1
|
Chen W, Yan M, Chen S, Sun J, Wang J, Meng D, Li J, Zhang L, Guo L. The complete genome assembly of Nicotiana benthamiana reveals the genetic and epigenetic landscape of centromeres. NATURE PLANTS 2024; 10:1928-1943. [PMID: 39543324 DOI: 10.1038/s41477-024-01849-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
Nicotiana benthamiana is a model organism widely adopted in plant biology. Its complete assembly remains unavailable despite several recent improvements. To further improve its usefulness, we generate and phase the complete 2.85 Gb genome assembly of allotetraploid N. benthamiana. We find that although Solanaceae centromeres are widely dominated by Ty3/Gypsy retrotransposons, satellite-based centromeres are surprisingly common in N. benthamiana, with 11 of 19 centromeres featured by megabase-scale satellite arrays. Interestingly, the satellite-enriched and satellite-free centromeres are extensively invaded by distinct Gypsy retrotransposons which CENH3 protein more preferentially occupies, suggestive of their crucial roles in centromere function. We demonstrate that ribosomal DNA is a major origin of centromeric satellites, and mitochondrial DNA could be employed as a core component of the centromere. Subgenome analysis indicates that the emergence of satellite arrays probably drives new centromere formation. Altogether, we propose that N. benthamiana centromeres evolved via neocentromere formation, satellite expansion, retrotransposon enrichment and mtDNA integration.
Collapse
Affiliation(s)
- Weikai Chen
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Ming Yan
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Shaoying Chen
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Jie Sun
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Jingxuan Wang
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Dian Meng
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Jun Li
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Lili Zhang
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
- College of Modern Agriculture and Environment, Weifang Institute of Technology, Weifang, China
| | - Li Guo
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
| |
Collapse
|
2
|
He Q, Li W, Miao Y, Wang Y, Liu N, Liu J, Li T, Xiao Y, Zhang H, Wang Y, Liang H, Yun Y, Wang S, Sun Q, Wang H, Gong Z, Du H. The near-complete genome assembly of hexaploid wild oat reveals its genome evolution and divergence with cultivated oats. NATURE PLANTS 2024; 10:2062-2078. [PMID: 39627369 DOI: 10.1038/s41477-024-01866-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024]
Abstract
Avena sterilis, the ancestral species of cultivated oats, is a valuable genetic resource for oat improvement. Here we generated a near-complete 10.99 Gb A. sterilis genome and a high-quality 10.89 Gb cultivated oat genome. Genome evolution analysis revealed the centromeres dynamic and structural variations landscape associated with domestication between wild and cultivated oats. Population genetic analysis of 117 wild and cultivated oat accessions worldwide detected many candidate genes associated with important agronomic traits for oat domestication and improvement. Remarkably, a large fragment duplication from chromosomes 4A to 4D harbouring many agronomically important genes was detected during oat domestication and was fixed in almost all cultivated oats from around the world. The genes in the duplication region from 4A showed significantly higher expression levels and lower methylation levels than the orthologous genes located on 4D in A. sterilis. This study provides valuable resources for evolutionary and functional genomics and genetic improvement of oat.
Collapse
Affiliation(s)
- Qiang He
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Wei Li
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Yuqing Miao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yu Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Ningkun Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Jianan Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Tao Li
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yao Xiao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Hongyu Zhang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yaru Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Hanfei Liang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yange Yun
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Shuhui Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Qingbin Sun
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Hongru Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhizhong Gong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Huilong Du
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China.
