1
|
Jiang K, Møller BL, Luo S, Yang Y, Nelson DR, Jakobsen Neilson EH, Christensen JM, Hua K, Hu C, Zeng X, Motawie MS, Wan T, Hu GW, Onjalalaina GE, Wang Y, Gaitán-Espitia JD, Wang Z, Xu XY, He J, Wang L, Li Y, Peng DH, Lan S, Zhang H, Wang QF, Liu ZJ, Huang WC. Genomic, transcriptomic, and metabolomic analyses reveal convergent evolution of oxime biosynthesis in Darwin's orchid. MOLECULAR PLANT 2024:S1674-2052(24)00394-0. [PMID: 39702965 DOI: 10.1016/j.molp.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/11/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Angraecum sesquipedale, also known as Darwin's orchid, possesses an exceptionally long nectar spur. Charles Darwin predicted the orchid to be pollinated by a hawkmoth with a correspondingly long proboscis, later identified as Xanthopan praedicta. In this plant-pollinator interaction, the A. sesquipedale flower emits a complex blend of scent compounds dominated by diurnally regulated oximes (R1R2C = N-OH) to attract crepuscular and nocturnal pollinators. The molecular mechanism of oxime biosynthesis remains unclear in orchids. Here, we present the chromosome-level genome of A. sesquipedale. The haploid genome size is 2.10 Gb and represents 19 pseudochromosomes. Cytochrome P450 encoding genes of the CYP79 family known to be involved in oxime biosynthesis in seed plants are not present in the A. sesquipedale genome nor the genomes of other members of the orchid family. Metabolomic analysis of the A. sesquipedale flower revealed a substantial release of oximes at dusk during the blooming stage. By integrating metabolomic and transcriptomic correlation approaches, flavin-containing monooxygenases (FMOs) encoded by six tandem-repeat genes in the A. sesquipedale genome are identified as catalyzing the formation of oximes present. Further in vitro and in vivo assays confirm the function of FMOs in the oxime biosynthesis. We designate these FMOs as orchid oxime synthases 1-6. The evolutionary aspects related to the CYP79 gene losses and neofunctionalization of FMO-catalyzed biosynthesis of oximes in Darwin's orchid provide new insights into the convergent evolution of biosynthetic pathways.
Collapse
Affiliation(s)
- Kai Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
| | - Shaofan Luo
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yu Yang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Elizabeth Heather Jakobsen Neilson
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Møller Christensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
| | - Kai Hua
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Chao Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Xinhua Zeng
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Mohammed Saddik Motawie
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
| | - Tao Wan
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Guang-Wan Hu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Guy Eric Onjalalaina
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China; University of Antananarivo, Antananarivo, Madagascar
| | - Yijiao Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Juan Diego Gaitán-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | | | - Xiao-Yan Xu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiamin He
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Linying Wang
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Li
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dong-Hui Peng
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siren Lan
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Key Laboratory of Plant Design, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Qing-Feng Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.
| | - Zhong-Jian Liu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Wei-Chang Huang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
2
|
Sánchez-Pérez R, Neilson EH. The case for sporadic cyanogenic glycoside evolution in plants. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102608. [PMID: 39089185 DOI: 10.1016/j.pbi.2024.102608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 08/03/2024]
Abstract
Cyanogenic glycosides are α-hydroxynitrile glucosides present in approximately 3000 different plant species. Upon tissue disruption, cyanogenic glycosides are hydrolyzed to release toxic hydrogen cyanide as a means of chemical defense. Over 100 different cyanogenic glycosides have been reported, with structural diversity dependent on the precursor amino acid, and subsequent modifications. Cyanogenic glycosides represent a prime example of sporadic metabolite evolution, with the metabolic trait arising multiple times throughout the plant lineage as evidenced by recruitment of different enzyme families for biosynthesis. Here, we review the latest developments within cyanogenic glycoside biosynthesis, and argue possible factors driving sporadic evolution including shared intermediates and crossovers with other metabolic pathways crossovers, and metabolite multifunctionality beyond chemical defense.
Collapse
Affiliation(s)
| | - Elizabeth Hj Neilson
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen.
