uncover the complex relationships between miRNAs and their targets. This study successfully constructed a miRNA-mRNA network through the joint analysis of Small RNA sequencing and transcriptome sequencing, which unveiled potential miRNA targets and identified potential binding sites of miRNAs on the PVY genome. This miRNA-mRNA regulatory network suggests the involvement of miRNAs in the virus infection process.
Collapse
Affiliation(s)
- Hongping Song
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, Hubei, China
| | - Xinwen Gao
- Key Laboratory of Tobacco Pest Monitoring Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Liyun Song
- Key Laboratory of Tobacco Pest Monitoring Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yubing Jiao
- Key Laboratory of Tobacco Pest Monitoring Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lili Shen
- Key Laboratory of Tobacco Pest Monitoring Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Changquan Li
- Liupanshui City Company of Guizhou Tobacco Company, Guizhou, Guizhou, China
| | - Jun Shang
- Liupanshui City Company of Guizhou Tobacco Company, Guizhou, Guizhou, China
| | - Hui Wang
- Luoyang City Company of Henan Tobacco Company, Luoyang, Henan, China
| | - Songbai Zhang
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, Hubei, China
| | - Ying Li
- Key Laboratory of Tobacco Pest Monitoring Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
4
|
Ludman M, Szalai G, Janda T, Fátyol K. Hierarchical contribution of Argonaute proteins to antiviral protection. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6760-6772. [PMID: 37603044 PMCID: PMC10662219 DOI: 10.1093/jxb/erad327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Antiviral RNAi is the main protective measure employed by plants in the fight against viruses. The main steps of this process have been clarified in recent years, primarily relying on the extensive genetic resources of Arabidopsis thaliana. Our knowledge of viral diseases of crops, however, is still limited, mainly due to the fact that A. thaliana is a non-host for many agriculturally important viruses. In contrast, Nicotiana benthamiana has an unparalleled susceptibility to viruses and, since it belongs to the Solanaceae family, it is considered an adequate system for modeling infectious diseases of crops such as tomatoes. We used a series of N. benthamiana mutants created by genome editing to analyze the RNAi response elicited by the emerging tomato pathogen, pepino mosaic virus (PepMV). We uncovered hierarchical roles of several Argonaute proteins (AGOs) in anti-PepMV defense, with the predominant contribution of AGO2. Interestingly, the anti-PepMV activities of AGO1A, AGO5, and AGO10 only become apparent when AGO2 is mutated. Taken together, our results prove that hierarchical actions of several AGOs are needed for the plant to build effective anti-PepMV resistance. The genetic resources created here will be valuable assets for analyzing RNAi responses triggered by other agriculturally important pathogenic viruses.
Collapse
Affiliation(s)
- Márta Ludman
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert u. 4. Gödöllő 2100Hungary
| | - Gabriella Szalai
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2. Martonvásár 2462Hungary
| | - Tibor Janda
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2. Martonvásár 2462Hungary
| | - Károly Fátyol
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert u. 4. Gödöllő 2100Hungary
| |
Collapse
|
5
|
Tu CW, Huang YW, Lee CW, Kuo SY, Lin NS, Hsu YH, Hu CC. Argonaute 5-mediated antiviral defense and viral counter-defense in Nicotiana benthamiana. Virus Res 2023; 334:199179. [PMID: 37481165 PMCID: PMC10405324 DOI: 10.1016/j.virusres.2023.199179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
The argonaute (AGO) family proteins play a crucial role in preventing viral invasions through the plant antiviral RNA silencing pathway, with distinct AGO proteins recruited for specific antiviral mechanisms. Our previous study revealed that Nicotiana benthamiana AGO5 (NbAGO5) expression was significantly upregulated in response to bamboo mosaic virus (BaMV) infection. However, the roles of NbAGO5 in antiviral mechanisms remained to be explored. In this research, we examined the antiviral functions of NbAGO5 in the infections of different viruses. It was found that the accumulation of NbAGO5 was induced not only at the RNA but also at the protein level following the infections of BaMV, potato virus X (PVX), tobacco mosaic virus (TMV), and cucumber mosaic virus (CMV) in N. benthamiana. To explore the antiviral mechanism and regulatory function of NbAGO5, we generated NbAGO5 overexpression (OE-NbAGO5) and knockout (nbago5) transgenic N. benthamiana lines. Our findings reveal that NbAGO5 provides defense against BaMV, PVX, TMV, and a mutant CMV deficient in 2b gene, but not against the wild-type CMV and turnip mosaic virus (TuMV). Through affinity purification and small RNA northern blotting, we demonstrated that NbAGO5 exerts its antiviral function by binding to viral small interfering RNAs (vsiRNAs). Moreover, we observed that CMV 2b and TuMV HC-Pro interact with NbAGO5, triggering its degradation via the 26S proteasome and autophagy pathways, thereby allowing these viruses to overcome NbAGO5-mediated defense. In addition, TuMV HC-Pro provides another line of counter-defense by interfering with vsiRNA binding by NbAGO5. Our study provides further insights into the antiviral RNA interference mechanism and the complex interplay between NbAGO5 and plant viruses.