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China.
| |
Collapse
|
3
|
Liu H, Zhao H, Zhang Y, Li X, Zuo Y, Wu Z, Jin K, Xian W, Wang W, Ning W, Liu Z, Zhao X, Wang L, Sage RF, Lu T, Stata M, Cheng S. The genome of Eleocharis vivipara elucidates the genetics of C 3-C 4 photosynthetic plasticity and karyotype evolution in the Cyperaceae. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2505-2527. [PMID: 39177373 PMCID: PMC11583847 DOI: 10.1111/jipb.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Eleocharis vivipara, an amphibious sedge in the Cyperaceae family, has several remarkable properties, most notably its alternate use of C3 photosynthesis underwater and C4 photosynthesis on land. However, the absence of genomic data has hindered its utility for evolutionary and genetic research. Here, we present a high-quality genome for E. vivipara, representing the first chromosome-level genome for the Eleocharis genus, with an approximate size of 965.22 Mb mainly distributed across 10 chromosomes. Its Hi-C pattern, chromosome clustering results, and one-to-one genome synteny across two subgroups indicates a tetraploid structure with chromosome count 2n = 4x = 20. Phylogenetic analysis suggests that E. vivipara diverged from Cyperus esculentus approximately 32.96 million years ago (Mya), and underwent a whole-genome duplication (WGD) about 3.5 Mya. Numerous fusion and fission events were identified between the chromosomes of E. vivipara and its close relatives. We demonstrate that E. vivipara has holocentromeres, a chromosomal feature which can maintain the stability of such chromosomal rearrangements. Experimental transplantation and cross-section studies showed its terrestrial culms developed C4 Kranz anatomy with increased number of chloroplasts in the bundle sheath (BS) cells. Gene expression and weighted gene co-expression network analysis (WGCNA) showed overall elevated expression of core genes associated with the C4 pathway, and significant enrichment of genes related to modified culm anatomy and photosynthesis efficiency. We found evidence of mixed nicotinamide adenine dinucleotide - malic enzyme and phosphoenolpyruvate carboxykinase type C4 photosynthesis in E. vivipara, and hypothesize that the evolution of C4 photosynthesis predates the WGD event. The mixed type is dominated by subgenome A and supplemented by subgenome B. Collectively, our findings not only shed light on the evolution of E. vivipara and karyotype within the Cyperaceae family, but also provide valuable insights into the transition between C3 and C4 photosynthesis, offering promising avenues for crop improvement and breeding.
Collapse
Affiliation(s)
- Hongbing Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Hang Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, 4000, Belgium
| | - Yanwen Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Shenzhen Research Institute of Henan university, Shenzhen, 518000, China
| | - Xiuli Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yi Zuo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, China National Botanical Garden, Chinese Academy of Science, Beijing, 100093, China
| | - Zhen Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Kaining Jin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Department of Plant Sciences, Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, 6708 WB, The Netherlands
| | - Wenfei Xian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Wenzheng Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weidong Ning
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Zijian Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, 4000, Belgium
| | - Xiaoxiao Zhao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, China National Botanical Garden, Chinese Academy of Science, Beijing, 100093, China
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, The University of Toronto, Toronto, M5S 3B2, ON, Canada
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Matt Stata
- Plant Resilience Institute, Michigan State University, East Lansing, 48824, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, 48824, MI, USA
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
4
|
Liao X, Xie D, Bao T, Hou M, Li C, Nie B, Sun S, Peng D, Hu H, Wang H, Tao Y, Zhang Y, Li W, Wang L. Inversions encounter relaxed genetic constraints and balance birth and death of TPS genes in Curcuma. Nat Commun 2024; 15:9349. [PMID: 39472560 PMCID: PMC11522489 DOI: 10.1038/s41467-024-53719-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Evolutionary dynamics of inversion and its impact on biochemical traits are a puzzling question. Here, we show abundance of inversions in three Curcuma species (turmeric, hidden ginger and Siam tulip). Genes within inversions display higher long terminal repeat content and lower expression level compared with genomic background, suggesting inversions in Curcuma experience relaxed genetic constraints. It is corroborated by depletion of selected SNPs and enrichment of deleterious mutations in inversions detected among 56 Siam tulip cultivars. Functional verification of tandem duplicated terpene synthase (TPS) genes reveals that genes within inversions become pseudogenes, while genes outside retain catalytic function. Our findings suggest that inversions act as a counteracting force against tandem duplication in balancing birth and death of TPS genes and modulating terpenoid contents in Curcuma. This study provides an empirical example that inversions are likely not adaptive but affect biochemical traits.
