1
|
Li Z, Chen H, Yuan DP, Jiang X, Li ZM, Wang ST, Zhou TG, Zhu HY, Bian Q, Zhu XF, Xuan YH. IDD10-NAC079 transcription factor complex regulates sheath blight resistance by inhibiting ethylene signaling in rice. J Adv Res 2025; 71:93-106. [PMID: 38825317 DOI: 10.1016/j.jare.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024] Open
Abstract
INTRODUCTION Rhizoctonia solani Kühn is a pathogen causing rice sheath blight (ShB). Ammonium transporter 1 (AMT1) promotes resistance of rice to ShB by activating ethylene signaling. However, how AMT1 activates ethylene signaling remains unclear. OBJECTIVE In this study, the indeterminate domain 10 (IDD10)-NAC079 interaction model was used to investigate whether ethylene signaling is modulated downstream of ammonium signaling and modulates ammonium-mediated ShB resistance. METHODS RT-qPCR assay was used to identify the relative expression levels of nitrogen and ethylene related genes. Yeast two-hybrid assays, Bimolecular fluorescence complementation (BiFC) and Co-immunoprecipitation (Co-IP) assay were conducted to verify the IDD10-NAC079-calcineurin B-like interacting protein kinase 31 (CIPK31) transcriptional complex. Yeast one-hybrid assay, Chromatin immunoprecipitation (ChIP) assay, and Electrophoretic mobility shift assay (EMSA) were used to verify whether ETR2 was activated by IDD10 and NAC079. Ethylene quantification assay was used to verify ethylene content in IDD10 transgenic plants. Genetic analysis is used to detect the response of IDD10, NAC079 and CIPK31 to ShB infestation. RESULTS IDD10-NAC079 forms a transcription complex that activates ETR2 to inhibit the ethylene signaling pathway to negatively regulating ShB resistance. CIPK31 interacts and phosphorylates NAC079 to enhance its transcriptional activation activity. In addition, AMT1-mediated ammonium absorption and subsequent N assimilation inhibit the expression of IDD10 and CIPK31 to activate the ethylene signaling pathway, which positively regulates ShB resistance. CONCLUSION The study identified the link between ammonium and ethylene signaling and improved the understanding of the rice resistance mechanism.
Collapse
Affiliation(s)
- Zhuo Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Huan Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - De Peng Yuan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin 300071, China
| | - Xu Jiang
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Zhi Min Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Si Ting Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Tian Ge Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Hong Yao Zhu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Qiang Bian
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao Feng Zhu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yuan Hu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; State Key Laboratory of Elemento-Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Ding L, Huang W, Li Z, Fang Z. Amino acid transporter OsATL13 coordinately regulates rice yield and quality by transporting phenylalanine and methionine. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 353:112398. [PMID: 39880127 DOI: 10.1016/j.plantsci.2025.112398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/08/2024] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
Amino acids are crucial nutrients for growth in crops. In this study, we found an amino acid transporter-like 13 (OsATL13), that coordinately determined rice yield and quality. OsATL13 was primarily expressed in the root and panicle, its protein was localized on plasma membrane, and it principally transported phenylalanine and methionine. Overexpression (OE) of OsATL13 increased the tiller number by 31.4 %, resulting in a 16.18 % increase in grain yield compared to Zhonghua 11 (ZH11). It also decreased amylose content and increased protein content in OsATL13 OE lines compared to ZH11, whereas the OsATL13 mutant exhibited opposite effects. RNA-seq analysis revealed that upregulation of OsATL13 influenced the expression of genes associated with nitrogen and starch metabolism pathways. Notably, exogenous treatment with phenylalanine and methionine promoted axillary buds outgrowth, increased tiller number and rice yield, improved milled and head rice rates, and decreased chalky rice rate. Furthermore, rapid viscosity analysis supported the observation that phenylalanine and methionine treatments influenced rice eating and cooking quality. This research offers new perspectives on the synchronized enhancement of both rice yield and quality with amino acid transporter OsATL13.
Collapse
Affiliation(s)
- Lianxin Ding
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Weiting Huang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Zhenghan Li
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Zhongming Fang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
3
|
Huang X, Kuang Z, Zhou R, Liu T, Tang L, Gao Z, Liu T, Fan X, Xuan W, Luo L, Xu G. Mutation of strigolactone biosynthetic gene DWARF 17 impairs the responses of rice tillering to N supply. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70124. [PMID: 40169169 DOI: 10.1111/tpj.70124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 04/03/2025]
Abstract
Tiller number is one important parameter for rice yield and is influenced by both strigolactone (SL) and nitrogen (N). However, how SL and N interact to regulate the tiller outgrowth in rice is unclear. In this study, we isolated a multi-tillering mutant, tin, from an ethyl methanesulfonate (EMS)-mutagenized population of Wuyunjing 7, a japonica cultivar. The tin mutant exhibited low sensitivity to varying N concentrations during the tiller development. Through bulk segregation analysis (BSA), we identified a missense mutation located in the exon of DWARF 17 (D17), a key gene involved in SL biosynthesis. Complementation experiments confirmed that D17 is responsible for the tin tiller phenotype, and exogenous application of the SL analogue GR24 restored the tiller response of tin to N. Transcriptome analysis further revealed that D17 and SL regulate the tiller response to N by modulating the expression of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes and ammonium transporter genes. These findings elucidate the mechanism by which SL and N coordinate to regulate rice tillering growth, providing valuable insights for optimizing rice plant architecture to enhance yield potential.
Collapse
Affiliation(s)
- Xin Huang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhiming Kuang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Rui Zhou
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tiantian Liu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Li Tang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhipeng Gao
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tao Liu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiaorong Fan
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wei Xuan
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Le Luo
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Guohua Xu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Liu Y, Zhou D, Huang P, Yang C, Zhang J, Wang H, Cheng Q, Liu Y, Gao C, Ma J, Lin H, Ma J. Humic acid-supported nanoscale zero-valent iron for sustainable cadmium remediation and crop safety in farmland soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138109. [PMID: 40187244 DOI: 10.1016/j.jhazmat.2025.138109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/22/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
The immobilization efficacy of most existing stabilizers for cadmium (Cd)-contaminated soil is highly sensitive to ecological and environmental fluctuations. These fluctuations can induce the reactivation of Cd, thereby restricting the long-term applicability of stabilization technologies. In this study, we synthesized a humic acid (HA)-supported nanoscale zero-valent iron (nZVI) particle (nZVI@HA). The roles of nZVI@HA in Cd sequestration and rice production were investigated throughout the entire rice life cycle using pot experiments with separate and combined applications of pristine nZVI and HA, as well as varying dosages of nZVI@HA. The application of 500-1000 mg/kg nZVI@HA significantly reduced the available Cd content to 37.85 %-55.24 % of that in the control group at 140 days. Analysis of the dynamic relationship between Cd species and solid-phase iron revealed that HA modification increased electronegativity and inhibited Fe0 oxidation, enabling nZVI@HA to passivate Cd through electrostatic attraction and complexation. Furthermore, the grain Cd content decreased from 0.78 to 0.16-0.19 mg/kg, whereas the grain yield increased from 3.59 to 6.54-8.24 g/plant after treatments with 500-1000 mg/kg nZVI@HA. The stimulatory effects of nZVI@HA on both soil ammonia nitrogen (NH4+-N) content and iron plaque formation were identified as specific functions. Additionally, 16S rRNA sequencing indicated that the simultaneous promotion of Cd sequestration and safe crop production relied on the nZVI@HA-facilitated coupling process of microbial iron-metabolism, Cd species transformation, and nitrogen cycling.
Collapse
Affiliation(s)
- Yangzhi Liu
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Dongren Zhou
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Peng Huang
- School of Public Health & Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Chenghu Yang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jing Zhang
- School of Environmental Science and Engineering, Xiamen University Tan Kah Kee College, Zhangzhou 363123, China
| | - Honghui Wang
- School of Environmental Science and Engineering, Xiamen University Tan Kah Kee College, Zhangzhou 363123, China
| | - Qilu Cheng
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yingxia Liu
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chengxiang Gao
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jinchuan Ma
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hui Lin
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Junwei Ma
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
5
|
Liu R, Wang Q, Wang X, Yan S, Yang G, Ma P, Hu Y. Effects of Cytoplasmic Sterility on Roots and Yield of Nitrogen Sources in Rice. PLANTS (BASEL, SWITZERLAND) 2025; 14:820. [PMID: 40094811 PMCID: PMC11902156 DOI: 10.3390/plants14050820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
Rice is an important food crop, acting as the staple food for more than 50% of the global population. We selected seedlings (two sterile male lines: WA803A and JW803A) that had different cytoplasmic but the same nuclear composition and were heterogeneous. The maintainer line 803B was also used. We aimed to study their nitrogen uptake rate in different concentrations of NH4+ and NO3- and explore the differences in nitrogen uptake efficiency between different cytoplasmic genes. The results showed a significant difference in the nitrogen uptake rate for different seedlings. With ammonium nutrition, the nitrogen uptake efficiency of the JW cytoplasm was significantly higher than that of the WA cytoplasm. In low concentrations of ammonium nitrogen, the JW cytoplasm had an additive effect to the nuclear gene regulation of ammonium uptake. The JW cytoplasm's ammonium nitrogen absorption effect on nuclear gene regulation was higher than that of the WA cytoplasm. The effect of the WA and JW cytoplasms on the nitrate uptake rate was not significant, and the nuclear gene regulation of both cytoplasms was reduced by absorbing nitrate. Under nitrogen deficiency conditions, the material output and conversion rate of the JW-type cytoplasmic hybrid rice combination was relatively high, significantly higher than those of other cytoplasmic combinations. Under medium nitrogen conditions, the material output and conversion rate of the (N2) W-type hybrid rice combination were significantly higher than those of the other cytoplasmic combinations. The yield of JW-type rice first increased and then decreased with the increase in the nitrogen application rate and was highest, 8195.55 kg/hm2, under the N2 treatment.