| |
Collapse
|
3
|
Chen Y, Shan L, Zheng W, Chen J, Deng L, Tian X, Xie R, Yang Y, Zhang L, Yang B. Global lysine succinylation analysis unveils post-translational regulation effect on phenylpropanoid metabolism remodeling during Lonicera japonica flower development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108978. [PMID: 39084169 DOI: 10.1016/j.plaphy.2024.108978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Lonicera japonica plays a significant role in traditional Chinese medicine and as a food source, making it a focus of studies on protein succinylation and its potential role in regulating secondary metabolism during flower development. This study aimed to clarify the regulatory mechanism of protein succinylation on phenylpropanoid-related phenotypic changes by conducting a global lysine succinylation proteomic analysis across different flowering stages. A total of 586 lysine succinylated peptides in 303 proteins were identified during early and late floral stages. Functional enrichment analysis revealed that succinylated proteins primarily participated in the tricarboxylic acid (TCA) cycle, amino acid metabolism, and secondary metabolism. The abundance of succinylated aspartate transaminase (AT), 4-coumarate-CoA ligase (4CL), and phenylalanine N-hydroxylase (CYP79A2) in phenylpropanoid metabolism varied during flower development. In vitro experiments demonstrated that succinylation increased AT activity while inhibited 4CL activity. Decreased levels of total flavonoids and phenolic acids indicated significant alterations in phenylpropanoid metabolism during later floral stages. These results suggest that succinylation of TCA cycle proteins not only influences flower development but also, together with AT-4CL-CYP79A2 co-succinylation, redirects phenylpropanoid metabolism during flower development in L. japonica.
Collapse
Affiliation(s)
- Yao Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Luhuizi Shan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenxi Zheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jie Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Linfang Deng
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Xu Tian
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruili Xie
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yunhong Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lin Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Bingxian Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
4
|
Jang YJ, Kim T, Lin M, Kim J, Begcy K, Liu Z, Lee S. Genome-wide gene network uncover temporal and spatial changes of genes in auxin homeostasis during fruit development in strawberry (F. × ananassa). BMC PLANT BIOLOGY 2024; 24:876. [PMID: 39304822 DOI: 10.1186/s12870-024-05577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND The plant hormone auxin plays a crucial role in regulating important functions in strawberry fruit development. Although a few studies have described the complex auxin biosynthetic and signaling pathway in wild diploid strawberry (Fragaria vesca), the molecular mechanisms underlying auxin biosynthesis and crosstalk in octoploid strawberry fruit development are not fully characterized. To address this knowledge gap, comprehensive transcriptomic analyses were conducted at different stages of fruit development and compared between the achene and receptacle to identify developmentally regulated auxin biosynthetic genes and transcription factors during the fruit ripening process. Similar to wild diploid strawberry, octoploid strawberry accumulates high levels of auxin in achene compared to receptacle. RESULTS Genes involved in auxin biosynthesis and conjugation, such as Tryptophan Aminotransferase of Arabidopsis (TAAs), YUCCA (YUCs), and Gretchen Hagen 3 (GH3s), were found to be primarily expressed in the achene, with low expression in the receptacle. Interestingly, several genes involved in auxin transport and signaling like Pin-Formed (PINs), Auxin/Indole-3-Acetic Acid Proteins (Aux/IAAs), Transport Inhibitor Response 1 / Auxin-Signaling F-Box (TIR/AFBs) and Auxin Response Factor (ARFs) were more abundantly expressed in the receptacle. Moreover, by examining DEGs and their transcriptional profiles across all six developmental stages, we identified key auxin-related genes co-clustered with transcription factors from the NAM-ATAF1,2-CUC2/ WRKYGQK motif (NAC/WYKY), Heat Shock Transcription Factor and Heat Shock Proteins (HSF/HSP), APETALA2/Ethylene Responsive Factor (AP2/ERF) and MYB transcription factor groups. CONCLUSIONS These results elucidate the complex regulatory network of auxin biosynthesis and its intricate crosstalk within the achene and receptacle, enriching our understanding of fruit development in octoploid strawberries.
Collapse
Affiliation(s)
- Yoon Jeong Jang
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Wimauma, FL, 33598, USA
| | - Taehoon Kim
- Environmental Horticulture Department, University of Florida, Gainesville, FL, 32611, USA
| | - Makou Lin
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, 32611, USA
| | - Jeongim Kim
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, 32611, USA
| | - Kevin Begcy
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, 32611, USA
- Environmental Horticulture Department, University of Florida, Gainesville, FL, 32611, USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Seonghee Lee
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Wimauma, FL, 33598, USA.
