1
|
Dadras A, Fürst-Jansen JMR, Darienko T, Krone D, Scholz P, Sun S, Herrfurth C, Rieseberg TP, Irisarri I, Steinkamp R, Hansen M, Buschmann H, Valerius O, Braus GH, Hoecker U, Feussner I, Mutwil M, Ischebeck T, de Vries S, Lorenz M, de Vries J. Environmental gradients reveal stress hubs pre-dating plant terrestrialization. NATURE PLANTS 2023; 9:1419-1438. [PMID: 37640935 PMCID: PMC10505561 DOI: 10.1038/s41477-023-01491-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/11/2023] [Indexed: 08/31/2023]
Abstract
Plant terrestrialization brought forth the land plants (embryophytes). Embryophytes account for most of the biomass on land and evolved from streptophyte algae in a singular event. Recent advances have unravelled the first full genomes of the closest algal relatives of land plants; among the first such species was Mesotaenium endlicherianum. Here we used fine-combed RNA sequencing in tandem with a photophysiological assessment on Mesotaenium exposed to a continuous range of temperature and light cues. Our data establish a grid of 42 different conditions, resulting in 128 transcriptomes and ~1.5 Tbp (~9.9 billion reads) of data to study the combinatory effects of stress response using clustering along gradients. Mesotaenium shares with land plants major hubs in genetic networks underpinning stress response and acclimation. Our data suggest that lipid droplet formation and plastid and cell wall-derived signals have denominated molecular programmes since more than 600 million years of streptophyte evolution-before plants made their first steps on land.
Collapse
Affiliation(s)
- Armin Dadras
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Janine M R Fürst-Jansen
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
- Campus Institute Data Science, University of Goettingen, Goettingen, Germany
| | - Tatyana Darienko
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Denis Krone
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Patricia Scholz
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, Germany
| | - Siqi Sun
- Institute of Plant Biology and Biotechnology, Green Biotechnology, University of Münster, Münster, Germany
| | - Cornelia Herrfurth
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, Germany
- Goettingen Center for Molecular Biosciences, Service Unit for Metabolomics and Lipidomics, University of Goettingen, Goettingen, Germany
| | - Tim P Rieseberg
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Iker Irisarri
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
- Campus Institute Data Science, University of Goettingen, Goettingen, Germany
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum of Nature, Hamburg, Germany
| | - Rasmus Steinkamp
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Maike Hansen
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences, Biocenter, University of Cologne, Cologne, Germany
| | - Henrik Buschmann
- Faculty of Applied Computer Sciences and Biosciences, Section Biotechnology and Chemistry, Molecular Biotechnology, University of Applied Sciences Mittweida, Mittweida, Germany
| | - Oliver Valerius
- Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences and Service Unit LCMS Protein Analytics, Department of Molecular Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Gerhard H Braus
- Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences and Service Unit LCMS Protein Analytics, Department of Molecular Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Ute Hoecker
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences, Biocenter, University of Cologne, Cologne, Germany
| | - Ivo Feussner
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, Germany
- Goettingen Center for Molecular Biosciences, Service Unit for Metabolomics and Lipidomics, University of Goettingen, Goettingen, Germany
- Goettingen Center for Molecular Biosciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, Germany
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Till Ischebeck
- Institute of Plant Biology and Biotechnology, Green Biotechnology, University of Münster, Münster, Germany
| | - Sophie de Vries
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Maike Lorenz
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Experimental Phycology and SAG Culture Collection of Algae, University of Goettingen, Goettingen, Germany
| | - Jan de Vries
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany.
- Campus Institute Data Science, University of Goettingen, Goettingen, Germany.
- Goettingen Center for Molecular Biosciences, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany.
| |
Collapse
|
2
|
Petersen J, Rredhi A, Szyttenholm J, Mittag M. Evolution of circadian clocks along the green lineage. PLANT PHYSIOLOGY 2022; 190:924-937. [PMID: 35325228 PMCID: PMC9516769 DOI: 10.1093/plphys/kiac141] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/04/2022] [Indexed: 05/10/2023]
Abstract
Circadian clocks govern temporal programs in the green lineage (Chloroplastida) as they do in other photosynthetic pro- and eukaryotes, bacteria, fungi, animals, and humans. Their physiological properties, including entrainment, phase responses, and temperature compensation, are well conserved. The involvement of transcriptional/translational feedback loops in the oscillatory machinery and reversible phosphorylation events are also maintained. Circadian clocks control a large variety of output rhythms in green algae and terrestrial plants, adjusting their metabolism and behavior to the day-night cycle. The angiosperm Arabidopsis (Arabidopsis thaliana) represents a well-studied circadian clock model. Several molecular components of its oscillatory machinery are conserved in other Chloroplastida, but their functions may differ. Conserved clock components include at least one member of the CIRCADIAN CLOCK ASSOCIATED1/REVEILLE and one of the PSEUDO RESPONSE REGULATOR family. The Arabidopsis evening complex members EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO are found in the moss Physcomitrium patens and in the liverwort Marchantia polymorpha. In the flagellate chlorophyte alga Chlamydomonas reinhardtii, only homologs of ELF4 and LUX (named RHYTHM OF CHLOROPLAST ROC75) are present. Temporal ROC75 expression in C. reinhardtii is opposite to that of the angiosperm LUX, suggesting different clock mechanisms. In the picoalga Ostreococcus tauri, both ELF genes are missing, suggesting that it has a progenitor circadian "green" clock. Clock-relevant photoreceptors and thermosensors vary within the green lineage, except for the CRYPTOCHROMEs, whose variety and functions may differ. More genetically tractable models of Chloroplastida are needed to draw final conclusions about the gradual evolution of circadian clocks within the green lineage.