Collapse
Affiliation(s)
- Rong Liu
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (R.L.); (Q.W.); (X.W.); (G.Y.)
| | - Qin Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (R.L.); (Q.W.); (X.W.); (G.Y.)
| | - Xiyuan Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (R.L.); (Q.W.); (X.W.); (G.Y.)
| | - Shengmin Yan
- Zigong Academy of Agricultural Sciences, Zigong 643000, China;
| | - Guotao Yang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (R.L.); (Q.W.); (X.W.); (G.Y.)
| | - Peng Ma
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (R.L.); (Q.W.); (X.W.); (G.Y.)
| | - Yungao Hu
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (R.L.); (Q.W.); (X.W.); (G.Y.)
| |
Collapse
|
6
|
Yang M, Sakuraba Y, Yanagisawa S. Down-regulation of the rice HRS1 HOMOLOG3 transcriptional repressor gene due to N deficiency directly co-activates ammonium and phosphate transporter genes. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:461-477. [PMID: 39470443 PMCID: PMC11714757 DOI: 10.1093/jxb/erae440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/29/2024] [Indexed: 10/30/2024]
Abstract
Rice HRS1 HOMOLOG3 (OsHHO3) acts as a transcriptional repressor of AMMONIUM TRANSPORTER1 (OsAMT1) genes in rice; thus, reduced OsHHO3 expression in nitrogen (N)-deficient environments promotes ammonium uptake. In this study, we show that OsHHO3 also functions as a repressor of a specific subset of phosphate (Pi) transporter (PT) genes involved in the uptake and root-to-shoot translocation of Pi, including OsPT2, OsPT4, and OsPHO1;1. Disruption of OsHHO3 increased Pi uptake and Pi contents in shoots and roots, while overexpression of OsHHO3 caused the opposite effects. Furthermore, phosphorus (P) deficiency slightly decreased OsHHO3 expression, up-regulating a specific subset of PT genes. However, N deficiency was more effective than P deficiency in suppressing OsHHO3 expression in roots, and unlike N deficiency-dependent activation of PT genes under the control of OsHHO3, the P deficiency-dependent activation of OsAMT1 genes was minimal. Interestingly, the simultaneous deficiency of both N and P promoted the OsHHO3-regulated expression of PT genes more significantly than the deficiency of either N or P, but diminished the expression of genes regulated by OsPHR2, a master regulator of Pi starvation-responsive transcriptional activation. Phenotypic analysis revealed that the inactivation and overexpression of OsHHO3 improved and reduced plant growth, respectively, under N-deficient and P-deficient conditions. These results indicate that OsHHO3 regulates a specific subset of PT genes independently of OsPHR2-mediated regulation and plays a critical role in the adaptation to diverse N and P environments.
Collapse
Affiliation(s)
- Mailun Yang
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuhito Sakuraba
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
7
|
Ueda Y. Development of an infiltration-based RNA preservation method for cryogen-free storage of leaves for gene expression analyses in field-grown plants. PLANT METHODS 2024; 20:187. [PMID: 39696461 DOI: 10.1186/s13007-024-01311-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Gene expression is a fundamental process for plants to express their phenotype, and its analysis is the basis of molecular studies. However, the instability of RNA often poses an obstacle to analyzing plants grown in fields or remote locations where the availability of liquid nitrogen or dry ice is limited. To deepen our understanding of plant phenotypes and tolerance to field-specific stresses, it is crucial to develop methodologies to maintain plant RNA intact and safely transfer it for downstream analyses such as qPCR and RNA-seq. RESULTS In this study, the author developed a novel tissue preservation method that involved the infiltration of RNA preservation solution into the leaf apoplast using a syringe and subsequent storage at 4 °C. RNA-seq using samples stored for 5 d and principal component analyses showed that rice leaves treated with the infiltration method maintained the original transcriptome pattern better than those treated with the traditional method when the leaves were simply immersed in the solution. Additionally, it was also found that extracted RNA can be transported with minimum risk of degradation when it is bound to the membrane of RNA extraction kits. The developed infiltration method was applied to rice plants grown in a local farmer's field in northern Madagascar to analyze the expression of nutrient-responsive genes, suggesting nutrient imbalances in some of the fields examined. CONCLUSIONS This study showed that the developed infiltration method was effective in preserving the transcriptome status of rice and sorghum leaves when liquid nitrogen or a deep freezer is not available. The developed method was useful for diagnosing plants in the field based on the expression of nutrient-responsive marker genes. Moreover, the method used to protect RNA samples from degradation during transportation offers the possibility to use them for RNA-seq. This novel technique could pave the way for revealing the molecular basis of plant phenotypes by accelerating gene expression analyses using plant samples that are unique in the field.
Collapse
Affiliation(s)
- Yoshiaki Ueda
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Ohwashi 1-1, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
8
|
Thiruppathi A, Salunkhe SR, Ramasamy SP, Palaniswamy R, Rajagopalan VR, Rathnasamy SA, Alagarswamy S, Swaminathan M, Manickam S, Muthurajan R. Unleashing the Potential of CRISPR/Cas9 Genome Editing for Yield-Related Traits in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:2972. [PMID: 39519891 PMCID: PMC11547960 DOI: 10.3390/plants13212972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Strategies to enhance rice productivity in response to global demand have been the paramount focus of breeders worldwide. Multiple factors, including agronomical traits such as plant architecture and grain formation and physiological traits such as photosynthetic efficiency and NUE (nitrogen use efficiency), as well as factors such as phytohormone perception and homeostasis and transcriptional regulation, indirectly influence rice grain yield. Advances in genetic analysis methodologies and functional genomics, numerous genes, QTLs (Quantitative Trait Loci), and SNPs (Single-Nucleotide Polymorphisms), linked to yield traits, have been identified and analyzed in rice. Genome editing allows for the targeted modification of identified genes to create novel mutations in rice, avoiding the unintended mutations often caused by random mutagenesis. Genome editing technologies, notably the CRISPR/Cas9 system, present a promising tool to generate precise and rapid modifications in the plant genome. Advancements in CRISPR have further enabled researchers to modify a larger number of genes with higher efficiency. This paper reviews recent research on genome editing of yield-related genes in rice, discusses available gene editing tools, and highlights their potential to expedite rice breeding programs.
Collapse
Affiliation(s)
- Archana Thiruppathi
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Shubham Rajaram Salunkhe
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Shobica Priya Ramasamy
- Department of Plant Breeding and Genetics, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Rakshana Palaniswamy
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Veera Ranjani Rajagopalan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Sakthi Ambothi Rathnasamy
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Senthil Alagarswamy
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Manonmani Swaminathan
- Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Sudha Manickam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| |
Collapse
|
9
|
Hu W, Wang D, Zhao S, Ji J, Yang J, Wan Y, Yu C. Genome-Wide Identification and Characterization of Ammonium Transporter (AMT) Genes in Chlamydomonas reinhardtii. Genes (Basel) 2024; 15:1002. [PMID: 39202361 PMCID: PMC11353525 DOI: 10.3390/genes15081002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Ammonium transporters (AMTs) are vital plasma membrane proteins facilitating NH4+ uptake and transport, crucial for plant growth. The identification of favorable AMT genes is the main goal of improving ammonium-tolerant algas. However, there have been no reports on the systematic identification and expression analysis of Chlamydomonas reinhardtii (C. reinhardtii) AMT genes. This study comprehensively identified eight CrAMT genes, distributed across eight chromosomes, all containing more than 10 transmembrane structures. Phylogenetic analysis revealed that all CrAMTs belonged to the AMT1 subfamily. The conserved motifs and domains of CrAMTs were similar to those of the AMT1 members of OsAMTs and AtAMTs. Notably, the gene fragments of CrAMTs are longer and contain more introns compared to those of AtAMTs and OsAMTs. And the promoter regions of CrAMTs are enriched with cis-elements associated with plant hormones and light response. Under NH4+ treatment, CrAMT1;1 and CrAMT1;3 were significantly upregulated, while CrAMT1;2, CrAMT1;4, and CrAMT1;6 saw a notable decrease. CrAMT1;7 and CrAMT1;8 also experienced a decline, albeit less pronounced. Transgenic algas with overexpressed CrAMT1;7 did not show a significant difference in growth compared to CC-125, while transgenic algas with CrAMT1;7 knockdown exhibited growth inhibition. Transgenic algas with overexpressed or knocked-down CrAMT1;8 displayed reduced growth compared to CC-125, which also resulted in the suppression of other CrAMT genes. None of the transgenic algas showed better growth than CC-125 at high ammonium levels. In summary, our study has unveiled the potential role of CrAMT genes in high-ammonium environments and can serve as a foundational research platform for investigating ammonium-tolerant algal species.