Collapse
Affiliation(s)
- Chin-Wei Tu
- PhD Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 40227, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chin-Wei Lee
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Song-Yi Kuo
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
6
|
Choi J, Pakbaz S, Yepes LM, Cieniewicz EJ, Schmitt-Keichinger C, Labarile R, Minutillo SA, Heck M, Hua J, Fuchs M. Grapevine Fanleaf Virus RNA1-Encoded Proteins 1A and 1B Hel Suppress RNA Silencing. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:558-571. [PMID: 36998121 DOI: 10.1094/mpmi-01-23-0008-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Grapevine fanleaf virus (GFLV) (genus Nepovirus, family Secoviridae) causes fanleaf degeneration, one of the most damaging viral diseases of grapevines. Despite substantial advances at deciphering GFLV-host interactions, how this virus overcomes the host antiviral pathways of RNA silencing is poorly understood. In this study, we identified viral suppressors of RNA silencing (VSRs) encoded by GFLV, using fluorescence assays, and tested their capacity at modifying host gene expression in transgenic Nicotiana benthamiana expressing the enhanced green fluorescent protein gene (EGFP). Results revealed that GFLV RNA1-encoded protein 1A, for which a function had yet to be assigned, and protein 1BHel, a putative helicase, reverse systemic RNA silencing either individually or as a fused form (1ABHel) predicted as an intermediary product of RNA1 polyprotein proteolytic processing. The GFLV VSRs differentially altered the expression of plant host genes involved in RNA silencing, as shown by reverse transcription-quantitative PCR. In a co-infiltration assay with an EGFP hairpin construct, protein 1A upregulated NbDCL2, NbDCL4, and NbRDR6, and proteins 1BHel and 1A+1BHel upregulated NbDCL2, NbDCL4, NbAGO1, NbAGO2, and NbRDR6, while protein 1ABHel upregulated NbAGO1 and NbRDR6. In a reversal of systemic silencing assay, protein 1A upregulated NbDCL2 and NbAGO2 and protein 1ABHel upregulated NbDCL2, NbDCL4, and NbAGO1. This is the first report of VSRs encoded by a nepovirus RNA1 and of two VSRs that act either individually or as a predicted fused form to counteract the systemic antiviral host defense, suggesting that GFLV might devise a unique counterdefense strategy to interfere with various steps of the plant antiviral RNA silencing pathways during infection. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jiyeong Choi
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY 14456, U.S.A
| | - Samira Pakbaz
- Plant Pathology Department, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad, Iran
| | - Luz Marcela Yepes
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY 14456, U.S.A
| | - Elizabeth Jeannette Cieniewicz
- Deparment of Plant and Environmental Sciences, College of Agriculture, Forestry, and Life Sciences, Clemson University, Clemson, SC 29634, U.S.A
| | - Corinne Schmitt-Keichinger
- CNRS, IBMP UPR 2357, Université de Strasbourg, 67000 Strasbourg, France
- INRAE, SVQV UMR 1131, Université de Strasbourg, 68000 Colmar, France
| | - Rossella Labarile
- National Research Council (CNR), Institute of Chemical-Physical Processes, Via Amendola 165/A, 70126 Bari, Italy
| | - Serena Anna Minutillo
- International Center for Advanced Mediterranean Agronomic Studies - Institute of Bari (CIHEAM-Bari), 70010 Valenzano, Italy
| | - Michelle Heck
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
- Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, U.S.A
| | - Jian Hua
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Marc Fuchs
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY 14456, U.S.A
| |
Collapse
|
7
|
Aman Mohammadi M, Maximiano MR, Hosseini SM, Franco OL. CRISPR-Cas engineering in food science and sustainable agriculture: recent advancements and applications. Bioprocess Biosyst Eng 2023; 46:483-497. [PMID: 36707422 DOI: 10.1007/s00449-022-02842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/14/2022] [Indexed: 01/29/2023]
Abstract
The developments in the food supply chain to support the growing population of the world is one of today's most pressing issues, and to achieve this goal improvements should be performed in both crops and microbes. For this purpose, novel approaches such as genome editing (GE) methods have upgraded the biological sciences for genome manipulation and, among such methods, clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) are the main exciting innovations since the Green Revolution. CRISPR/Cas systems can be a potent tool for the food industry, improvement of agricultural crops and even for protecting food-grade bacteria from foreign genetic invasive elements. This review introduces the history and mechanism of the CRISPR-Cas system as a genome editing tool and its applications in the vaccination of starter cultures, production of antimicrobials and bioactive compounds, and genome editing of microorganisms.