| |
Collapse
|
5
|
Lee CY, Harper CP, Lee SG, Qi Y, Clay T, Aoi Y, Jez JM, Kasahara H, Blodgett JAV, Kunkel BN. Investigating the biosynthesis and roles of the auxin phenylacetic acid during Pseudomonas syringae- Arabidopsis thaliana pathogenesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1408833. [PMID: 39091312 PMCID: PMC11291249 DOI: 10.3389/fpls.2024.1408833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
Several plant-associated microbes synthesize the auxinic plant growth regulator phenylacetic acid (PAA) in culture; however, the role of PAA in plant-pathogen interactions is not well understood. In this study, we investigated the role of PAA during interactions between the phytopathogenic bacterium Pseudomonas syringae strain PtoDC3000 (PtoDC3000) and the model plant host, Arabidopsis thaliana. Previous work demonstrated that indole-3-acetaldehyde dehydrogenase A (AldA) of PtoDC3000 converts indole-3-acetaldehyde (IAAld) to the auxin indole-3-acetic acid (IAA). Here, we further demonstrated the biochemical versatility of AldA by conducting substrate screening and steady-state kinetic analyses, and showed that AldA can use both IAAld and phenylacetaldehyde as substrates to produce IAA and PAA, respectively. Quantification of auxin in infected plant tissue showed that AldA-dependent synthesis of either IAA or PAA by PtoDC3000 does not contribute significantly to the increase in auxin levels in infected A. thaliana leaves. Using available arogenate dehydratase (adt) mutant lines of A. thaliana compromised for PAA synthesis, we observed that a reduction in PAA-Asp and PAA-Glu is correlated with elevated levels of IAA and increased susceptibility. These results provide evidence that PAA/IAA homeostasis in A. thaliana influences the outcome of plant-microbial interactions.
Collapse
Affiliation(s)
- Chia-Yun Lee
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Christopher P. Harper
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Soon Goo Lee
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, United States
| | - Yunci Qi
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
- United States Department of Agriculture-Agricultural Research Service, New Orleans, LA, United States
| | - Taylor Clay
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, United States
| | - Yuki Aoi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Joseph M. Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Hiroyuki Kasahara
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Joshua A. V. Blodgett
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Barbara N. Kunkel
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
6
|
Shin D, Cho KH, Tucker E, Yoo CY, Kim J. Identification of tomato F-box proteins functioning in phenylpropanoid metabolism. PLANT MOLECULAR BIOLOGY 2024; 114:85. [PMID: 38995464 DOI: 10.1007/s11103-024-01483-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024]
Abstract
Phenylpropanoids, a class of specialized metabolites, play crucial roles in plant growth and stress adaptation and include diverse phenolic compounds such as flavonoids. Phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) are essential enzymes functioning at the entry points of general phenylpropanoid biosynthesis and flavonoid biosynthesis, respectively. In Arabidopsis, PAL and CHS are turned over through ubiquitination-dependent proteasomal degradation. Specific kelch domain-containing F-Box (KFB) proteins as components of ubiquitin E3 ligase directly interact with PAL or CHS, leading to polyubiquitinated PAL and CHS, which in turn influences phenylpropanoid and flavonoid production. Although phenylpropanoids are vital for tomato nutritional value and stress responses, the post-translational regulation of PAL and CHS in tomato remains unknown. We identified 31 putative KFB-encoding genes in the tomato genome. Our homology analysis and phylogenetic study predicted four PAL-interacting SlKFBs, while SlKFB18 was identified as the sole candidate for the CHS-interacting KFB. Consistent with their homolog function, the predicted four PAL-interacting SlKFBs function in PAL degradation. Surprisingly, SlKFB18 did not interact with tomato CHS and the overexpression or knocking out of SlKFB18 did not affect phenylpropanoid contents in tomato transgenic lines, suggesting its irreverence with flavonoid metabolism. Our study successfully discovered the post-translational regulatory machinery of PALs in tomato while highlighting the limitation of relying solely on a homology-based approach to predict interacting partners of F-box proteins.
Collapse
Affiliation(s)
- Doosan Shin
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Keun Ho Cho
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Ethan Tucker
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, USA
| | - Chan Yul Yoo
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jeongim Kim
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA.
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
7
|
Günther J, Halitschke R, Gershenzon J, Burow M. Heterologous expression of PtAAS1 reveals the metabolic potential of the common plant metabolite phenylacetaldehyde for auxin synthesis in planta. PHYSIOLOGIA PLANTARUM 2023; 175:e14078. [PMID: 38148231 DOI: 10.1111/ppl.14078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 12/28/2023]
Abstract
Aromatic aldehydes and amines are common plant metabolites involved in several specialized metabolite biosynthesis pathways. Recently, we showed that the aromatic aldehyde synthase PtAAS1 and the aromatic amino acid decarboxylase PtAADC1 contribute to the herbivory-induced formation of volatile 2-phenylethanol and its glucoside 2-phenylethyl-β-D-glucopyranoside in Populus trichocarpa. To unravel alternative metabolic fates of phenylacetaldehyde and 2-phenylethylamine beyond alcohol and alcohol glucoside formation, we heterologously expressed PtAAS1 and PtAADC1 in Nicotiana benthamiana and analyzed plant extracts using untargeted LC-qTOF-MS and targeted LC-MS/MS analysis. While the metabolomes of PtAADC1-expressing plants did not significantly differ from those of control plants, expression of PtAAS1 resulted in the accumulation of phenylacetic acid (PAA) and PAA-amino acid conjugates, identified as PAA-aspartate and PAA-glutamate. Herbivory-damaged poplar leaves revealed significantly induced accumulation of PAA-Asp, while levels of PAA remained unaltered upon herbivory. Transcriptome analysis showed that members of auxin-amido synthetase GH3 genes involved in the conjugation of auxins with amino acids were significantly upregulated upon herbivory in P. trichocarpa leaves. Overall, our data indicates that phenylacetaldehyde generated by poplar PtAAS1 serves as a hub metabolite linking the biosynthesis of volatile, non-volatile herbivory-induced specialized metabolites, and phytohormones, suggesting that plant growth and defense can be balanced on a metabolic level.