Collapse
Affiliation(s)
- Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Dejin Xie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Tingting Bao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Mengmeng Hou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Cheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Bao Nie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Shichao Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Dan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Haixiao Hu
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Hongru Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yongfu Tao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yu Zhang
- School of Agriculture, Sun Yat-sen University, Shenzhen, 518107, China
| | - Wei Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
5
|
Hu S, Tian G, Bai Y, Qu A, He Q, Chen L, Xu P. Alternative splicing dynamically regulates common carp embryogenesis under thermal stress. BMC Genomics 2024; 25:918. [PMID: 39358679 PMCID: PMC11448050 DOI: 10.1186/s12864-024-10838-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Thermal stress is a major environmental factor affecting fish development and survival. Common carp (Cyprinus carpio) are susceptible to heat stress in their embryonic and larval phases, but the thermal stress response of alternative splicing during common carp embryogenesis remains poorly understood. RESULTS Using RNA-seq data from eight developmental stages and four temperatures, we constructed a comprehensive profile of alternative splicing (AS) during the embryogenesis of common carp, and found that AS genes and events are widely distributed among all stages. A total of 5,835 developmental stage-specific AS (SAS) genes, 21,368 temperature-specific differentially expressed genes (TDEGs), and 2,652 temperature-specific differentially AS (TDAS) genes were identified. Hub TDAS genes in each developmental stage, such as taf2, hnrnpa1, and drg2, were identified through protein-protein interaction (PPI) network analysis. The early developmental stages may be more sensitive to temperature, with thermal stress leading to a massive increase in the number of expressed transcripts, TDEGs, and TDAS genes in the morula stage, followed by the gastrula stage. GO and KEGG analyses showed that from the morula stage to the neurula stage, TDAS genes were more involved in intracellular transport, protein modification, and localization processes, while from the optic vesicle stage to one day post-hatching, they participated more in biosynthetic processes. Further subgenomic analysis revealed that the number of AS genes and events in subgenome B was generally higher than that in subgenome A, and the homologous AS genes were significantly enriched in basic life activity pathways, such as mTOR signaling pathway, p53 signaling pathway, and MAPK signaling pathway. Additionally, lncRNAs can play a regulatory role in the response to thermal stress by targeting AS genes such as lmnl3, affecting biological processes such as apoptosis and axon guidance. CONCLUSIONS In short, thermal stress can affect alternative splicing regulation during common carp embryogenesis at multiple levels. Our work complemented some gaps in the study of alternative splicing at both levels of embryogenesis and thermal stress in C. carpio and contributed to the comprehension of environmental adaptation formation in polyploid fishes during embryogenesis.
Collapse
Affiliation(s)
- Shuimu Hu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Guopeng Tian
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yulin Bai
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ang Qu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qian He
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lin Chen
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| | - Peng Xu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
6
|
Kara Öztürk SD, Tek AL. Novel centromeric repetitive DNA elements reveal karyotype dynamics in polyploid sainfoin (Onobrychis viciifolia). Chromosoma 2024; 133:233-246. [PMID: 39269484 DOI: 10.1007/s00412-024-00824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Polyploidy is a common feature in eukaryotes with one of paramount consequences leading to better environmental adaptation. Heterochromatin is often located at telomeres and centromeres and contains repetitive DNA sequences. Sainfoin (Onobrychis viciifolia) is an important perennial forage legume for sustainable agriculture. However, there are only a few studies on the sainfoin genome and chromosomes. In this study, novel tandem repetitive DNA sequences of the sainfoin genome (OnVi180, OnVi169, OnVi176 and OnVidimer) were characterized using bioinformatics, molecular and cytogenetic approaches. The OnVi180 and OnVi169 elements colocalized within functional centromeres. The OnVi176 and OnVidimer elements were localized in centromeric, subtelomeric and interstitial regions. We constructed a sainfoin karyotype that distinguishes the seven basic chromosome groups. Our study provides the first detailed description of heterochromatin and chromosome structure of sainfoin and proposes an origin of heterozygous ancestral genomes, possibly from the same ancestral diploid species, not necessarily from different species, or for chromosome rearrangements after polyploidy. Overall, we discuss our novel and complementary findings in a polyploid crop with unique and complex chromosomal features.