Collapse
Affiliation(s)
- Wenhui Hu
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (W.H.); (D.W.); (S.Z.); (J.J.); (J.Y.)
| | - Dan Wang
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (W.H.); (D.W.); (S.Z.); (J.J.); (J.Y.)
| | - Shuangshuang Zhao
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (W.H.); (D.W.); (S.Z.); (J.J.); (J.Y.)
| | - Jiaqi Ji
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (W.H.); (D.W.); (S.Z.); (J.J.); (J.Y.)
| | - Jing Yang
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (W.H.); (D.W.); (S.Z.); (J.J.); (J.Y.)
| | - Yiqin Wan
- Basic Experimental Center of Biology, Nanchang University, Nanchang 330031, China
| | - Chao Yu
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (W.H.); (D.W.); (S.Z.); (J.J.); (J.Y.)
| |
Collapse
|
10
|
Cai Z, Yu T, Tan W, Zhou Q, Liu L, Nian H, Lian T. GmAMT2.1/2.2-dependent ammonium nitrogen and metabolites shape rhizosphere microbiome assembly to mitigate cadmium toxicity. NPJ Biofilms Microbiomes 2024; 10:60. [PMID: 39043687 PMCID: PMC11266425 DOI: 10.1038/s41522-024-00532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
Cadmium (Cd), a heavy metal, is negatively associated with plant growth. AMT (ammonium transporter) genes can confer Cd resistance and enhance nitrogen (N) uptake in soybeans. The potential of AMT genes to alleviate Cd toxicity by modulating rhizosphere microbiota remains unkonwn. Here, the rhizosphere microbial taxonomic and metabolic differences in three genotypes, i.e., double knockout and overexpression lines and wild type, were identified. The results showed that GmAMT2.1/2.2 genes could induce soybean to recruit beneficial microorganisms, such as Tumebacillus, Alicyclobacillus, and Penicillium, by altering metabolites. The bacterial, fungal, and cross-kingdom synthetic microbial communities (SynComs) formed by these microorganisms can help soybean resist Cd toxicity. The mechanisms by which SynComs help soybeans resist Cd stress include reducing Cd content, increasing ammonium (NH4+-N) uptake and regulating specific functional genes in soybeans. Overall, this study provides valuable insights for the developing microbial formulations that enhance Cd resistance in sustainable agriculture.
Collapse
Affiliation(s)
- Zhandong Cai
- South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China
| | - Taobing Yu
- South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Weiyi Tan
- South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qianghua Zhou
- South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lingrui Liu
- South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hai Nian
- South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China.
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong, China.
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Tengxiang Lian
- South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China.
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong, China.
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Yang H, Zhou J, Zhou J. Interactive effects of ammonium sulfate and lead on alfalfa in rare earth tailings: Physiological responses and toxicity thresholds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174439. [PMID: 38971260 DOI: 10.1016/j.scitotenv.2024.174439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Ion-adsorption rare earth ore contains significant levels of leaching agents and heavy metals, leading to substantial co-contamination. This presents significant challenges for ecological rehabilitation, yet there is limited understanding of the toxicity thresholds associated with the co-contamination of ammonium sulfate (AS) and lead (Pb) on pioneer plants. Here, we investigated the toxicity thresholds of various aspects of alfalfa, including growth, ultrastructural changes, metabolism, antioxidant system response, and Pb accumulation. The results indicated that the co-contamination of AS-Pb decreased the dry weight of shoot and root by 26 %-77 % and 18 %-92 %, respectively, leading to irregular root cell morphology and nucleus disintegration. The high concentration and combined exposures to AS and Pb induced oxidative stress on alfalfa, which stimulated the defense of the antioxidative system and resulted in an increase in proline levels and a decrease in soluble sugars. Structural equation modeling analysis and integrated biomarker response elucidated that the soluble sugars, proline, and POD were the key physiological indicators of alfalfa under stresses and indicated that co-exposure induced more severe oxidative stress in alfalfa. The toxicity thresholds under single exposure were 496 (EC5), 566 (EC10), 719 (EC25), 940 (EC50) mg kg-1 for AS and 505 (EC5), 539 (EC10), 605 (EC25), 678 (EC50) mg kg-1 for Pb. This study showed that AS-Pb pollution notably influenced plant growth performance and had negative impacts on the growth processes, metabolite levels, and the antioxidant system in plants. Our findings contribute to a theoretical foundation and research necessity for evaluating ecological risks in mining areas and assessing the suitability of ecological restoration strategies.
Collapse
Affiliation(s)
- Huixian Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Wu W, Dong X, Chen G, Lin Z, Chi W, Tang W, Yu J, Wang S, Jiang X, Liu X, Wu Y, Wang C, Cheng X, Zhang W, Xuan W, Terzaghi W, Ronald PC, Wang H, Wang C, Wan J. The elite haplotype OsGATA8-H coordinates nitrogen uptake and productive tiller formation in rice. Nat Genet 2024; 56:1516-1526. [PMID: 38872029 PMCID: PMC11250373 DOI: 10.1038/s41588-024-01795-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 05/09/2024] [Indexed: 06/15/2024]
Abstract
Excessive nitrogen promotes the formation of nonproductive tillers in rice, which decreases nitrogen use efficiency (NUE). Developing high-NUE rice cultivars through balancing nitrogen uptake and the formation of productive tillers remains a long-standing challenge, yet how these two processes are coordinated in rice remains elusive. Here we identify the transcription factor OsGATA8 as a key coordinator of nitrogen uptake and tiller formation in rice. OsGATA8 negatively regulates nitrogen uptake by repressing transcription of the ammonium transporter gene OsAMT3.2. Meanwhile, it promotes tiller formation by repressing the transcription of OsTCP19, a negative modulator of tillering. We identify OsGATA8-H as a high-NUE haplotype with enhanced nitrogen uptake and a higher proportion of productive tillers. The geographical distribution of OsGATA8-H and its frequency change in historical accessions suggest its adaption to the fertile soil. Overall, this study provides molecular and evolutionary insights into the regulation of NUE and facilitates the breeding of rice cultivars with higher NUE.
Collapse
Affiliation(s)
- Wei Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Xiaoou Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Gaoming Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Zhixi Lin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Wenchao Chi
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Weijie Tang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Jun Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Saisai Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Xingzhou Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Xiaolan Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Yujun Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Chunyuan Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Xinran Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Southern Japonica Rice R&D Corporation Ltd, Nanjing, China
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wei Xuan
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | | | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, CA, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Haiyang Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunming Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China.
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Southern Japonica Rice R&D Corporation Ltd, Nanjing, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China.
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
13
|
Chen Y, Li Y, Fu Y, Jia L, Li L, Xu Z, Zhang N, Liu Y, Fan X, Xuan W, Xu G, Zhang R. The beneficial rhizobacterium Bacillus velezensis SQR9 regulates plant nitrogen uptake via an endogenous signaling pathway. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3388-3400. [PMID: 38497798 DOI: 10.1093/jxb/erae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/16/2024] [Indexed: 03/19/2024]
Abstract
Nitrogen fertilizer is widely used in agriculture to boost crop yields. Plant growth-promoting rhizobacteria (PGPRs) can increase plant nitrogen use efficiency through nitrogen fixation and organic nitrogen mineralization. However, it is not known whether they can activate plant nitrogen uptake. In this study, we investigated the effects of volatile compounds (VCs) emitted by the PGPR strain Bacillus velezensis SQR9 on plant nitrogen uptake. Strain SQR9 VCs promoted nitrogen accumulation in both rice and Arabidopsis. In addition, isotope labeling experiments showed that strain SQR9 VCs promoted the absorption of nitrate and ammonium. Several key nitrogen-uptake genes were up-regulated by strain SQR9 VCs, such as AtNRT2.1 in Arabidopsis and OsNAR2.1, OsNRT2.3a, and OsAMT1 family members in rice, and the deletion of these genes compromised the promoting effect of strain SQR9 VCs on plant nitrogen absorption. Furthermore, calcium and the transcription factor NIN-LIKE PROTEIN 7 play an important role in nitrate uptake promoted by strain SQR9 VCs. Taken together, our results indicate that PGPRs can promote nitrogen uptake through regulating plant endogenous signaling and nitrogen transport pathways.
Collapse
Affiliation(s)
- Yu Chen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yucong Li
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yansong Fu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Letian Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Lun Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
14
|
Akhtar K, Ain NU, Prasad PVV, Naz M, Aslam MM, Djalovic I, Riaz M, Ahmad S, Varshney RK, He B, Wen R. Physiological, molecular, and environmental insights into plant nitrogen uptake, and metabolism under abiotic stresses. THE PLANT GENOME 2024; 17:e20461. [PMID: 38797919 DOI: 10.1002/tpg2.20461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 05/29/2024]
Abstract
Nitrogen (N) as an inorganic macronutrient is inevitable for plant growth, development, and biomass production. Many external factors and stresses, such as acidity, alkalinity, salinity, temperature, oxygen, and rainfall, affect N uptake and metabolism in plants. The uptake of ammonium (NH4 +) and nitrate (NO3 -) in plants mainly depends on soil properties. Under the sufficient availability of NO3 - (>1 mM), low-affinity transport system is activated by gene network NRT1, and under low NO3 - availability (<1 mM), high-affinity transport system starts functioning encoded by NRT2 family of genes. Further, under limited N supply due to edaphic and climatic factors, higher expression of the AtNRT2.4 and AtNRT2.5T genes of the NRT2 family occur and are considered as N remobilizing genes. The NH4 + ion is the final form of N assimilated by cells mediated through the key enzymes glutamine synthetase and glutamate synthase. The WRKY1 is a major transcription factor of the N regulation network in plants. However, the transcriptome and metabolite profiles show variations in N assimilation metabolites, including glycine, glutamine, and aspartate, under abiotic stresses. The overexpression of NO3 - transporters (OsNRT2.3a and OsNRT1.1b) can significantly improve the biomass and yield of various crops. Altering the expression levels of genes could be a valuable tool to improve N metabolism under the challenging conditions of soil and environment, such as unfavorable temperature, drought, salinity, heavy metals, and nutrient stress.
