1
|
Pan S, Wang X, Yan Z, Wu J, Guo L, Peng Z, Wu Y, Li J, Wang B, Su Y, Liu L. Leaf stomatal configuration and photosynthetic traits jointly affect leaf water use efficiency in forests along climate gradients. THE NEW PHYTOLOGIST 2024; 244:1250-1262. [PMID: 39223910 DOI: 10.1111/nph.20100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Water use efficiency (WUE) represents the trade-off between carbon assimilation and water loss in plants. It remains unclear how leaf stomatal and photosynthetic traits regulate the spatial variation of leaf WUE in different natural forest ecosystems. We investigated 43 broad-leaf tree species spanning from cold-temperate to tropical forests in China. We quantified leaf WUE using leaf δ13C and measured stomatal traits, photosynthetic traits as well as maximum stomatal conductance (G w max ) and maximum carboxylation capacity (V c max ). We found that leaves in cold-temperate forests displayed 'fast' carbon economics, characterized by higher leaf nitrogen, Chl, specific leaf area, andV c max , as an adaptation to the shorter growing season. However, these leaves exhibited 'slow' hydraulic traits, with larger but fewer stomata and similarG w max , resulting in higher leaf WUE. By contrast, leaves in tropical forests had smaller and denser stomata, enabling swift response to heterogeneous light conditions. However, this stomatal configuration increased potential water loss, and coupled with their low photosynthetic capacity, led to lower WUE. Our findings contribute to understanding how plant photosynthetic and stomatal traits regulate carbon-water trade-offs across climatic gradients, advancing our ability to predict the impacts of climate changes on forest carbon and water cycles.
Collapse
Affiliation(s)
- Shengnan Pan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Xin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Zhengbing Yan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- School of Biological Sciences, The University of Hong Kong, Hong Kong, 999077, China
| | - Jin Wu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, 999077, China
| | - Lulu Guo
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Ziyang Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Yuntao Wu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Jing Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Bin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yanjun Su
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| |
Collapse
|
2
|
Ji F, Li F, Hao D, Shiklomanov AN, Yang X, Townsend PA, Dashti H, Nakaji T, Kovach KR, Liu H, Luo M, Chen M. Unveiling the transferability of PLSR models for leaf trait estimation: lessons from a comprehensive analysis with a novel global dataset. THE NEW PHYTOLOGIST 2024; 243:111-131. [PMID: 38708434 DOI: 10.1111/nph.19807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/07/2024] [Indexed: 05/07/2024]
Abstract
Leaf traits are essential for understanding many physiological and ecological processes. Partial least squares regression (PLSR) models with leaf spectroscopy are widely applied for trait estimation, but their transferability across space, time, and plant functional types (PFTs) remains unclear. We compiled a novel dataset of paired leaf traits and spectra, with 47 393 records for > 700 species and eight PFTs at 101 globally distributed locations across multiple seasons. Using this dataset, we conducted an unprecedented comprehensive analysis to assess the transferability of PLSR models in estimating leaf traits. While PLSR models demonstrate commendable performance in predicting chlorophyll content, carotenoid, leaf water, and leaf mass per area prediction within their training data space, their efficacy diminishes when extrapolating to new contexts. Specifically, extrapolating to locations, seasons, and PFTs beyond the training data leads to reduced R2 (0.12-0.49, 0.15-0.42, and 0.25-0.56) and increased NRMSE (3.58-18.24%, 6.27-11.55%, and 7.0-33.12%) compared with nonspatial random cross-validation. The results underscore the importance of incorporating greater spectral diversity in model training to boost its transferability. These findings highlight potential errors in estimating leaf traits across large spatial domains, diverse PFTs, and time due to biased validation schemes, and provide guidance for future field sampling strategies and remote sensing applications.
Collapse
Affiliation(s)
- Fujiang Ji
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI, 53706, USA
| | - Fa Li
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI, 53706, USA
| | - Dalei Hao
- Atmospheric, Climate, & Earth Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA
| | - Alexey N Shiklomanov
- NASA Goddard Space Flight Center, 8800 Greenbelt Road, Mail code: 610.1, Greenbelt, MD, 20771, USA
| | - Xi Yang
- Department of Environmental Sciences, University of Virginia, 291 McCormick Road, Charlottesville, VA, 22904, USA
| | - Philip A Townsend
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI, 53706, USA
| | - Hamid Dashti
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI, 53706, USA
| | - Tatsuro Nakaji
- Uryu Experimental Forest, Hokkaido University, Moshiri, Horokanai, Hokkaido, 074-0741, Japan
| | - Kyle R Kovach
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI, 53706, USA
| | - Haoran Liu
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI, 53706, USA
| | - Meng Luo
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI, 53706, USA
| | - Min Chen
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI, 53706, USA
- Data Science Institute, University of Wisconsin-Madison, 447 Lorch Ct, Madison, 53706, WI, USA
| |
Collapse
|
3
|
Cushman KC, Albert LP, Norby RJ, Saatchi S. Innovations in plant science from integrative remote sensing research: an introduction to a Virtual Issue. THE NEW PHYTOLOGIST 2023; 240:1707-1711. [PMID: 37915249 DOI: 10.1111/nph.19237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 11/03/2023]
Abstract
This article is an Editorial to the Virtual issue on ‘Remote sensing’ that includes the following papers Chavana‐Bryant et al. (2017), Coupel‐Ledru et al. (2022), Cushman & Machado (2020), Disney (2019), D'Odorico et al. (2020), Dong et al. (2022), Fischer et al. (2019), Gamon et al. (2023), Gu et al. (2019), Guillemot et al. (2020), Jucker (2021), Koh et al. (2022), Konings et al. (2019), Kothari et al. (2023), Martini et al. (2022), Richardson (2019), Santini et al. (2021), Schimel et al. (2019), Serbin et al. (2019), Smith et al. (2019, 2020), Still et al. (2021), Stovall et al. (2021), Wang et al. (2020), Wong et al. (2020), Wu et al. (2021), Wu et al. (2017), Wu et al. (2018), Wu et al. (2019), Xu et al. (2021), Yan et al. (2021). Access the Virtual Issue at www.newphytologist.com/virtualissues.