Collapse
Affiliation(s)
- Sevim D Kara Öztürk
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Ahmet L Tek
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Turkey.
| |
Collapse
|
7
|
Li J, Chen T, Gao K, Xue Y, Wu R, Guo B, Chen Z, Li S, Zhang RG, Jia KH, Mao JF, An X. Unravelling the novel sex determination genotype with 'ZY' and a distinctive 2.15-2.95 Mb inversion among poplar species through haplotype-resolved genome assembly and comparative genomics analysis. Mol Ecol Resour 2024; 24:e14002. [PMID: 39092596 DOI: 10.1111/1755-0998.14002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/26/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Populus tomentosa, an indigenous tree species, is widely distributed and cultivated over 1,000,000 km2 in China, contributing significantly to forest production, ecological conservation and urban-rural greening. Although a reference genome is available for P. tomentosa, the intricate interspecific hybrid origins, chromosome structural variations (SVs) and sex determination mechanisms remain confusion and unclear due to its broad and even overlapping geographical distribution, extensive morphological variations and cross infiltration among white poplar species. We conducted a haplotype-resolved de novo assembly of P. tomentosa elite individual GM107, which comprises subgenomes a and b with a total genome size of 714.9 Mb. We then analysed the formation of hybrid species and the phylogenetic evolution and sex differentiation across the entire genus. Phylogenomic analyses suggested that GM107 likely originated from a hybridisation event between P. alba (♀) and P. davidiana (♂) which diverged at approximately 3.8 Mya. A total of 1551 chromosome SVs were identified between the two subgenomes. More noteworthily, a distinctive inversion structure spanning 2.15-2.95 Mb was unveiled among Populus, Tacamahaca, Turaga, Aigeiros poplar species and Salix, highlighting a unique evolutionary feature. Intriguingly, a novel sex genotype of the ZY type, which represents a crossover between XY and ZW systems, was identified and confirmed through both natural and artificial hybrids populations. These novel insights offer significant theoretical value for the study of the species' evolutionary origins and serve as a valuable resource for ecological genetics and forest biotechnology.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological, Sciences and Technology, Beijing Forestry University, Beijing, China
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Tingting Chen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological, Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kai Gao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological, Sciences and Technology, Beijing Forestry University, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Hangzhou, China
| | - Yinxuan Xue
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological, Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Ruqian Wu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological, Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Bin Guo
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological, Sciences and Technology, Beijing Forestry University, Beijing, China
- Shanxi Academy of Forestry and Grassland Sciences, Taiyuan, China
| | - Zhong Chen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological, Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Shanwen Li
- Shandong Academy of Forestry, Jinan, China
| | - Ren-Gang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Kai-Hua Jia
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jian-Feng Mao
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Xinmin An
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological, Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
8
|
Jeon D, Sung YJ, Kim C. High-quality Chromosomal-Level Genome Assembly of the Wasabi (Eutrema japonicum) 'Magic'. Sci Data 2024; 11:1044. [PMID: 39333173 PMCID: PMC11436864 DOI: 10.1038/s41597-024-03903-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Wasabi (Eutrema japonicum) is a plant belonging to the Brassicaceae family that produces its distinctive pungent taste through allyl isothiocyanate. This study achieved a high-quality chromosome-level genome assembly of the E. japonicum 'Magic' bred in Korea for its rapid growth cycle. The assembly was accomplished using a combination of Illumina, PacBio HIFI, Nanopore MinION, and Pore-C scaffolding technologies. The final assembled genome size is 794.6 Mb, anchored to 14 chromosomes. The genome comprises 67.56% repetitive elements and has a BUSCO score of 99.3%, indicating a high level of completeness. Compared to previously published assemblies with a different cultivar, the total length increased by approximately 48.08 Mb, while the number of Ns decreased from 89,000 to 49,000, and the assembly gaps (500 N padding) reduced from 178 to 98, resulting in a higher quality assembly. This genome will be a valuable resource for genetic and biological research on E. japonicum, aiding in its breeding and genetic improvement.