Collapse
Affiliation(s)
- Kashif Akhtar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Noor Ul Ain
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - P V Vara Prasad
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, Kansas, USA
| | - Misbah Naz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Mehtab Muhammad Aslam
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, Missouri, USA
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - Muhammad Riaz
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shakeel Ahmad
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Bing He
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Ronghui Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
15
|
Khan MIR, Nazir F, Maheshwari C, Chopra P, Chhillar H, Sreenivasulu N. Mineral nutrients in plants under changing environments: A road to future food and nutrition security. THE PLANT GENOME 2023; 16:e20362. [PMID: 37480222 DOI: 10.1002/tpg2.20362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/25/2023] [Accepted: 05/20/2023] [Indexed: 07/23/2023]
Abstract
Plant nutrition is an important aspect that contributes significantly to sustainable agriculture, whereas minerals enrichment in edible source implies global human health; hence, both strategies need to be bridged to ensure "One Health" strategies. Abiotic stress-induced nutritional imbalance impairs plant growth. In this context, we discuss the molecular mechanisms related to the readjustment of nutrient pools for sustained plant growth under harsh conditions, and channeling the minerals to edible source (seeds) to address future nutritional security. This review particularly highlights interventions on (i) the physiological and molecular responses of mineral nutrients in crop plants under stressful environments; (ii) the deployment of breeding and biotechnological strategies for the optimization of nutrient acquisition, their transport, and distribution in plants under changing environments. Furthermore, the present review also infers the recent advancements in breeding and biotechnology-based biofortification approaches for nutrient enhancement in crop plants to optimize yield and grain mineral concentrations under control and stress-prone environments to address food and nutritional security.
Collapse
Affiliation(s)
| | - Faroza Nazir
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Chirag Maheshwari
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Nese Sreenivasulu
- Consumer-Driven Grain Quality and Nutrition Center, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Banos, Philippines
| |
Collapse
|
16
|
Liu K, Sakuraba Y, Ohtsuki N, Yang M, Ueda Y, Yanagisawa S. CRISPR/Cas9-mediated elimination of OsHHO3, a transcriptional repressor of three AMMONIUM TRANSPORTER1 genes, improves nitrogen use efficiency in rice. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2169-2172. [PMID: 37615478 PMCID: PMC10579704 DOI: 10.1111/pbi.14167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Affiliation(s)
- Kexin Liu
- Agro‐Biotechnology Research CenterGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yasuhito Sakuraba
- Agro‐Biotechnology Research CenterGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Namie Ohtsuki
- Agro‐Biotechnology Research CenterGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Mailun Yang
- Agro‐Biotechnology Research CenterGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yoshiaki Ueda
- Agro‐Biotechnology Research CenterGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Shuichi Yanagisawa
- Agro‐Biotechnology Research CenterGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
17
|
Xie Y, Lv Y, Jia L, Zheng L, Li Y, Zhu M, Tian M, Wang M, Qi W, Luo L, De Gernier H, Pélissier PM, Motte H, Lin S, Luo L, Xu G, Beeckman T, Xuan W. Plastid-localized amino acid metabolism coordinates rice ammonium tolerance and nitrogen use efficiency. NATURE PLANTS 2023; 9:1514-1529. [PMID: 37604972 DOI: 10.1038/s41477-023-01494-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/19/2023] [Indexed: 08/23/2023]
Abstract
Ammonium toxicity affecting plant metabolism and development is a worldwide problem impeding crop production. Remarkably, rice (Oryza sativa L.) favours ammonium as its major nitrogen source in paddy fields. We set up a forward-genetic screen to decipher the molecular mechanisms conferring rice ammonium tolerance and identified rohan showing root hypersensitivity to ammonium due to a missense mutation in an argininosuccinate lyase (ASL)-encoding gene. ASL localizes to plastids and its expression is induced by ammonium. ASL alleviates ammonium-inhibited root elongation by converting the excessive glutamine to arginine. Consequently, arginine leads to auxin accumulation in the root meristem, thereby stimulating root elongation under high ammonium. Furthermore, we identified natural variation in the ASL allele between japonica and indica subspecies explaining their different root sensitivity towards ammonium. Finally, we show that ASL expression positively correlates with root ammonium tolerance and that nitrogen use efficiency and yield can be improved through a gain-of-function approach.
Collapse
Affiliation(s)
- Yuanming Xie
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, China
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Yuanda Lv
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Letian Jia
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, China
| | - Lulu Zheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, China
| | - Yonghui Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, China
| | - Ming Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, China
| | - Mengjun Tian
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Ming Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Weicong Qi
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Long Luo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, China
| | - Hugues De Gernier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Pierre-Mathieu Pélissier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Shaoyan Lin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, China
| | - Le Luo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, China
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium.
| | - Wei Xuan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
18
|
Robe K, Barberon M. Nutrient carriers at the heart of plant nutrition and sensing. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102376. [PMID: 37182415 DOI: 10.1016/j.pbi.2023.102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023]
Abstract
Plants require water and several essential nutrients for their development. The radial transport of nutrients from the soil to the root vasculature is achieved through a combination of three different pathways: apoplastic, symplastic, and transcellular. A common feature for these pathways is the requirement of carriers to transport nutrients across the plasma membrane. An efficient transport of nutrients across the root cell layers relies on a large number of carriers, each of them having their own substrate specificity, tissular and subcellular localization. Polarity is also emerging as a major feature allowing their function. Recent advances on radial transport of nutrients, especially carrier mediated nutrient transport will be discussed in this review, as well as the role of transporters as nutrient sensors.
Collapse
Affiliation(s)
- Kevin Robe
- Department of Plant Sciences, University of Geneva, 30 Quai Ernest Ansermet, 1211, Geneva, Switzerland
| | - Marie Barberon
- Department of Plant Sciences, University of Geneva, 30 Quai Ernest Ansermet, 1211, Geneva, Switzerland.
| |
Collapse
|
19
|
Liao Z, Xia X, Zhang Z, Nong B, Guo H, Feng R, Chen C, Xiong F, Qiu Y, Li D, Yang X. Genome-wide association study using specific-locus amplified fragment sequencing identifies new genes influencing nitrogen use efficiency in rice landraces. FRONTIERS IN PLANT SCIENCE 2023; 14:1126254. [PMID: 37521918 PMCID: PMC10375723 DOI: 10.3389/fpls.2023.1126254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/28/2023] [Indexed: 08/01/2023]
Abstract
Nitrogen is essential for crop production. It is a critical macronutrient for plant growth and development. However, excessive application of nitrogen fertilizer is not only a waste of resources but also pollutes the environment. An effective approach to solving this problem is to breed rice varieties with high nitrogen use efficiency (NUE). In this study, we performed a genome-wide association study (GWAS) on 419 rice landraces using 208,993 single nucleotide polymorphisms (SNPs). With the mixed linear model (MLM) in the Tassel software, we identified 834 SNPs associated with root surface area (RSA), root length (RL), root branch number (RBN), root number (RN), plant dry weight (PDW), plant height (PH), root volume (RL), plant fresh weight (PFW), root fractal dimension (RFD), number of root nodes (NRN), and average root diameter (ARD), with a significant level of p < 2.39×10-7. In addition, we found 49 SNPs that were correlated with RL, RBN, RN, PDW, PH, PFW, RFD, and NRN using genome-wide efficient mixed-model association (GEMMA), with a significant level of p < 1×10-6. Additionally, the final results for eight traits associated with 193 significant SNPs by using multi-locus random-SNP-effect mixed linear model (mrMLM) model and 272 significant SNPs associated with 11 traits by using IIIVmrMLM. Within the linkage intervals of significantly associated SNP, we identified eight known related genes to NUE in rice, namely, OsAMT2;3, OsGS1, OsNR2, OsNPF7.4, OsPTR9, OsNRT1.1B, OsNRT2.3, and OsNRT2.2. According to the linkage disequilibrium (LD) decay value of this population, there were 75 candidate genes within the 150-kb regions upstream and downstream of the most significantly associated SNP (Chr5_29804690, Chr5_29956584, and Chr10_17540654). These candidate genes included 22 transposon genes, 25 expressed genes, and 28 putative functional genes. The expression levels of these candidate genes were measured by real-time quantitative PCR (RT-qPCR), and the expression levels of LOC_Os05g51700 and LOC_Os05g51710 in C347 were significantly lower than that in C117; the expression levels of LOC_Os05g51740, LOC_Os05g51780, LOC_Os05g51960, LOC_Os05g51970, and LOC_Os10g33210 were significantly higher in C347 than C117. Among them, LOC_Os10g33210 encodes a peptide transporter, and LOC_Os05g51690 encodes a CCT domain protein and responds to NUE in rice. This study identified new loci related to NUE in rice, providing new genetic resources for the molecular breeding of rice landraces with high NUE.
Collapse
Affiliation(s)
- Zuyu Liao
- College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiuzhong Xia
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zongqiong Zhang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Baoxuan Nong
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Hui Guo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Rui Feng
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Can Chen
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Faqian Xiong
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yongfu Qiu
- College of Agriculture, Guangxi University, Nanning, China
| | - Danting Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xinghai Yang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
20
|
Ren M, Liu S, Mao G, Tang C, Gai P, Guo X, Zheng H, Wang W, Tang Q. Simultaneous Application of Red and Blue Light Regulate Carbon and Nitrogen Metabolism, Induces Antioxidant Defense System and Promote Growth in Rice Seedlings under Low Light Stress. Int J Mol Sci 2023; 24:10706. [PMID: 37445882 DOI: 10.3390/ijms241310706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The purpose of this study is to determine the effect of light quality on growth, carbon and nitrogen metabolism, and antioxidant defense system of rice seedlings. Six light conditions were employed, including white (W), red (R), blue (B), combined LED of R and B at 3:1 (R3B1), combined LED of R and B at 1:1 (R1B1), as well as combined LED of R and B at 1:3 (R1B3). Combined application of red light and blue light could promote the growth of rice seedling leaves and roots under low light stress to varying degrees, increase the photosynthetic area by increasing the leaf area, improve the root characteristics by increasing the root volume, and increase the dry matter accumulation of rice seedlings. In addition, the combination of red light and blue light could increase carbon and nitrogen metabolites in rice seedling leaves, regulate the expression of genes related to carbon and nitrogen metabolism and enzyme activity, and enhance the antioxidant enzyme activity of rice seedlings. These results indicate that red light and blue light directly have synergistic effects which can regulate the carbon and nitrogen metabolism of rice seedlings, promote the morphogenesis of rice seedlings under low light stress, and promote growth, which has never been reported in previous studies. This study is a new discovery in the application of light quality in crop production and provides new avenues to enhance crop stress resistance. However, further study is needed to explore the physio-biochemical and molecular mechanisms of light quality in crop production.