Collapse
Affiliation(s)
- Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Julie Szyttenholm
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| |
Collapse
|
3
|
Hotta CT. The evolution and function of the PSEUDO RESPONSE REGULATOR gene family in the plant circadian clock. Genet Mol Biol 2022; 45:e20220137. [PMID: 36125163 PMCID: PMC9486492 DOI: 10.1590/1678-4685-gmb-2022-0137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022] Open
Abstract
PSEUDO-RESPONSE PROTEINS (PRRs) are a gene
family vital for the generation of rhythms by the circadian clock. Plants have
circadian clocks, or circadian oscillators, to adapt to a rhythmic environment.
The circadian clock system can be divided into three parts: the core oscillator,
the input pathways, and the output pathways. The PRRs have a role in all three
parts. These nuclear proteins have an N-terminal pseudo receiver domain and a
C-terminal CONSTANS, CONSTANS-LIKE, and TOC1 (CCT) domain. The PRRs can be
identified from green algae to monocots, ranging from one to >5 genes per
species. Arabidopsis thaliana, for example, has five genes:
PRR9, PRR7, PRR5,
PRR3 and TOC1/PRR1. The
PRR genes can be divided into three clades using protein
homology: TOC1/PRR1, PRR7/3, and PRR9/5 expanded independently in eudicots and
monocots. The PRRs can make protein complexes and bind to DNA, and the wide
variety of protein-protein interactions are essential for the multiple roles in
the circadian clock. In this review, the history of PRR research is briefly
recapitulated, and the diversity of PRR genes in green and recent works about
their role in the circadian clock are discussed.
Collapse
Affiliation(s)
- Carlos Takeshi Hotta
- Universidade de São Paulo, Instituto de Química, Departamento de Bioquímica, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Cuitun‐Coronado D, Rees H, Colmer J, Hall A, de Barros Dantas LL, Dodd AN. Circadian and diel regulation of photosynthesis in the bryophyte Marchantia polymorpha. PLANT, CELL & ENVIRONMENT 2022; 45:2381-2394. [PMID: 35611455 PMCID: PMC9546472 DOI: 10.1111/pce.14364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 05/10/2023]
Abstract
Circadian rhythms are 24-h biological cycles that align metabolism, physiology, and development with daily environmental fluctuations. Photosynthetic processes are governed by the circadian clock in both flowering plants and some cyanobacteria, but it is unclear how extensively this is conserved throughout the green lineage. We investigated the contribution of circadian regulation to aspects of photosynthesis in Marchantia polymorpha, a liverwort that diverged from flowering plants early in the evolution of land plants. First, we identified in M. polymorpha the circadian regulation of photosynthetic biochemistry, measured using two approaches (delayed fluorescence, pulse amplitude modulation fluorescence). Second, we identified that light-dark cycles synchronize the phase of 24 h cycles of photosynthesis in M. polymorpha, whereas the phases of different thalli desynchronize under free-running conditions. This might also be due to the masking of the underlying circadian rhythms of photosynthesis by light-dark cycles. Finally, we used a pharmacological approach to identify that chloroplast translation might be necessary for clock control of light-harvesting in M. polymorpha. We infer that the circadian regulation of photosynthesis is well-conserved amongst terrestrial plants.
Collapse
Affiliation(s)
- David Cuitun‐Coronado
- Department of Cell and Developmental BiologyJohn Innes CentreNorwichUK
- School of Biological SciencesUniversity of BristolBristolUK
| | | | | | | | | | - Antony N. Dodd
- Department of Cell and Developmental BiologyJohn Innes CentreNorwichUK
| |
Collapse
|
5
|
PIF-independent regulation of growth by an evening complex in the liverwort Marchantia polymorpha. PLoS One 2022; 17:e0269984. [PMID: 35709169 PMCID: PMC9202859 DOI: 10.1371/journal.pone.0269984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/01/2022] [Indexed: 11/27/2022] Open
Abstract
Previous studies in the liverwort Marchantia polymorpha have shown that the putative evening complex (EC) genes LUX ARRHYTHMO (LUX) and ELF4-LIKE (EFL) have a function in the liverwort circadian clock. Here, we studied the growth phenotypes of MpLUX and MpEFL loss-of-function mutants, to establish if PHYTOCHROME-INTERACTING FACTOR (PIF) and auxin act downstream of the M. polymorpha EC in a growth-related pathway similar to the one described for the flowering plant Arabidopsis. We examined growth rates and cell properties of loss-of-function mutants, analyzed protein-protein interactions and performed gene expression studies using reporter genes. Obtained data indicate that an EC can form in M. polymorpha and that this EC regulates growth of the thallus. Altered auxin levels in Mplux mutants could explain some of the phenotypes related to an increased thallus surface area. However, because MpPIF is not regulated by the EC, and because Mppif mutants do not show reduced growth, the growth phenotype of EC-mutants is likely not mediated via MpPIF. In Arabidopsis, the circadian clock regulates elongation growth via PIF and auxin, but this is likely not an evolutionarily conserved growth mechanism in land plants. Previous inventories of orthologs to Arabidopsis clock genes in various plant lineages showed that there is high levels of structural differences between clocks of different plant lineages. Here, we conclude that there is also variation in the output pathways used by the different plant clocks to control growth and development.
Collapse
|