Collapse
Affiliation(s)
- K C Cushman
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Loren P Albert
- College of Forestry, Oregon State University, Corvallis, OR, 97331, USA
| | - Richard J Norby
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sassan Saatchi
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| |
Collapse
|
4
|
Guo Z, Still CJ, Lee CKF, Ryu Y, Blonder B, Wang J, Bonebrake TC, Hughes A, Li Y, Yeung HCH, Zhang K, Law YK, Lin Z, Wu J. Does plant ecosystem thermoregulation occur? An extratropical assessment at different spatial and temporal scales. THE NEW PHYTOLOGIST 2023; 238:1004-1018. [PMID: 36495263 DOI: 10.1111/nph.18632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
To what degree plant ecosystems thermoregulate their canopy temperature (Tc ) is critical to assess ecosystems' metabolisms and resilience with climate change, but remains controversial, with opinions from no to moderate thermoregulation capability. With global datasets of Tc , air temperature (Ta ), and other environmental and biotic variables from FLUXNET and satellites, we tested the 'limited homeothermy' hypothesis (indicated by Tc & Ta regression slope < 1 or Tc < Ta around midday) across global extratropics, including temporal and spatial dimensions. Across daily to weekly and monthly timescales, over 80% of sites/ecosystems have slopes ≥1 or Tc > Ta around midday, rejecting the above hypothesis. For those sites unsupporting the hypothesis, their Tc -Ta difference (ΔT) exhibits considerable seasonality that shows negative, partial correlations with leaf area index, implying a certain degree of thermoregulation capability. Spatially, site-mean ΔT exhibits larger variations than the slope indicator, suggesting ΔT is a more sensitive indicator for detecting thermoregulatory differences across biomes. Furthermore, this large spatial-wide ΔT variation (0-6°C) is primarily explained by environmental variables (38%) and secondarily by biotic factors (15%). These results demonstrate diverse thermoregulation patterns across global extratropics, with most ecosystems negating the 'limited homeothermy' hypothesis, but their thermoregulation still occurs, implying that slope < 1 or Tc < Ta are not necessary conditions for plant thermoregulation.
Collapse
Affiliation(s)
- Zhengfei Guo
- School for Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Christopher J Still
- Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Calvin K F Lee
- School for Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Youngryel Ryu
- Department of Landscape Architecture and Rural Systems Engineering, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, South Korea
| | - Benjamin Blonder
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA
| | - Jing Wang
- School for Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Timothy C Bonebrake
- School for Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong, China
| | - Alice Hughes
- School for Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong, China
| | - Yan Li
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing, 100875, China
| | - Henry C H Yeung
- School for Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Kun Zhang
- School for Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Department of Mathematics, The University of Hong Kong, Hong Kong, China
| | - Ying Ki Law
- School for Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ziyu Lin
- School for Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jin Wu
- School for Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
5
|
Kothari S, Beauchamp-Rioux R, Blanchard F, Crofts AL, Girard A, Guilbeault-Mayers X, Hacker PW, Pardo J, Schweiger AK, Demers-Thibeault S, Bruneau A, Coops NC, Kalacska M, Vellend M, Laliberté E. Predicting leaf traits across functional groups using reflectance spectroscopy. THE NEW PHYTOLOGIST 2023; 238:549-566. [PMID: 36746189 DOI: 10.1111/nph.18713] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/30/2022] [Indexed: 06/18/2023]
Abstract
Plant ecologists use functional traits to describe how plants respond to and influence their environment. Reflectance spectroscopy can provide rapid, non-destructive estimates of leaf traits, but it remains unclear whether general trait-spectra models can yield accurate estimates across functional groups and ecosystems. We measured leaf spectra and 22 structural and chemical traits for nearly 2000 samples from 103 species. These samples span a large share of known trait variation and represent several functional groups and ecosystems, mainly in eastern Canada. We used partial least-squares regression (PLSR) to build empirical models for estimating traits from spectra. Within the dataset, our PLSR models predicted traits such as leaf mass per area (LMA) and leaf dry matter content (LDMC) with high accuracy (R2 > 0.85; %RMSE < 10). Models for most chemical traits, including pigments, carbon fractions, and major nutrients, showed intermediate accuracy (R2 = 0.55-0.85; %RMSE = 12.7-19.1). Micronutrients such as Cu and Fe showed the poorest accuracy. In validation on external datasets, models for traits such as LMA and LDMC performed relatively well, while carbon fractions showed steep declines in accuracy. We provide models that produce fast, reliable estimates of several functional traits from leaf spectra. Our results reinforce the potential uses of spectroscopy in monitoring plant function around the world.