Collapse
Affiliation(s)
- Jan Günther
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Rayko Halitschke
- Department of Mass Spectrometry and Metabolomics, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Meike Burow
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
8
|
Shin D, Perez VC, Dickinson GK, Zhao H, Dai R, Tomiczek B, Cho KH, Zhu N, Koh J, Grenning A, Kim J. Altered methionine metabolism impacts phenylpropanoid production and plant development in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:187-200. [PMID: 37366635 PMCID: PMC11392427 DOI: 10.1111/tpj.16370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Phenylpropanoids are specialized metabolites derived from phenylalanine. Glucosinolates are defense compounds derived mainly from methionine and tryptophan in Arabidopsis. It was previously shown that the phenylpropanoid pathway and glucosinolate production are metabolically linked. The accumulation of indole-3-acetaldoxime (IAOx), the precursor of tryptophan-derived glucosinolates, represses phenylpropanoid biosynthesis through accelerated degradation of phenylalanine ammonia lyase (PAL). As PAL functions at the entry point of the phenylpropanoid pathway, which produces indispensable specialized metabolites such as lignin, aldoxime-mediated phenylpropanoid repression is detrimental to plant survival. Although methionine-derived glucosinolates in Arabidopsis are abundant, any impact of aliphatic aldoximes (AAOx) derived from aliphatic amino acids such as methionine on phenylpropanoid production remains unclear. Here, we investigate the impact of AAOx accumulation on phenylpropanoid production using Arabidopsis aldoxime mutants, ref2 and ref5. REF2 and REF5 metabolize aldoximes to respective nitrile oxides redundantly, but with different substrate specificities. ref2 and ref5 mutants have decreased phenylpropanoid contents due to the accumulation of aldoximes. As REF2 and REF5 have high substrate specificity toward AAOx and IAOx, respectively, it was assumed that ref2 accumulates AAOx, not IAOx. Our study indicates that ref2 accumulates both AAOx and IAOx. Removing IAOx partially restored phenylpropanoid content in ref2, but not to the wild-type level. However, when AAOx biosynthesis was silenced, phenylpropanoid production and PAL activity in ref2 were completely restored, suggesting an inhibitory effect of AAOx on phenylpropanoid production. Further feeding studies revealed that the abnormal growth phenotype commonly observed in Arabidopsis mutants lacking AAOx production is a consequence of methionine accumulation.
Collapse
Affiliation(s)
- Doosan Shin
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Veronica C Perez
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, USA
| | - Gabriella K Dickinson
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, USA
| | - Haohao Zhao
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Ru Dai
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Breanna Tomiczek
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Keun Ho Cho
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Ning Zhu
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32611, USA
| | - Jin Koh
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32611, USA
| | - Alexander Grenning
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Jeongim Kim
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, USA
- Genetic Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Shin D, Perez VC, Dickinson GK, Zhao H, Dai R, Tomiczek B, Cho KH, Zhu N, Koh J, Grenning A, Kim J. Altered methionine metabolism impacts phenylpropanoid production and plant development in Arabidopsis thaliana. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542770. [PMID: 37398371 PMCID: PMC10312446 DOI: 10.1101/2023.05.29.542770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Phenylpropanoids are specialized metabolites derived from phenylalanine. Glucosinolates are defense compounds derived mainly from methionine and tryptophan in Arabidopsis. It was previously shown that the phenylpropanoid pathway and glucosinolate production are metabolically linked. The accumulation of indole-3-acetaldoxime (IAOx), the precursor of tryptophan-derived glucosinolates, represses phenylpropanoid biosynthesis through accelerated degradation of phenylalanine-ammonia lyase (PAL). As PAL functions at the entry point of the phenylpropanoid pathway which produces indispensable specialized metabolites such as lignin, aldoxime-mediated phenylpropanoid repression is detrimental to plant survival. Although methionine-derived glucosinolates in Arabidopsis are abundant, any impact of aliphatic aldoximes (AAOx) derived from aliphatic amino acids such as methionine on phenylpropanoid production remains unclear. Here, we investigate the impact of AAOx accumulation on phenylpropanoid production using Arabidopsis aldoxime mutants, ref2 and ref5 . REF2 and REF5 metabolize aldoximes to respective nitrile oxides redundantly, but with different substrate specificities. ref2 and ref5 mutants have decreased phenylpropanoid contents due to the accumulation of aldoximes. As REF2 and REF5 have high substrate specificity toward AAOx and IAOx respectively, it was assumed that ref2 accumulates AAOx, not IAOx. Our study indicates that ref2 accumulates both AAOx and IAOx. Removing IAOx partially restored phenylpropanoid production in ref2 , but not to the wild-type level. However, when AAOx biosynthesis was silenced, phenylpropanoid production and PAL activity in ref2 were completely restored, suggesting an inhibitory effect of AAOx on phenylpropanoid production. Further feeding studies revealed that the abnormal growth phenotype commonly observed in Arabidopsis mutants lacking AAOx production is a consequence of methionine accumulation. Significance Statement Aliphatic aldoximes are precursors of various specialized metabolites including defense compounds. This study reveals that aliphatic aldoximes repress phenylpropanoid production and that altered methionine metabolism affects plant growth and development. As phenylpropanoids include vital metabolites such as lignin, a major sink of fixed carbon, this metabolic link may contribute to available resource allocation during defense.