Collapse
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mariana Rocha Maximiano
- S-Inova Biotech, Graduate Program in Biotechnology, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Graduate Program in Genomic Science and Biotechnology, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Seyede Marzieh Hosseini
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Octavio Luiz Franco
- S-Inova Biotech, Graduate Program in Biotechnology, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Graduate Program in Genomic Science and Biotechnology, Universidade Católica de Brasília, Brasília, DF, Brazil
| |
Collapse
|
8
|
Balassa K, Balassa G, Gondor OK, Janda T, Almási A, Rudnóy S. Changes in physiology, gene expression and ethylene biosynthesis in MDMV-infected sweet corn primed by small RNA pre-treatment. Saudi J Biol Sci 2021; 28:5568-5578. [PMID: 34588867 PMCID: PMC8459037 DOI: 10.1016/j.sjbs.2021.05.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
The physiological condition of plants is significantly affected by viral infections. Viral proliferation occurs at the expense of the energy and protein stores in infected plant cells. At the same time, plants invest much of their remaining resources in the fight against infection, making them even less capable of normal growth processes. Thus, the slowdown in the development and growth processes of plants leads to a large-scale decrease in plant biomass and yields, which may be a perceptible problem even at the level of the national economy. One form of protection against viral infections is treatment with small interfering RNA (siRNA) molecules, which can directly reduce the amount of virus that multiplies in plant cells by enhancing the process of highly conserved RNA interference in plants. The present work demonstrated how pre-treatment with siRNA may provide protection against MDMV (Maize dwarf mosaic virus) infection in sweet corn (Zea mays cv. saccharata var. Honey Koern). In addition to monitoring the physiological condition of the maize plants, the accumulation of the virus in young leaves was examined, parallel, with changes in the plant RNA interference system and the ethylene (ET) biosynthetic pathway. The siRNA pre-treatment activated the plant antiviral defence system, thus significantly reducing viral RNA and coat protein levels in the youngest leaves of the plants. The lower initial amount of virus meant a weaker stress load, which allowed the plants to devote more energy to their growth and development. In contrast, small RNA pre-treatment did not initially have a significant effect on the ET biosynthetic pathway, but later a significant decrease was observed both in the level of transcription of genes responsible for ET production and, in the amount of ACC (1-aminocyclopropane-1-carboxylic acid) metabolite. The significantly better physiological condition, enhanced RNAi response and lower quantity of virus particles in siRNA pretreated plants, suggested that siRNA pre-treatment stimulated the antiviral defence mechanisms in MDMV infected plants. In addition, the consistently lower ACC content of the plants pre-treated with siRNA suggest that ET does not significantly contribute to the successful defence in this maize hybrid type against MDMV.
Collapse
Affiliation(s)
- Kinga Balassa
- Department of Plant Physiology and Molecular Plant Biology, Faculty of Science, Eötvös Loránd University, Budapest, Hungary
| | - György Balassa
- Department of Plant Physiology and Molecular Plant Biology, Faculty of Science, Eötvös Loránd University, Budapest, Hungary
| | - Orsolya Kinga Gondor
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, ELKH Martonvásár, Hungary
| | - Tibor Janda
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, ELKH Martonvásár, Hungary
| | - Asztéria Almási
- Department of Plant Pathology, Agricultural Institute, Centre for Agricultural Research, ELKH Budapest, Hungary
| | - Szabolcs Rudnóy
- Department of Plant Physiology and Molecular Plant Biology, Faculty of Science, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
9
|
Pérez-Cañamás M, Hevia E, Katsarou K, Hernández C. Genetic evidence for the involvement of Dicer-like 2 and 4 as well as Argonaute 2 in the Nicotiana benthamiana response against Pelargonium line pattern virus. J Gen Virol 2021; 102:001656. [PMID: 34623234 PMCID: PMC8604191 DOI: 10.1099/jgv.0.001656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022] Open
Abstract
In plants, RNA silencing functions as a potent antiviral mechanism. Virus-derived double-stranded RNAs (dsRNAs) trigger this mechanism, being cleaved by Dicer-like (DCL) enzymes into virus small RNAs (vsRNAs). These vsRNAs guide sequence-specific RNA degradation upon their incorporation into an RNA-induced silencing complex (RISC) that contains a slicer of the Argonaute (AGO) family. Host RNA dependent-RNA polymerases, particularly RDR6, strengthen antiviral silencing by generating more dsRNA templates from RISC-cleavage products that, in turn, are converted into secondary vsRNAs by DCLs. Previous work showed that Pelargonium line pattern virus (PLPV) is a very efficient inducer and target of RNA silencing as PLPV-infected Nicotiana benthamiana plants accumulate extraordinarily high amounts of vsRNAs that, strikingly, are independent of RDR6 activity. Several scenarios may explain these observations including a major contribution of dicing versus slicing for defence against PLPV, as the dicing step would not be affected by the RNA silencing suppressor encoded by the virus, a protein that acts via vsRNA sequestration. Taking advantage of the availability of lines of N. benthamiana with DCL or AGO2 functions impaired, here we have tried to get further insights into the components of the silencing machinery that are involved in anti-PLPV-silencing. Results have shown that DCL4 and, to lesser extent, DCL2 contribute to restrict viral infection. Interestingly, AGO2 apparently makes even a higher contribution in the defence against PLPV, extending the number of viruses that are affected by this particular slicer. The data support that both dicing and slicing activities participate in the host race against PLPV.
Collapse
Affiliation(s)
- Miryam Pérez-Cañamás
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia). Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| | - Elizabeth Hevia
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia). Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| | - Konstantina Katsarou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, GR-7110 Heraklion, Crete, Greece
| | - Carmen Hernández
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia). Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|