Collapse
Affiliation(s)
- Donghyun Jeon
- Department of Science in Smart Agriculture Systems, Chungnam National University, Daejeon, Republic of Korea
| | - Yeon-Jun Sung
- Department of Science in Smart Agriculture Systems, Chungnam National University, Daejeon, Republic of Korea
| | - Changsoo Kim
- Department of Science in Smart Agriculture Systems, Chungnam National University, Daejeon, Republic of Korea.
- Department of Crop Science, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
9
|
Liu Z, Yang F, Wan H, Deng C, Hu W, Fan X, Wang J, Yang M, Feng J, Wang Q, Yang N, Cai L, Liu Y, Tang H, Li S, Luo J, Zheng J, Wu L, Yang E, Pu Z, Jia J, Li J, Yang W. Genome architecture of the allotetraploid wild grass Aegilops ventricosa reveals its evolutionary history and contributions to wheat improvement. PLANT COMMUNICATIONS 2024:101131. [PMID: 39257004 DOI: 10.1016/j.xplc.2024.101131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/14/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
The allotetraploid wild grass Aegilops ventricosa (2n = 4x = 28, genome DvDvNvNv) has been recognized as an important germplasm resource for wheat improvement owing to its ability to tolerate biotic stresses. In particular, the 2NvS segment from Ae. ventricosa, as a stable and effective resistance source, has contributed greatly to wheat improvement. The 2NvS/2AS translocation is a prevalent chromosomal translocation between common wheat and wild relatives, ranking just behind the 1B/1R translocation in importance for modern wheat breeding. Here, we assembled a high-quality chromosome-level reference genome of Ae. ventricosa RM271 with a total length of 8.67 Gb. Phylogenomic analyses revealed that the progenitor of the Dv subgenome of Ae. ventricosa is Ae. tauschii ssp. tauschii (genome DD); by contrast, the progenitor of the D subgenome of bread wheat (Triticum aestivum L.) is Ae. tauschii ssp. strangulata (genome DD). The oldest polyploidization time of Ae. ventricosa occurred ∼0.7 mya. The Dv subgenome of Ae. ventricosa is less conserved than the D subgenome of bread wheat. Construction of a graph-based pangenome of 2AS/6NvL (originally known as 2NvS) segments from Ae. ventricosa and other genomes in the Triticeae enabled us to identify candidate resistance genes sourced from Ae. ventricosa. We identified 12 nonredundant introgressed segments from the Dv and Nv subgenomes using a large winter wheat collection representing the full diversity of the European wheat genetic pool, and 29.40% of European wheat varieties inherit at least one of these segments. The high-quality RM271 reference genome will provide a basis for cloning key genes, including the Yr17-Lr37-Sr38-Cre5 resistance gene cluster in Ae. ventricosa, and facilitate the full use of elite wild genetic resources to accelerate wheat improvement.