Collapse
Affiliation(s)
- Shan Kothari
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Rosalie Beauchamp-Rioux
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Florence Blanchard
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Anna L Crofts
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, J1K 2X9, Canada
| | - Alizée Girard
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Xavier Guilbeault-Mayers
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Paul W Hacker
- Department of Forest Resources Management, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Juliana Pardo
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Anna K Schweiger
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
- Department of Geography, University of Zurich, Zürich, 8057, Switzerland
| | - Sabrina Demers-Thibeault
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Anne Bruneau
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Nicholas C Coops
- Department of Forest Resources Management, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Margaret Kalacska
- Department of Geography, McGill University, Montréal, QC, H3A 0B9, Canada
| | - Mark Vellend
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, J1K 2X9, Canada
| | - Etienne Laliberté
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| |
Collapse
|
6
|
Kothari S, Beauchamp‐Rioux R, Laliberté E, Cavender‐Bares J. Reflectance spectroscopy allows rapid, accurate and non‐destructive estimates of functional traits from pressed leaves. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shan Kothari
- Department of Plant and Microbial Biology University of Minnesota St. Paul MN USA
- Institut de recherche en biologie végétale, Département de sciences biologiques Université de Montréal Montréal QC Canada
| | - Rosalie Beauchamp‐Rioux
- Institut de recherche en biologie végétale, Département de sciences biologiques Université de Montréal Montréal QC Canada
| | - Etienne Laliberté
- Institut de recherche en biologie végétale, Département de sciences biologiques Université de Montréal Montréal QC Canada
| | - Jeannine Cavender‐Bares
- Department of Plant and Microbial Biology University of Minnesota St. Paul MN USA
- Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul MN USA
| |
Collapse
|
7
|
Fu P, Montes CM, Siebers MH, Gomez-Casanovas N, McGrath JM, Ainsworth EA, Bernacchi CJ. Advances in field-based high-throughput photosynthetic phenotyping. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3157-3172. [PMID: 35218184 PMCID: PMC9126737 DOI: 10.1093/jxb/erac077] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/23/2022] [Indexed: 05/22/2023]
Abstract
Gas exchange techniques revolutionized plant research and advanced understanding, including associated fluxes and efficiencies, of photosynthesis, photorespiration, and respiration of plants from cellular to ecosystem scales. These techniques remain the gold standard for inferring photosynthetic rates and underlying physiology/biochemistry, although their utility for high-throughput phenotyping (HTP) of photosynthesis is limited both by the number of gas exchange systems available and the number of personnel available to operate the equipment. Remote sensing techniques have long been used to assess ecosystem productivity at coarse spatial and temporal resolutions, and advances in sensor technology coupled with advanced statistical techniques are expanding remote sensing tools to finer spatial scales and increasing the number and complexity of phenotypes that can be extracted. In this review, we outline the photosynthetic phenotypes of interest to the plant science community and describe the advances in high-throughput techniques to characterize photosynthesis at spatial scales useful to infer treatment or genotypic variation in field-based experiments or breeding trials. We will accomplish this objective by presenting six lessons learned thus far through the development and application of proximal/remote sensing-based measurements and the accompanying statistical analyses. We will conclude by outlining what we perceive as the current limitations, bottlenecks, and opportunities facing HTP of photosynthesis.
Collapse
Affiliation(s)
- Peng Fu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christopher M Montes
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- United States Department of Agriculture, Global Change and Photosynthesis Research Unit, Agricultural Research Service, Urbana, IL, USA
| | - Matthew H Siebers
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- United States Department of Agriculture, Global Change and Photosynthesis Research Unit, Agricultural Research Service, Urbana, IL, USA
| | - Nuria Gomez-Casanovas
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Sustainability, Energy & Environment, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Justin M McGrath
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- United States Department of Agriculture, Global Change and Photosynthesis Research Unit, Agricultural Research Service, Urbana, IL, USA
| | - Elizabeth A Ainsworth
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- United States Department of Agriculture, Global Change and Photosynthesis Research Unit, Agricultural Research Service, Urbana, IL, USA
- Institute for Sustainability, Energy & Environment, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Carl J Bernacchi
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- United States Department of Agriculture, Global Change and Photosynthesis Research Unit, Agricultural Research Service, Urbana, IL, USA
- Institute for Sustainability, Energy & Environment, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|