Collapse
|
10
|
Qin H, King GJ, Borpatragohain P, Zou J. Developing multifunctional crops by engineering Brassicaceae glucosinolate pathways. PLANT COMMUNICATIONS 2023:100565. [PMID: 36823985 PMCID: PMC10363516 DOI: 10.1016/j.xplc.2023.100565] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Glucosinolates (GSLs), found mainly in species of the Brassicaceae family, are one of the most well-studied classes of secondary metabolites. Produced by the action of myrosinase on GSLs, GSL-derived hydrolysis products (GHPs) primarily defend against biotic stress in planta. They also significantly affect the quality of crop products, with a subset of GHPs contributing unique food flavors and multiple therapeutic benefits or causing disagreeable food odors and health risks. Here, we explore the potential of these bioactive functions, which could be exploited for future sustainable agriculture. We first summarize our accumulated understanding of GSL diversity and distribution across representative Brassicaceae species. We then systematically discuss and evaluate the potential of exploited and unutilized genes involved in GSL biosynthesis, transport, and hydrolysis as candidate GSL engineering targets. Benefiting from available information on GSL and GHP functions, we explore options for multifunctional Brassicaceae crop ideotypes to meet future demand for food diversification and sustainable crop production. An integrated roadmap is subsequently proposed to guide ideotype development, in which maximization of beneficial effects and minimization of detrimental effects of GHPs could be combined and associated with various end uses. Based on several use-case examples, we discuss advantages and limitations of available biotechnological approaches that may contribute to effective deployment and could provide novel insights for optimization of future GSL engineering.
Collapse
Affiliation(s)
- Han Qin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | | | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
11
|
Ortiz-García P, González Ortega-Villaizán A, Onejeme FC, Müller M, Pollmann S. Do Opposites Attract? Auxin-Abscisic Acid Crosstalk: New Perspectives. Int J Mol Sci 2023; 24:ijms24043090. [PMID: 36834499 PMCID: PMC9960826 DOI: 10.3390/ijms24043090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Plants are constantly exposed to a variety of different environmental stresses, including drought, salinity, and elevated temperatures. These stress cues are assumed to intensify in the future driven by the global climate change scenario which we are currently experiencing. These stressors have largely detrimental effects on plant growth and development and, therefore, put global food security in jeopardy. For this reason, it is necessary to expand our understanding of the underlying mechanisms by which plants respond to abiotic stresses. Especially boosting our insight into the ways by which plants balance their growth and their defense programs appear to be of paramount importance, as this may lead to novel perspectives that can pave the way to increase agricultural productivity in a sustainable manner. In this review, our aim was to present a detailed overview of different facets of the crosstalk between the antagonistic plant hormones abscisic acid (ABA) and auxin, two phytohormones that are the main drivers of plant stress responses, on the one hand, and plant growth, on the other.
Collapse
Affiliation(s)
- Paloma Ortiz-García
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Adrián González Ortega-Villaizán
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Francis Chukwuma Onejeme
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (M.M.); (S.P.); Tel.: +34-934033718 (M.M.); +34-910679183 (S.P.)
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
- Correspondence: (M.M.); (S.P.); Tel.: +34-934033718 (M.M.); +34-910679183 (S.P.)
| |
Collapse
|
12
|
Perez VC, Zhao H, Lin M, Kim J. Occurrence, Function, and Biosynthesis of the Natural Auxin Phenylacetic Acid (PAA) in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:266. [PMID: 36678978 PMCID: PMC9867223 DOI: 10.3390/plants12020266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Auxins are a class of plant hormones playing crucial roles in a plant's growth, development, and stress responses. Phenylacetic acid (PAA) is a phenylalanine-derived natural auxin found widely in plants. Although the auxin activity of PAA in plants was identified several decades ago, PAA homeostasis and its function remain poorly understood, whereas indole-3-acetic acid (IAA), the most potent auxin, has been used for most auxin studies. Recent studies have revealed unique features of PAA distinctive from IAA, and the enzymes and intermediates of the PAA biosynthesis pathway have been identified. Here, we summarize the occurrence and function of PAA in plants and highlight the recent progress made in PAA homeostasis, emphasizing PAA biosynthesis and crosstalk between IAA and PAA homeostasis.