Collapse
Affiliation(s)
- Zehou Liu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Fan Yang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Hongshen Wan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Cao Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Departments of Bioinformatics, DNA Stories Bioinformatics Center, Chengdu, China
| | - Wenjing Hu
- Lixiahe Institute of Agricultural Sciences, Yangzhou, Jiangsu, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Manyu Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Junyan Feng
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qin Wang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Ning Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Li Cai
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ying Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hao Tang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Shizhao Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Jiangtao Luo
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Jianmin Zheng
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Ling Wu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Ennian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Zongjun Pu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Jizeng Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China.
| | - Wuyun Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China.
| |
Collapse
|
10
|
Wang C, Liu L, Yin M, Liu B, Wu Y, Eller F, Gao Y, Brix H, Wang T, Guo W, Salojärvi J. Chromosome-level genome assemblies reveal genome evolution of an invasive plant Phragmites australis. Commun Biol 2024; 7:1007. [PMID: 39154094 PMCID: PMC11330502 DOI: 10.1038/s42003-024-06660-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024] Open
Abstract
Biological invasions pose a significant threat to ecosystems, disrupting local biodiversity and ecosystem functions. The genomic underpinnings of invasiveness, however, are still largely unknown, making it difficult to predict and manage invasive species effectively. The common reed (Phragmites australis) is a dominant grass species in wetland ecosystems and has become particularly invasive when transferred from Europe to North America. Here, we present a high-quality gap-free, telomere-to-telomere genome assembly of Phragmites australis consisting of 24 pseudochromosomes and a B chromosome. Fully phased subgenomes demonstrated considerable subgenome dominance and revealed the divergence of diploid progenitors approximately 30.9 million years ago. Comparative genomics using chromosome-level scaffolds for three other lineages and a previously published draft genome assembly of an invasive lineage revealed that gene family expansions in the form of tandem duplications may have contributed to the invasiveness of the lineage. This study sheds light on the genome evolution of Arundinoideae grasses and suggests that genetic drivers, such as gene family expansions and tandem duplications, may underly the processes of biological invasion in plants. These findings provide a crucial step toward understanding and managing the genetic basis of invasiveness in plant species.
Collapse
Affiliation(s)
- Cui Wang
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, PR China
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Lele Liu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Meiqi Yin
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Bingbing Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Yiming Wu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, PR China
| | | | - Yingqi Gao
- Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Hans Brix
- Department of Biology, Aarhus University, Aarhus, Denmark
| | - Tong Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Weihua Guo
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, PR China.
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
11
|
Gao S, Jia Y, Guo H, Xu T, Wang B, Bush SJ, Wan S, Zhang Y, Yang X, Ye K. The centromere landscapes of four karyotypically diverse Papaver species provide insights into chromosome evolution and speciation. CELL GENOMICS 2024; 4:100626. [PMID: 39084227 PMCID: PMC11406182 DOI: 10.1016/j.xgen.2024.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/16/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024]
Abstract
Understanding the roles played by centromeres in chromosome evolution and speciation is complicated by the fact that centromeres comprise large arrays of tandemly repeated satellite DNA, which hinders high-quality assembly. Here, we used long-read sequencing to generate nearly complete genome assemblies for four karyotypically diverse Papaver species, P. setigerum (2n = 44), P. somniferum (2n = 22), P. rhoeas (2n = 14), and P. bracteatum (2n = 14), collectively representing 45 gapless centromeres. We identified four centromere satellite (cenSat) families and experimentally validated two representatives. For the two allopolyploid genomes (P. somniferum and P. setigerum), we characterized the subgenomic distribution of each satellite and identified a "homogenizing" phase of centromere evolution in the aftermath of hybridization. An interspecies comparison of the peri-centromeric regions further revealed extensive centromere-mediated chromosome rearrangements. Taking these results together, we propose a model for studying cenSat competition after hybridization and shed further light on the complex role of the centromere in speciation.