Collapse
Affiliation(s)
- Maofei Ren
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Shanzhen Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Guiling Mao
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Chengzhu Tang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Panpan Gai
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoli Guo
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Huabin Zheng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Weiqin Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Qiyuan Tang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
21
|
Sehar S, Adil MF, Askri SMH, Feng Q, Wei D, Sahito FS, Shamsi IH. Pan-transcriptomic Profiling Demarcates Serendipita Indica-Phosphorus Mediated Tolerance Mechanisms in Rice Exposed to Arsenic Toxicity. RICE (NEW YORK, N.Y.) 2023; 16:28. [PMID: 37354226 DOI: 10.1186/s12284-023-00645-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
Inadvertent accumulation of arsenic (As) in rice (Oryza sativa L.) is a concern for people depending on it for their subsistence, as it verily causes epigenetic alterations across the genome as well as in specific cells. To ensure food safety, certain attempts have been made to nullify this highest health hazard encompassing physiological, chemical and biological methods. Albeit, the use of mycorrhizal association along with nutrient reinforcement strategy has not been explored yet. Mechanisms of response and resistance of two rice genotypes to As with or without phosphorus (P) nutrition and Serendipita indica (S. indica; S.i) colonization were explored by root transcriptome profiling in the present study. Results revealed that the resistant genotype had higher auxin content and root plasticity, which helped in keeping the As accumulation and P starvation response to a minimum under alone As stress. However, sufficient P supply and symbiotic relationship switched the energy resources towards plant's developmental aspects rather than excessive root proliferation. Higher As accumulating genotype (GD-6) displayed upregulation of ethylene signaling/biosynthesis, root stunting and senescence related genes under As toxicity. Antioxidant defense system and cytokinin biosynthesis/signaling of both genotypes were strengthened under As + S.i + P, while the upregulation of potassium (K) and zinc (Zn) transporters depicted underlying cross-talk with iron (Fe) and P. Differential expression of phosphate transporters, peroxidases and GSTs, metal detoxification/transport proteins, as well as phytohormonal metabolism were responsible for As detoxification. Taken together, S. indica symbiosis fortified with adequate P-fertilizer can prove to be effective in minimizing As acquisition and accumulation in rice plants.
Collapse
Affiliation(s)
- Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Syed Muhammad Hassan Askri
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qidong Feng
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dongming Wei
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Falak Sehar Sahito
- Dow International Medical College, Dow University of Health Sciences, Karachi, 74200, Pakistan
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
22
|
Konishi N, Mitani-Ueno N, Yamaji N, Ma JF. Polar localization of a rice silicon transporter requires isoleucine at both C- and N-termini as well as positively charged residues. THE PLANT CELL 2023; 35:2232-2250. [PMID: 36891818 PMCID: PMC10226592 DOI: 10.1093/plcell/koad073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/18/2023] [Accepted: 02/16/2023] [Indexed: 05/30/2023]
Abstract
Silicon (Si) is important for stable and high yields in rice (Oryza sativa), a typical Si hyperaccumulator. The high Si accumulation is achieved by the cooperation of 2 Si transporters, LOW SILICON 1 (OsLsi1) and OsLsi2, which are polarly localized in cells of the root exodermis and endodermis. However, the mechanism underlying their polar localization is unknown. Here, we identified amino acid residues critical for the polar localization of OsLsi1. Deletion of both N- and C-terminal regions resulted in the loss of its polar localization. Furthermore, the deletion of the C-terminus inhibited its trafficking from the endoplasmic reticulum to the plasma membrane. Detailed site-directed mutagenesis analysis showed that Ile18 at the N-terminal region and Ile285 at the C-terminal region were essential for the polar localization of OsLsi1. Moreover, a cluster of positively charged residues at the C-terminal region is also required for polar localization. Phosphorylation and Lys modifications of OsLsi1 are unlikely to be involved in its polar localization. Finally, we showed that the polar localization of OsLsi1 is required for the efficient uptake of Si. Our study not only identified critical residues required for the polar localization of OsLsi1, but also provided experimental evidence for the importance of transporter polarity for efficient nutrient uptake.
Collapse
Affiliation(s)
- Noriyuki Konishi
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - Namiki Mitani-Ueno
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | | |
Collapse
|
23
|
De Rosa A, McGaughey S, Magrath I, Byrt C. Molecular membrane separation: plants inspire new technologies. THE NEW PHYTOLOGIST 2023; 238:33-54. [PMID: 36683439 DOI: 10.1111/nph.18762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Plants draw up their surrounding soil solution to gain water and nutrients required for growth, development and reproduction. Obtaining adequate water and nutrients involves taking up both desired and undesired elements from the soil solution and separating resources from waste. Desirable and undesirable elements in the soil solution can share similar chemical properties, such as size and charge. Plants use membrane separation mechanisms to distinguish between different molecules that have similar chemical properties. Membrane separation enables distribution or retention of resources and efflux or compartmentation of waste. Plants use specialised membrane separation mechanisms to adapt to challenging soil solution compositions and distinguish between resources and waste. Coordination and regulation of these mechanisms between different tissues, cell types and subcellular membranes supports plant nutrition, environmental stress tolerance and energy management. This review considers membrane separation mechanisms in plants that contribute to specialised separation processes and highlights mechanisms of interest for engineering plants with enhanced performance in challenging conditions and for inspiring the development of novel industrial membrane separation technologies. Knowledge gained from studying plant membrane separation mechanisms can be applied to developing precision separation technologies. Separation technologies are needed for harvesting resources from industrial wastes and transitioning to a circular green economy.
Collapse
Affiliation(s)
- Annamaria De Rosa
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| | - Samantha McGaughey
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| | - Isobel Magrath
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| | - Caitlin Byrt
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| |
Collapse
|
24
|
Genome-Wide Identification and Characterization of Ammonium Transporter (AMT) Genes in Rapeseed (Brassica napus L.). Genes (Basel) 2023; 14:genes14030658. [PMID: 36980930 PMCID: PMC10048622 DOI: 10.3390/genes14030658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Ammonium transporters (AMTs) are plasma membrane proteins mediating ammonium uptake and transport. As such, AMTs play vital roles in ammonium acquisition and mobilization, plant growth and development, and stress and pathogen defense responses. Identification of favorable AMT genotypes is a prime target for crop improvement. However, to date, systematic identification and expression analysis of AMT gene family members has not yet been reported for rapeseed (Brassica napus L.). In this study, 20 AMT genes were identified in a comprehensive search of the B. napus genome, 14 members of AMT1 and 6 members of AMT2. Tissue expression analyses revealed that the 14 AMT genes were primarily expressed in vegetative organs, suggesting that different BnaAMT genes might function in specific tissues at the different development stages. Meanwhile, qRT-PCR analysis found that several BnaAMTs strongly respond to the exogenous N conditions, implying the functional roles of AMT genes in ammonium absorption in rapeseed. Moreover, the rapeseed AMT genes were found to be differentially regulated by N, P, and K deficiency, indicating that crosstalk might exist in response to different stresses. Additionally, the subcellular localization of several BnaAMT proteins was confirmed in Arabidopsis protoplasts, and their functions were studied in detail by heterologous expression in yeast. In summary, our studies revealed the potential roles of BnaAMT genes in N acquisition or transportation and abiotic stress response and could provide valuable resources for revealing the functionality of AMTs in rapeseed.
Collapse
|
25
|
He S, An R, Yan J, Zhang C, Zhang N, Xi N, Yu H, Zou C, Gao S, Yuan G, Pan G, Shen Y, Ma L. Association studies of genes in a Pb response-associated network in maize (Zea mays L.) reveal that ZmPIP2;5 is involved in Pb tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:300-309. [PMID: 36657295 DOI: 10.1016/j.plaphy.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Lead (Pb) in the soil affects the growth and development of plants and causes damages to the human body through the food chain. Here, we identified and cloned a Pb-tolerance gene ZmPIP2;5 based on a weighted gene co-expression network analysis and gene-based association studies. We showed that ZmPIP2;5 encodes a plasma membrane aquaporin and positively regulated Pb tolerance and accumulation in Arabidopsis and yeast. Overexpression of ZmPIP2;5 increased root length and fresh weight of Arabidopsis seedlings under Pb stress. Heterologous expression of ZmPIP2;5 in yeast caused the enhanced growth speed under Pb treatment and Pb accumulation in yeast cells. A (T/A) SNP in the ZmPIP2;5 promoter affected the expression abundance of ZmPIP2;5 and thereby led to the difference in Pb tolerance among different maize lines. Our study helps to understand the mechanism underlying plant tolerance to Pb stress and provides new ideas for breeding Pb-tolerance maize varieties via molecular marker-assisted selection.