Collapse
Affiliation(s)
- Veronica C. Perez
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611, USA
| | - Haohao Zhao
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Makou Lin
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611, USA
| | - Jeongim Kim
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611, USA
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
- Genetic Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
13
|
Perez VC, Dai R, Tomiczek B, Mendoza J, Wolf ESA, Grenning A, Vermerris W, Block AK, Kim J. Metabolic link between auxin production and specialized metabolites in Sorghum bicolor. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:364-376. [PMID: 36300527 PMCID: PMC9786853 DOI: 10.1093/jxb/erac421] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Aldoximes are amino acid derivatives that serve as intermediates for numerous specialized metabolites including cyanogenic glycosides, glucosinolates, and auxins. Aldoxime formation is mainly catalyzed by cytochrome P450 monooxygenases of the 79 family (CYP79s) that can have broad or narrow substrate specificity. Except for SbCYP79A1, aldoxime biosynthetic enzymes in the cereal sorghum (Sorghum bicolor) have not been characterized. This study identified nine CYP79-encoding genes in the genome of sorghum. A phylogenetic analysis of CYP79 showed that SbCYP79A61 formed a subclade with maize ZmCYP79A61, previously characterized to be involved in aldoxime biosynthesis. Functional characterization of this sorghum enzyme using transient expression in Nicotiana benthamiana and stable overexpression in Arabidopsis thaliana revealed that SbCYP79A61 catalyzes the production of phenylacetaldoxime (PAOx) from phenylalanine but, unlike the maize enzyme, displays no detectable activity against tryptophan. Additionally, targeted metabolite analysis after stable isotope feeding assays revealed that PAOx can serve as a precursor of phenylacetic acid (PAA) in sorghum and identified benzyl cyanide as an intermediate of PAOx-derived PAA biosynthesis in both sorghum and maize. Taken together, our results demonstrate that SbCYP79A61 produces PAOx in sorghum and may serve in the biosynthesis of other nitrogen-containing phenylalanine-derived metabolites involved in mediating biotic and abiotic stresses.
Collapse
Affiliation(s)
- Veronica C Perez
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - Ru Dai
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Breanna Tomiczek
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Jorrel Mendoza
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, Gainesville, FL 32608, USA
| | - Emily S A Wolf
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - Alexander Grenning
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Wilfred Vermerris
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
- Department of Microbiology & Cell Science, Gainesville, FL 32611, USA
- UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA
- Florida Center for Renewable Chemicals and Fuels, University of Florida, Gainesville, FL 32611, USA
| | - Anna K Block
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, Gainesville, FL 32608, USA
| | - Jeongim Kim
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
14
|
Jiang Z, Zhang H, Jiao P, Wei X, Liu S, Guan S, Ma Y. The Integration of Metabolomics and Transcriptomics Provides New Insights for the Identification of Genes Key to Auxin Synthesis at Different Growth Stages of Maize. Int J Mol Sci 2022; 23:13195. [PMID: 36361983 PMCID: PMC9659120 DOI: 10.3390/ijms232113195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 10/29/2023] Open
Abstract
As a staple food crop, maize is widely cultivated worldwide. Sex differentiation and kernel development are regulated by auxin, but the mechanism regulating its synthesis remains unclear. This study explored the influence of the growth stage of maize on the secondary metabolite accumulation and gene expression associated with auxin synthesis. Transcriptomics and metabonomics were used to investigate the changes in secondary metabolite accumulation and gene expression in maize leaves at the jointing, tasseling, and pollen-release stages of plant growth. In total, 1221 differentially accumulated metabolites (DAMs) and 4843 differentially expressed genes (DEGs) were screened. KEGG pathway enrichment analyses of the DEGs and DAMs revealed that plant hormone signal transduction, tryptophan metabolism, and phenylpropanoid biosynthesis were highly enriched. We summarized the key genes and regulatory effects of the tryptophan-dependent auxin biosynthesis pathways, giving new insights into this type of biosynthesis. Potential MSTRG.11063 and MSTRG.35270 and MSTRG.21978 genes in auxin synthesis pathways were obtained. A weighted gene co-expression network analysis identified five candidate genes, namely TSB (Zm00001d046676 and Zm00001d049610), IGS (Zm00001d020008), AUX2 (Zm00001d006283), TAR (Zm00001d039691), and YUC (Zm00001d025005 and Zm00001d008255), which were important in the biosynthesis of both tryptophan and auxin. This study provides new insights for understanding the regulatory mechanism of auxin synthesis in maize.