Collapse
Affiliation(s)
- Shenghan Gao
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yanyan Jia
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hongtao Guo
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Tun Xu
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Bo Wang
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Stephen J Bush
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shijie Wan
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yimeng Zhang
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaofei Yang
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Kai Ye
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Center for Mathematical Medical, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Genome Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Faculty of Science, Leiden University, Leiden 2311EZ, the Netherlands.
| |
Collapse
|
12
|
Jeon D, Kim C. Polyploids of Brassicaceae: Genomic Insights and Assembly Strategies. PLANTS (BASEL, SWITZERLAND) 2024; 13:2087. [PMID: 39124204 PMCID: PMC11314605 DOI: 10.3390/plants13152087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
The Brassicaceae family is distinguished by its inclusion of high-value crops such as cabbage, broccoli, mustard, and wasabi, all noted for their glucosinolates. In this family, many polyploidy species are distributed and shaped by numerous whole-genome duplications, independent genome doublings, and hybridization events. The evolutionary trajectory of the family is marked by enhanced diversification and lineage splitting after paleo- and meso-polyploidization, with discernible remnants of whole-genome duplications within their genomes. The recent neopolyploidization events notably increased the proportion of polyploid species within the family. Although sequencing efforts for the Brassicaceae genome have been robust, accurately distinguishing sub-genomes remains a significant challenge, frequently complicating the assembly process. Assembly strategies include comparative analyses with ancestral species and examining k-mers, long terminal repeat retrotransposons, and pollen sequencing. This review comprehensively explores the unique genomic characteristics of the Brassicaceae family, with a particular emphasis on polyploidization events and the latest strategies for sequencing and assembly. This review will significantly improve our understanding of polyploidy in the Brassicaceae family and assist in future genome assembly methods.
Collapse
Affiliation(s)
- Donghyun Jeon
- Department of Science in Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Changsoo Kim
- Department of Science in Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea;
- Department of Crop Science, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
13
|
Shen W, Liu B, Guo J, Yang Y, Li X, Chen J, Dou Q. Chromosome-scale assembly of the wild cereal relative Elymus sibiricus. Sci Data 2024; 11:823. [PMID: 39060306 PMCID: PMC11282062 DOI: 10.1038/s41597-024-03622-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Elymus species, belonging to Triticeae tribe, is a tertiary gene pool for improvement of major cereal crops. Elymus sibiricus, a tetraploid with StH genome, is a typical species in the genus Elymus, which is widely utilized as a high-quality perennial forage grass in template regions. In this study, we report the construction of a chromosome-scale reference assembly of E. sibiricus line Gaomu No. 1 based on PacBio HiFi reads and chromosome conformation capture. Subgenome St and H were well phased by assisting with kmer and subgenome-specific repetitive sequence. The total assembly size was 6.929 Gb with a contig N50 of 49.518 Mb. In total, 89,800 protein-coding genes were predicted. The repetitive sequences accounted for 82.49% of the genome in E. sibiricus. Comparative genome analysis confirmed a major species-specific 4H/6H reciprocal translocation in E. sibiricus. The E. sibiricus assembly will be much helpful to exploit genetic resource of StH species in genus Elymus, and provides an important tool for E. sibiricus domestication.
Collapse
Affiliation(s)
- Wenjie Shen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Bo Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
| | - Jialei Guo
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Ying Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiaohui Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jie Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Quanwen Dou
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China.
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China.