Collapse
Affiliation(s)
- Shijiang He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rong An
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiaquan Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chen Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Na Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Na Xi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hong Yu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chaoying Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shibin Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangsheng Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangtang Pan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaou Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Langlang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
26
|
Kasemsap P, Bloom AJ. Breeding for Higher Yields of Wheat and Rice through Modifying Nitrogen Metabolism. PLANTS (BASEL, SWITZERLAND) 2022; 12:85. [PMID: 36616214 PMCID: PMC9823454 DOI: 10.3390/plants12010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Wheat and rice produce nutritious grains that provide 32% of the protein in the human diet globally. Here, we examine how genetic modifications to improve assimilation of the inorganic nitrogen forms ammonium and nitrate into protein influence grain yield of these crops. Successful breeding for modified nitrogen metabolism has focused on genes that coordinate nitrogen and carbon metabolism, including those that regulate tillering, heading date, and ammonium assimilation. Gaps in our current understanding include (1) species differences among candidate genes in nitrogen metabolism pathways, (2) the extent to which relative abundance of these nitrogen forms across natural soil environments shape crop responses, and (3) natural variation and genetic architecture of nitrogen-mediated yield improvement. Despite extensive research on the genetics of nitrogen metabolism since the rise of synthetic fertilizers, only a few projects targeting nitrogen pathways have resulted in development of cultivars with higher yields. To continue improving grain yield and quality, breeding strategies need to focus concurrently on both carbon and nitrogen assimilation and consider manipulating genes with smaller effects or that underlie regulatory networks as well as genes directly associated with nitrogen metabolism.
Collapse
Affiliation(s)
- Pornpipat Kasemsap
- Department of Plant Sciences, University of California at Davis, Mailstop 3, Davis, CA 95616, USA
| | | |
Collapse
|
27
|
Hao DL, Zhou JY, Huang YN, Wang HR, Li XH, Guo HL, Liu JX. Roles of plastid-located phosphate transporters in carotenoid accumulation. FRONTIERS IN PLANT SCIENCE 2022; 13:1059536. [PMID: 36589064 PMCID: PMC9798012 DOI: 10.3389/fpls.2022.1059536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Enhanced carotenoid accumulation in plants is crucial for the nutritional and health demands of the human body since these beneficial substances are acquired through dietary intake. Plastids are the major organelles to accumulate carotenoids in plants and it is reported that manipulation of a single plastid phosphate transporter gene enhances carotenoid accumulation. Amongst all phosphate transport proteins including phosphate transporters (PHTs), plastidial phosphate translocators (pPTs), PHOSPHATE1 (PHO1), vacuolar phosphate efflux transporter (VPE), and Sulfate transporter [SULTR]-like phosphorus distribution transporter (SPDT) in plants, plastidic PHTs (PHT2 & PHT4) are found as the only clade that is plastid located, and manipulation of which affects carotenoid accumulation. Manipulation of a single chromoplast PHT (PHT4;2) enhances carotenoid accumulation, whereas manipulation of a single chloroplast PHT has no impact on carotenoid accumulation. The underlying mechanism is mainly attributed to their different effects on plastid orthophosphate (Pi) concentration. PHT4;2 is the only chromoplast Pi efflux transporter, and manipulating this single chromoplast PHT significantly regulates chromoplast Pi concentration. This variation subsequently modulates the carotenoid accumulation by affecting the supply of glyceraldehyde 3-phosphate, a substrate for carotenoid biosynthesis, by modulating the transcript abundances of carotenoid biosynthesis limited enzyme genes, and by regulating chromoplast biogenesis (facilitating carotenoid storage). However, at least five orthophosphate influx PHTs are identified in the chloroplast, and manipulating one of the five does not substantially modulate the chloroplast Pi concentration in a long term due to their functional redundancy. This stable chloroplast Pi concentration upon one chloroplast PHT absence, therefore, is unable to modulate Pi-involved carotenoid accumulation processes and finally does affect carotenoid accumulation in photosynthetic tissues. Despite these advances, several cases including the precise location of plastid PHTs, the phosphate transport direction mediated by these plastid PHTs, the plastid PHTs participating in carotenoid accumulation signal pathway, the potential roles of these plastid PHTs in leaf carotenoid accumulation, and the roles of these plastid PHTs in other secondary metabolites are waiting for further research. The clarification of the above-mentioned cases is beneficial for breeding high-carotenoid accumulation plants (either in photosynthetic or non-photosynthetic edible parts of plants) through the gene engineering of these transporters.
Collapse
Affiliation(s)
- Dong-Li Hao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Jin-Yan Zhou
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forest, Jurong, China
| | - Ya-Nan Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Hao-Ran Wang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Xiao-Hui Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Hai-Lin Guo
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Jian-Xiu Liu
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| |
Collapse
|
28
|
Gao YQ, Chao DY. Localization and circulation: vesicle trafficking in regulating plant nutrient homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1350-1363. [PMID: 36321185 DOI: 10.1111/tpj.16020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Nutrient homeostasis is essential for plant growth and reproduction. Plants, therefore, have evolved tightly regulated mechanisms for the uptake, translocation, distribution, and storage of mineral nutrients. Considering that inorganic nutrient transport relies on membrane-based transporters and channels, vesicle trafficking, one of the fundamental cell biological processes, has become a hotspot of plant nutrition studies. In this review, we summarize recent advances in the study of how vesicle trafficking regulates nutrient homeostasis to contribute to the adaptation of plants to heterogeneous environments. We also discuss new perspectives on future studies, which may inspire researchers to investigate new approaches to improve the human diet and health by changing the nutrient quality of crops.
Collapse
Affiliation(s)
- Yi-Qun Gao
- Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
29
|
Wang B, Zhou G, Guo S, Li X, Yuan J, Hu A. Improving Nitrogen Use Efficiency in Rice for Sustainable Agriculture: Strategies and Future Perspectives. Life (Basel) 2022; 12:1653. [PMID: 36295087 PMCID: PMC9605605 DOI: 10.3390/life12101653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022] Open
Abstract
Nitrogen (N) is an important nutrient for the growth and development of rice. The application of N fertilizer has become one of the inevitable ways to increase rice yield due to insufficient soil N content. However, in order to achieve stable and high yield, farmers usually increase N fertilizer input without hesitation, resulting in a series of problems such as environmental pollution, energy waste and low production efficiency. For sustainable agriculture, improving the nitrogen use efficiency (NUE) to decrease N fertilizer input is imperative. In the present review, we firstly demonstrate the role of N in mediating root architecture, photosynthesis, metabolic balance, and yield components in rice. Furthermore, we further summarize the current agronomic practices for enhancing rice NUE, including balanced fertilization, the use of nitrification inhibitors and slow-release N fertilizers, the split application of N fertilizer, root zone fertilization, and so on. Finally, we discuss the recent advances of N efficiency-related genes with potential breeding value. These genes will contribute to improving the N uptake, maintain the N metabolism balance, and enhance the NUE, thereby breeding new varieties against low N tolerance to improve the rice yield and quality. Moreover, N-efficient varieties also need combine with precise N fertilizer management and advanced cultivation techniques to realize the maximum exploitation of their biological potential.
Collapse
Affiliation(s)
- Bo Wang
- Department of Food Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong 226012, China
| | - Genyou Zhou
- Department of Food Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong 226012, China
| | - Shiyang Guo
- School of Geographic Sciences, Nantong University, Nantong 226019, China
| | - Xiaohui Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jiaqi Yuan
- Department of Food Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong 226012, China
| | - Anyong Hu
- School of Geographic Sciences, Nantong University, Nantong 226019, China
| |
Collapse
|
30
|
Li J, Xin W, Wang W, Zhao S, Xu L, Jiang X, Duan Y, Zheng H, Yang L, Liu H, Jia Y, Zou D, Wang J. Mapping of Candidate Genes in Response to Low Nitrogen in Rice Seedlings. RICE (NEW YORK, N.Y.) 2022; 15:51. [PMID: 36243857 PMCID: PMC9569405 DOI: 10.1186/s12284-022-00597-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen is not only a macronutrient essential for crop growth and development, but also one of the most critical nutrients in farmland ecosystem. Insufficient nitrogen supply will lead to crop yield reduction, while excessive application of nitrogen fertilizer will cause agricultural and eco-environment damage. Therefore, mining low-nitrogen tolerant rice genes and improving nitrogen use efficiency are of great significance to the sustainable development of agriculture. This study was conducted by Genome-wide association study on a basis of two root morphological traits (root length and root diameter) and 788,396 SNPs of a natural population of 295 rice varieties. The transcriptome of low-nitrogen tolerant variety (Longjing 31) and low-nitrogen sensitive variety (Songjing 10) were sequenced between low and high nitrogen treatments. A total of 35 QTLs containing 493 genes were mapped. 3085 differential expressed genes were identified. Among these 493 genes, 174 genes showed different haplotype patterns. There were significant phenotype differences among different haplotypes of 58 genes with haplotype differences. These 58 genes were hypothesized as candidate genes for low nitrogen tolerance related to root morphology. Finally, six genes (Os07g0471300, Os11g0230400, Os11g0229300, Os11g0229400, Os11g0618300 and Os11g0229333) which expressed differentially in Longjing 31 were defined as more valuable candidate genes for low-nitrogen tolerance. The results revealed the response characteristics of rice to low-nitrogen, and provided insights into regulatory mechanisms of rice to nitrogen deficiency.