Collapse
Affiliation(s)
- Zhenzhong Jiang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China
| | - Honglin Zhang
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Peng Jiao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China
| | - Xiaotong Wei
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Siyan Liu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Shuyan Guan
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Yiyong Ma
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
15
|
Dani KGS, Loreto F. Plant volatiles as regulators of hormone homeostasis. THE NEW PHYTOLOGIST 2022; 234:804-812. [PMID: 35170033 DOI: 10.1111/nph.18035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Some canonical plant hormones such as auxins and gibberellins have precursors that are biogenic volatiles (indole, indole acetonitrile, phenylacetaldoxime and ent-kaurene). Cytokinins, abscisic acid and strigolactones are hormones comprising chemical moieties that have distinct volatile analogues, and are synthesised alongside constitutively emitted volatiles (isoprene, sesquiterpenes, lactones, benzenoids and apocarotenoid volatiles). Nonvolatile hormone analogues and biogenic volatile organic compounds (BVOCs) evolved in tandem as growth and behavioural regulators in unicellular organisms. In plants, however, nonvolatile hormones evolved as regulators of growth, development and differentiation, while endogenous BVOCs (often synthesised lifelong) became subtle regulators of hormone synthesis, availability, activity and turnover, all supported by functionally redundant components of hormone metabolism. Reciprocal changes in the abundance and activity of hormones, nitric oxide, and constitutive plant volatiles constantly bridge retrograde and anterograde signalling to maintain hormone equilibria even in unstressed plants. This is distinct from transient interference in hormone signalling by stress-induced and exogenously received volatiles.
Collapse
Affiliation(s)
- Kaidala Ganesha Srikanta Dani
- Institute of Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, Sesto Fiorentino, Florence, 50019, Italy
- Department of Biology, Agriculture and Food Sciences, National Research Council of Italy, Piazzale Aldo Moro 7, Rome, 00185, Italy
| | - Francesco Loreto
- Institute of Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, Sesto Fiorentino, Florence, 50019, Italy
- Department of Biology, University of Naples Federico II, Via Cinthia, Naples, 80126, Italy
| |
Collapse
|
16
|
Perez VC, Dai R, Block AK, Kim J. Metabolite analysis of Arabidopsis CYP79A2 overexpression lines reveals turnover of benzyl glucosinolate and an additive effect of different aldoximes on phenylpropanoid repression. PLANT SIGNALING & BEHAVIOR 2021; 16:1966586. [PMID: 34429019 PMCID: PMC8526031 DOI: 10.1080/15592324.2021.1966586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 06/12/2023]
Abstract
Indole-3-acetaldoxime (IAOx) and phenylacetaldoxime (PAOx) are precursors for the growth hormones indole-3-acetic acid (IAA) and phenylacetic acid (PAA) and the defense compounds glucosinolates in Brassicales. Our recent work has shown that Arabidopsis transgenic lines overexpressing AtCYP79A2, a PAOx-production enzyme, accumulate the PAOx-derived compounds benzyl glucosinolate and PAA. Here we report that they also accumulate the benzyl glucosinolate hydrolysis products benzyl isothiocyanate and benzyl cyanide, which indicates that the turnover of benzyl glucosinolate can occur in intact tissues. Myrosinases or β-glucosidases are known to catalyze glucosinolate breakdown. However, transcriptomics analysis detected no substantial increase in expression of known myrosinases or putative β-glucosidases in AtCYP79A2 overexpressing lines. It was previously shown that accumulation of aldoximes or their derivatives represses the phenylpropanoid pathway. For instance, ref2 mutant having a defect in one of the aldoxime catabolic enzymes decreases phenylpropanoid production. Considering that AtCYP79A2 is not expressed in most organs under optimal growth condition, ref2 accumulates aliphatic aldoximes but not PAOx. Interestingly, overexpression of AtCYP79A2 in ref2 resulted in a further decrease in sinapoylmalate content compared to ref2. This indicates that accumulation of PAOx has an additive effect on phenylpropanoid pathway suppression mediated by other aldoximes.