Collapse
Affiliation(s)
- Jia Li
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Wei Xin
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Weiping Wang
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Shijiao Zhao
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Lu Xu
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Xingdong Jiang
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Yuxuan Duan
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Hongliang Zheng
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Luomiao Yang
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Hualong Liu
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Yan Jia
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Detang Zou
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China.
| | - Jingguo Wang
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
31
|
Wu X, Xie X, Yang S, Yin Q, Cao H, Dong X, Hui J, Liu Z, Jia Z, Mao C, Yuan L. OsAMT1;1 and OsAMT1;2 Coordinate Root Morphological and Physiological Responses to Ammonium for Efficient Nitrogen Foraging in Rice. PLANT & CELL PHYSIOLOGY 2022; 63:1309-1320. [PMID: 35861152 DOI: 10.1093/pcp/pcac104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/28/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Optimal plant growth and development rely on morphological and physiological adaptions of the root system to forage heterogeneously distributed nitrogen (N) in soils. Rice grows mainly in the paddy soil where ammonium (NH4+) is present as the major N source. Although root NH4+ foraging behaviors are expected to be agronomically relevant, the underlying mechanism remains largely unknown. Here, we showed that NH4+ supply transiently enhanced the high-affinity NH4+ uptake and stimulated lateral root (LR) branching and elongation. These synergistic physiological and morphological responses were closely related to NH4+-induced expression of NH4+ transporters OsAMT1;1 and OsAMT1;2 in roots. The two independent double mutants (dko) defective in OsAMT1;1 and OsAMT1;2 failed to induce NH4+ uptake and stimulate LR formation, suggesting that OsAMT1s conferred the substrate-dependent root NH4+ foraging. In dko plants, NH4+ was unable to activate the expression of OsPIN2, and the OsPIN2 mutant (lra1) exhibited a strong reduction in NH4+-triggered LR branching, suggesting that the auxin pathway was likely involved in OsAMT1s-dependent LR branching. Importantly, OsAMT1s-dependent root NH4+ foraging behaviors facilitated rice growth and N acquisition under fluctuating NH4+ supply. These results revealed an essential role of OsAMT1s in synergizing root morphological and physiological processes, allowing for efficient root NH4+ foraging to optimize N capture under fluctuating N availabilities.
Collapse
Affiliation(s)
- Xiangyu Wu
- Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Xiaoxiao Xie
- Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Shan Yang
- Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Qianyu Yin
- Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Huairong Cao
- Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Xiaonan Dong
- Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Jing Hui
- Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Zhi Liu
- Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Zhongtao Jia
- Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, No. 866 Yuhangtang Road, Xihu District, Hangzhou City, Zhejiang Province 310058, China
| | - Lixing Yuan
- Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| |
Collapse
|
32
|
Chen G, Xuan W, Zhao P, Yao X, Peng C, Tian Y, Ye J, Wang B, He J, Chi W, Yu J, Ge Y, Li J, Dai Z, Xu D, Wang C, Wan J. OsTUB1 confers salt insensitivity by interacting with Kinesin13A to stabilize microtubules and ion transporters in rice. THE NEW PHYTOLOGIST 2022; 235:1836-1852. [PMID: 35643887 DOI: 10.1111/nph.18282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Salt stress is one of the major environmental factors limiting plant growth and development. Although microtubule (MT) organization is known to be involved in response to salt stress, few tubulin genes have been identified that confer salt insensitivity in plants. In this study, we identified a MT encoding gene, OsTUB1, that increased the survival rate of rice plants under salt stress by stabilizing MT organization and ion transporters. We found that OsTUB1 interacted with Kinesin13A protein, which was essential for OsTUB1-regulated MT organization under salt stress. Further molecular evidence revealed that a OsTUB1-Kinesin13A complex protected rice from salt stress by sustaining membrane-localized Na+ transporter OsHKT1;5, a key regulator of ionic homeostasis. Our results shed light on the function of tubulin and kinesin in regulating MT organization and stabilizing Na+ transporters and Na+ flux at the plasma membrane in rice. The identification of the OsTUB1-Kinesin13A complex provides novel genes for salt insensitivity rice breeding in areas with high soil salinity.
Collapse
Affiliation(s)
- Gaoming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pingzhi Zhao
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiangmei Yao
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chao Peng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Jian Ye
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Baoxiang Wang
- Lianyungang Academy of Agricultural Science, Lianyungang, Jiangsu Province, 222000, China
| | - Jun He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Wenchao Chi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Jun Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Yuwei Ge
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Jin Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Zhaoyang Dai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Dayong Xu
- Lianyungang Academy of Agricultural Science, Lianyungang, Jiangsu Province, 222000, China
| | - Chunming Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
33
|
Li K, Zhang S, Tang S, Zhang J, Dong H, Yang S, Qu H, Xuan W, Gu M, Xu G. The rice transcription factor Nhd1 regulates root growth and nitrogen uptake by activating nitrogen transporters. PLANT PHYSIOLOGY 2022; 189:1608-1624. [PMID: 35512346 PMCID: PMC9237666 DOI: 10.1093/plphys/kiac178] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Plants adjust root architecture and nitrogen (N) transporter activity to meet the variable N demand, but their integrated regulatory mechanism remains unclear. We have previously reported that a floral factor in rice (Oryza sativa), N-mediated heading date-1 (Nhd1), regulates flowering time. Here, we show that Nhd1 can directly activate the transcription of the high-affinity ammonium (NH4+) transporter 1;3 (OsAMT1;3) and the dual affinity nitrate (NO3-) transporter 2.4 (OsNRT2.4). Knockout of Nhd1 inhibited root growth in the presence of NO3- or a low concentration of NH4+. Compared to the wild-type (WT), nhd1 and osamt1;3 mutants showed a similar decrease in root growth and N uptake under low NH4+ supply, while nhd1 and osnrt2.4 mutants showed comparable root inhibition and altered NO3- translocation in shoots. The defects of nhd1 mutants in NH4+ uptake and root growth response to various N supplies were restored by overexpression of OsAMT1;3 or OsNRT2.4. However, when grown in a paddy field with low N availability, nhd1 mutants accumulated more N and achieved a higher N uptake efficiency (NUpE) due to the delayed flowering time and prolonged growth period. Our findings reveal a molecular mechanism underlying the growth duration-dependent NUpE.
Collapse
Affiliation(s)
- Kangning Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Shuo Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongzhang Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shihan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongye Qu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mian Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- Authors for correspondence: (S.Z.); (G.X.)
| |
Collapse
|
34
|
Luo L, Zhu M, Jia L, Xie Y, Wang Z, Xuan W. Ammonium transporters cooperatively regulate rice crown root formation responding to ammonium nitrogen. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3671-3685. [PMID: 35176162 DOI: 10.1093/jxb/erac059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Crown roots (CRs) are major components of the rice root system. They form at the basal node of the shoot, and their development is greatly influenced by environmental factors. Ammonium nitrogen is known to impact plant root development through ammonium transporters (AMTs), but it remains unclear whether ammonium and AMTs play roles in rice CR formation. In this study, we revealed a significant role of ammonium, rather than nitrate, in regulating rice CR development. High ammonium supply increases CR formation but inhibits CR elongation. Genetic evidence showed that ammonium regulation of CR development relies on ammonium uptake mediated jointly by ammonium transporters OsAMT1;1, OsAMT1;2; OsAMT1;3, and OsAMT2;1, but not on root acidification which was the result of ammonium uptake. OsAMTs are also needed for glutamine-induced CR formation. Furthermore, we showed that polar auxin transport dependent on the PIN auxin efflux carriers acts downstream of ammonium uptake and assimilation to activate local auxin signaling at CR primordia, in turn promoting CR formation. Taken together, our results highlight a critical role for OsAMTs in cooperatively regulating CR formation through regulating auxin transport under nitrogen-rich conditions.
Collapse
Affiliation(s)
- Long Luo
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Zhu
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Letian Jia
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanming Xie
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziniu Wang
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xuan
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
35
|
Wu XX, Yuan DP, Chen H, Kumar V, Kang SM, Jia B, Xuan YH. Ammonium transporter 1 increases rice resistance to sheath blight by promoting nitrogen assimilation and ethylene signalling. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1085-1097. [PMID: 35170194 PMCID: PMC9129087 DOI: 10.1111/pbi.13789] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Sheath blight (ShB) significantly threatens rice yield production. However, the underlying mechanism of ShB defence in rice remains largely unknown. Here, we identified a highly ShB-susceptible mutant Ds-m which contained a mutation at the ammonium transporter 1;1 (AMT1;1) D358 N. AMT1;1 D358 N interacts with AMT1;1, AMT1;2 and AMT1;3 to inhibit the ammonium transport activity. The AMT1 RNAi was more susceptible and similar to the AMT1;1 D358 N mutant; however, plants with higher NH4+ uptake activity were less susceptible to ShB. Glutamine synthetase 1;1 (GS1;1) mutant gs1;1 and overexpressors (GS1;1 OXs) were more and less susceptible to ShB respectively. Furthermore, AMT1;1 overexpressor (AMT1;1 OX)/gs1;1 and gs1;1 exhibited a similar response to ShB, suggesting that ammonium assimilation rather than accumulation controls the ShB defence. Genetic and physiological assays further demonstrated that plants with higher amino acid or chlorophyll content promoted rice resistance to ShB. Interestingly, the expression of ethylene-related genes was higher in AMT1;1 OX and lower in RNAi mutants than in wild-type. Also, ethylene signalling positively regulated rice resistance to ShB and NH4+ uptake, suggesting that ethylene signalling acts downstream of AMT and also NH4+ uptake is under feedback control. Taken together, our data demonstrated that the AMT1 promotes rice resistance to ShB via the regulation of diverse metabolic and signalling pathways.
Collapse
Affiliation(s)
- Xian Xin Wu
- College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - De Peng Yuan
- College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Huan Chen
- College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Vikranth Kumar
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | | | - Baolei Jia
- School of BioengineeringState Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology (Shandong Academy of Sciences)JinanChina
- Department of Life SciencesChung‐Ang UniversitySeoulSouth Korea
| | - Yuan Hu Xuan
- College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| |
Collapse
|
36
|
Genome-Wide Identification and Expression Analysis of AMT Gene Family in Apple (Malus domestica Borkh.). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ammonium is one of the prevalent nitrogen sources for growth and development of higher plants. Ammonium acquisition from soil is facilitated by ammonium transporters (AMTs), which are plasma membrane proteins that exclusively transport ammonium/ammonia. However, the functional characteristics and molecular mechanisms of AMTs in apple remain unclear. In this work, 15 putative AMT genes were identified and classified into four clusters (AMT1–AMT4) in apple. According to expression analysis, these AMTs had varying expressions in roots, leaves, stems, flowers and fruits. Some of them were strongly affected by diurnal cycles. AMT genes showed multiple transcript patterns to N regimes and were quite responsive to osmotic stress. In addition, phosphorylation analysis revealed that there were some conserved phosphorylation residues within the C-terminal of AMT proteins. Furthermore, detailed research was conducted on AMT1;2 functioning by heterologous expression in yeast. The present study is expected to provide basic bioinformatic information and expression profiles for the apple AMT family and to lay a basis for exploring the functional roles and regulation mechanisms of AMTs in apple.
Collapse
|
37
|
Sun T, Wang T, Qiang Y, Zhao G, Yang J, Zhong H, Peng X, Yang J, Li Y. CBL-Interacting Protein Kinase OsCIPK18 Regulates the Response of Ammonium Toxicity in Rice Roots. FRONTIERS IN PLANT SCIENCE 2022; 13:863283. [PMID: 35574117 PMCID: PMC9100847 DOI: 10.3389/fpls.2022.863283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Ammonium ( NH 4 + ) is one of the major nitrogen sources for plants. However, excessive ammonium can cause serious harm to the growth and development of plants, i.e., ammonium toxicity. The primary regulatory mechanisms behind ammonium toxicity are still poorly characterized. In this study, we showed that OsCIPK18, a CBL-interacting protein kinase, plays an important role in response to ammonium toxicity by comparative analysis of the physiological and whole transcriptome of the T-DNA insertion mutant (cipk18) and the wild-type (WT). Root biomass and length of cipk18 are less inhibited by excess NH 4 + compared with WT, indicating increased resistance to ammonium toxicity. Transcriptome analysis reveals that OsCIPK18 affects the NH 4 + uptake by regulating the expression of OsAMT1;2 and other NH 4 + transporters, but does not affect ammonium assimilation. Differentially expressed genes induced by excess NH 4 + in WT and cipk18 were associated with functions, such as ion transport, metabolism, cell wall formation, and phytohormones signaling, suggesting a fundamental role for OsCIPK18 in ammonium toxicity. We further identified a transcriptional regulatory network downstream of OsCIPK18 under NH 4 + stress that is centered on several core transcription factors. Moreover, OsCIPK18 might function as a transmitter in the auxin and abscisic acid (ABA) signaling pathways affected by excess ammonium. These data allowed us to define an OsCIPK18-regulated/dependent transcriptomic network for the response of ammonium toxicity and provide new insights into the mechanisms underlying ammonium toxicity.
Collapse
Affiliation(s)
- Tong Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ting Wang
- Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | - Yalin Qiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Gangqing Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jian Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hua Zhong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaojue Peng
- College of Life Sciences, Nanchang University, Nanchang, China
| | - Jing Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- College of Life Sciences, Nanchang University, Nanchang, China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
38
|
Reynoso MA, Borowsky AT, Pauluzzi GC, Yeung E, Zhang J, Formentin E, Velasco J, Cabanlit S, Duvenjian C, Prior MJ, Akmakjian GZ, Deal RB, Sinha NR, Brady SM, Girke T, Bailey-Serres J. Gene regulatory networks shape developmental plasticity of root cell types under water extremes in rice. Dev Cell 2022; 57:1177-1192.e6. [PMID: 35504287 DOI: 10.1016/j.devcel.2022.04.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/10/2022] [Accepted: 04/07/2022] [Indexed: 12/11/2022]
Abstract
Understanding how roots modulate development under varied irrigation or rainfall is crucial for development of climate-resilient crops. We established a toolbox of tagged rice lines to profile translating mRNAs and chromatin accessibility within specific cell populations. We used these to study roots in a range of environments: plates in the lab, controlled greenhouse stress and recovery conditions, and outdoors in a paddy. Integration of chromatin and mRNA data resolves regulatory networks of the following: cycle genes in proliferating cells that attenuate DNA synthesis under submergence; genes involved in auxin signaling, the circadian clock, and small RNA regulation in ground tissue; and suberin biosynthesis, iron transporters, and nitrogen assimilation in endodermal/exodermal cells modulated with water availability. By applying a systems approach, we identify known and candidate driver transcription factors of water-deficit responses and xylem development plasticity. Collectively, this resource will facilitate genetic improvements in root systems for optimal climate resilience.
Collapse
Affiliation(s)
- Mauricio A Reynoso
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA; IBBM, FCE-UNLP CONICET, La Plata 1900, Argentina
| | - Alexander T Borowsky
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Germain C Pauluzzi
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Elaine Yeung
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Jianhai Zhang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Elide Formentin
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA; Department of Biology, University of Padova, Padova, Italy
| | - Joel Velasco
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Sean Cabanlit
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Christine Duvenjian
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Matthew J Prior
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Garo Z Akmakjian
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Roger B Deal
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Neelima R Sinha
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Thomas Girke
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA; Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 Utrecht, the Netherlands.
| |
Collapse
|
39
|
Kawai M, Tabata R, Ohashi M, Honda H, Kamiya T, Kojima M, Takebayashi Y, Oishi S, Okamoto S, Hachiya T, Sakakibara H. Regulation of ammonium acquisition and use in Oryza longistaminata ramets under nitrogen source heterogeneity. PLANT PHYSIOLOGY 2022; 188:2364-2376. [PMID: 35134987 PMCID: PMC8968255 DOI: 10.1093/plphys/kiac025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/18/2021] [Indexed: 05/31/2023]
Abstract
Oryza longistaminata, a wild rice, vegetatively reproduces and forms a networked clonal colony consisting of ramets connected by rhizomes. Although water, nutrients, and other molecules can be transferred between ramets via the rhizomes, inter-ramet communication in response to spatially heterogeneous nitrogen availability is not well understood. We studied the response of ramet pairs to heterogeneous nitrogen availability using a split hydroponic system that allowed each ramet root to be exposed to different conditions. Ammonium uptake was compensatively enhanced in the sufficient-side root when roots of the ramet pairs were exposed to ammonium-sufficient and ammonium-deficient conditions. Comparative transcriptome analysis revealed that a gene regulatory network for effective ammonium assimilation and amino acid biosynthesis was activated in the sufficient-side roots. Allocation of absorbed nitrogen from the nitrogen-sufficient to the nitrogen-deficient ramets was rather limited. Nitrogen was preferentially used for newly growing axillary buds on the sufficient-side ramets. Biosynthesis of trans-zeatin (tZ), a cytokinin, was upregulated in response to the nitrogen supply, but tZ appeared not to target the compensatory regulation. Our results also implied that the O. longistaminata putative ortholog of rice (Oryza sativa) C-terminally encoded peptide1 plays a role as a nitrogen-deficient signal in inter-ramet communication, providing compensatory upregulation of nitrogen assimilatory genes. These results provide insights into the molecular basis for efficient growth strategies of asexually proliferating plants growing in areas where the distribution of ammonium ions is spatially heterogeneous.
Collapse
Affiliation(s)
- Misato Kawai
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Ryo Tabata
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Miwa Ohashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Haruno Honda
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Shunsuke Oishi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya464-8602, Japan
| | - Satoru Okamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Takushi Hachiya
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Department of Molecular and Function Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue 690-8504, Japan
| | | |
Collapse
|
40
|
Huang S, Konishi N, Yamaji N, Shao JF, Mitani-Ueno N, Ma JF. Boron uptake in rice is regulated post-translationally via a clathrin-independent pathway. PLANT PHYSIOLOGY 2022; 188:1649-1664. [PMID: 34893892 PMCID: PMC8896639 DOI: 10.1093/plphys/kiab575] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/17/2021] [Indexed: 05/15/2023]
Abstract
Uptake of boron (B) in rice (Oryza sativa) is mediated by the Low silicon rice 1 (OsLsi1) channel, belonging to the NOD26-like intrinsic protein III subgroup, and the efflux transporter B transporter 1 (OsBOR1). However, it is unknown how these transporters cooperate for B uptake and how they are regulated in response to B fluctuations. Here, we examined the response of these two transporters to environmental B changes at the transcriptional and posttranslational level. OsBOR1 showed polar localization at the proximal side of both the exodermis and endodermis of mature root region, forming an efficient uptake system with OsLsi1 polarly localized at the distal side of the same cell layers. Expression of OsBOR1 and OsLsi1 was unaffected by B deficiency and excess. However, although OsLsi1 protein did not respond to high B at the protein level, OsBOR1 was degraded in response to high B within hours, which was accompanied with a significant decrease of total B uptake. The high B-induced degradation of OsBOR1 was inhibited in the presence of MG-132, a proteasome inhibitor, without disturbance of the polar localization. In contrast, neither the high B-induced degradation of OsBOR1 nor its polarity was affected by induced expression of dominant-negative mutated dynamin-related protein 1A (OsDRP1AK47A) or knockout of the mu subunit (AP2M) of adaptor protein-2 complex, suggesting that clathrin-mediated endocytosis is not involved in OsBOR1 degradation and polar localization. These results indicate that, in contrast to Arabidopsis thaliana, rice has a distinct regulatory mechanism for B uptake through clathrin-independent degradation of OsBOR1 in response to high B.
Collapse
Affiliation(s)
- Sheng Huang
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Noriyuki Konishi
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Ji Feng Shao
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang 311300, China
| | - Namiki Mitani-Ueno
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
- Author for communication:
| |
Collapse
|