Collapse
Affiliation(s)
- Veronica C. Perez
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, USA
| | - Ru Dai
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Anna K. Block
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, Gainesville, FL, USA
| | - Jeongim Kim
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, USA
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Zhou F, Chen Y, Wu H, Yin T. Genome-Wide Comparative Analysis of R2R3 MYB Gene Family in Populus and Salix and Identification of Male Flower Bud Development-Related Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:721558. [PMID: 34594352 PMCID: PMC8477045 DOI: 10.3389/fpls.2021.721558] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/17/2021] [Indexed: 05/09/2023]
Abstract
The MYB transcription factor (TF) family is one of the largest plant transcription factor gene family playing vital roles in plant growth and development, including defense, cell differentiation, secondary metabolism, and responses to biotic and abiotic stresses. As a model tree species of woody plants, in recent years, the identification and functional prediction of certain MYB family members in the poplar genome have been reported. However, to date, the characterization of the gene family in the genome of the poplar's sister species willow has not been done, nor are the differences and similarities between the poplar and willow genomes understood. In this study, we conducted the first genome-wide investigation of the R2R3 MYB subfamily in the willow, identifying 216 R2R3 MYB gene members, and combined with the poplar R2R3 MYB genes, performed the first comparative analysis of R2R3 MYB genes between the poplar and willow. We identified 81 and 86 pairs of R2R3 MYB paralogs in the poplar and willow, respectively. There were 17 pairs of tandem repeat genes in the willow, indicating active duplication of willow R2R3 MYB genes. A further 166 pairs of poplar and willow orthologs were identified by collinear and synonymous analysis. The findings support the duplication of R2R3 MYB genes in the ancestral species, with most of the R2R3 MYB genes being retained during the evolutionary process. The phylogenetic trees of the R2R3 MYB genes of 10 different species were drawn. The functions of the poplar and willow R2R3 MYB genes were predicted using reported functional groupings and clustering by OrthoFinder. Identified 5 subgroups in general expanded in woody species, three subgroups were predicted to be related to lignin synthesis, and we further speculate that the other two subgroups also play a role in wood formation. We analyzed the expression patterns of the GAMYB gene of subgroup 18 (S18) related to pollen development in the male flower buds of poplar and willow at different developmental stages by qRT-PCR. The results showed that the GAMYB gene was specifically expressed in the male flower bud from pollen formation to maturity, and that the expression first increased and then decreased. Both the specificity of tissue expression specificity and conservation indicated that GAMYB played an important role in pollen development in both poplar and willow and was an ideal candidate gene for the analysis of male flower development-related functions of the two species.
Collapse
|
18
|
Simpson JP, Olson J, Dilkes B, Chapple C. Identification of the Tyrosine- and Phenylalanine-Derived Soluble Metabolomes of Sorghum. FRONTIERS IN PLANT SCIENCE 2021; 12:714164. [PMID: 34594350 PMCID: PMC8476951 DOI: 10.3389/fpls.2021.714164] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/23/2021] [Indexed: 05/16/2023]
Abstract
The synthesis of small organic molecules, known as specialized or secondary metabolites, is one mechanism by which plants resist and tolerate biotic and abiotic stress. Many specialized metabolites are derived from the aromatic amino acids phenylalanine (Phe) and tyrosine (Tyr). In addition, the improved characterization of compounds derived from these amino acids could inform strategies for developing crops with greater resilience and improved traits for the biorefinery. Sorghum and other grasses possess phenylalanine ammonia-lyase (PAL) enzymes that generate cinnamic acid from Phe and bifunctional phenylalanine/tyrosine ammonia-lyase (PTAL) enzymes that generate cinnamic acid and p-coumaric acid from Phe and Tyr, respectively. Cinnamic acid can, in turn, be converted into p-coumaric acid by cinnamate 4-hydroxylase. Thus, Phe and Tyr are both precursors of common downstream products. Not all derivatives of Phe and Tyr are shared, however, and each can act as a precursor for unique metabolites. In this study, 13C isotopic-labeled precursors and the recently developed Precursor of Origin Determination in Untargeted Metabolomics (PODIUM) mass spectrometry (MS) analytical pipeline were used to identify over 600 MS features derived from Phe and Tyr in sorghum. These features comprised 20% of the MS signal collected by reverse-phase chromatography and detected through negative-ionization. Ninety percent of the labeled mass features were derived from both Phe and Tyr, although the proportional contribution of each precursor varied. In addition, the relative incorporation of Phe and Tyr varied between metabolites and tissues, suggesting the existence of multiple pools of p-coumaric acid that are fed by the two amino acids. Furthermore, Phe incorporation was greater for many known hydroxycinnamate esters and flavonoid glycosides. In contrast, mass features derived exclusively from Tyr were the most abundant in every tissue. The Phe- and Tyr-derived metabolite library was also utilized to retrospectively annotate soluble MS features in two brown midrib mutants (bmr6 and bmr12) identifying several MS features that change significantly in each mutant.
Collapse
Affiliation(s)
- Jeffrey P. Simpson
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Jacob Olson
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Brian Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Purdue University Center for Plant Biology, West Lafayette, IN, United States
- *Correspondence: Brian Dilkes
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Purdue University Center for Plant Biology, West Lafayette, IN, United States
- Clint Chapple
| |
Collapse
|