| |
Collapse
|
14
|
Aufiero G, Fruggiero C, D’Angelo D, D’Agostino N. Homoeologs in Allopolyploids: Navigating Redundancy as Both an Evolutionary Opportunity and a Technical Challenge-A Transcriptomics Perspective. Genes (Basel) 2024; 15:977. [PMID: 39202338 PMCID: PMC11353593 DOI: 10.3390/genes15080977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Allopolyploidy in plants involves the merging of two or more distinct parental genomes into a single nucleus, a significant evolutionary process in the plant kingdom. Transcriptomic analysis provides invaluable insights into allopolyploid plants by elucidating the fate of duplicated genes, revealing evolutionary novelties and uncovering their environmental adaptations. By examining gene expression profiles, scientists can discern how duplicated genes have evolved to acquire new functions or regulatory roles. This process often leads to the development of novel traits and adaptive strategies that allopolyploid plants leverage to thrive in diverse ecological niches. Understanding these molecular mechanisms not only enhances our appreciation of the genetic complexity underlying allopolyploidy but also underscores their importance in agriculture and ecosystem resilience. However, transcriptome profiling is challenging due to genomic redundancy, which is further complicated by the presence of multiple chromosomes sets and the variations among homoeologs and allelic genes. Prior to transcriptome analysis, sub-genome phasing and homoeology inference are essential for obtaining a comprehensive view of gene expression. This review aims to clarify the terminology in this field, identify the most challenging aspects of transcriptome analysis, explain their inherent difficulties, and suggest reliable analytic strategies. Furthermore, bulk RNA-seq is highlighted as a primary method for studying allopolyploid gene expression, focusing on critical steps like read mapping and normalization in differential gene expression analysis. This approach effectively captures gene expression from both parental genomes, facilitating a comprehensive analysis of their combined profiles. Its sensitivity in detecting low-abundance transcripts allows for subtle differences between parental genomes to be identified, crucial for understanding regulatory dynamics and gene expression balance in allopolyploids.
Collapse
Affiliation(s)
| | | | | | - Nunzio D’Agostino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (G.A.); (C.F.); (D.D.)
| |
Collapse
|
15
|
Reynolds G, Mumey B, Strnadova‐Neeley V, Lachowiec J. Hijacking a rapid and scalable metagenomic method reveals subgenome dynamics and evolution in polyploid plants. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11581. [PMID: 39184200 PMCID: PMC11342227 DOI: 10.1002/aps3.11581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/26/2023] [Accepted: 12/20/2023] [Indexed: 08/27/2024]
Abstract
Premise The genomes of polyploid plants archive the evolutionary events leading to their present forms. However, plant polyploid genomes present numerous hurdles to the genome comparison algorithms for classification of polyploid types and exploring genome dynamics. Methods Here, the problem of intra- and inter-genome comparison for examining polyploid genomes is reframed as a metagenomic problem, enabling the use of the rapid and scalable MinHashing approach. To determine how types of polyploidy are described by this metagenomic approach, plant genomes were examined from across the polyploid spectrum for both k-mer composition and frequency with a range of k-mer sizes. In this approach, no subgenome-specific k-mers are identified; rather, whole-chromosome k-mer subspaces were utilized. Results Given chromosome-scale genome assemblies with sufficient subgenome-specific repetitive element content, literature-verified subgenomic and genomic evolutionary relationships were revealed, including distinguishing auto- from allopolyploidy and putative progenitor genome assignment. The sequences responsible were the rapidly evolving landscape of transposable elements. An investigation into the MinHashing parameters revealed that the downsampled k-mer space (genomic signatures) produced excellent approximations of sequence similarity. Furthermore, the clustering approach used for comparison of the genomic signatures is scrutinized to ensure applicability of the metagenomics-based method. Discussion The easily implementable and highly computationally efficient MinHashing-based sequence comparison strategy enables comparative subgenomics and genomics for large and complex polyploid plant genomes. Such comparisons provide evidence for polyploidy-type subgenomic assignments. In cases where subgenome-specific repeat signal may not be adequate given a chromosomes' global k-mer profile, alternative methods that are more specific but more computationally complex outperform this approach.
Collapse
Affiliation(s)
- Gillian Reynolds
- Plant Sciences and Plant Pathology DepartmentMontana State UniversityBozeman59717MontanaUSA
- Gianforte School of ComputingMontana State UniversityBozeman59717MontanaUSA
| | - Brendan Mumey
- Gianforte School of ComputingMontana State UniversityBozeman59717MontanaUSA
| | | | - Jennifer Lachowiec
- Plant Sciences and Plant Pathology DepartmentMontana State UniversityBozeman59717MontanaUSA
| |
Collapse
|
16
|
Session AM. Allopolyploid subgenome identification and implications for evolutionary analysis. Trends Genet 2024; 40:621-631. [PMID: 38637269 DOI: 10.1016/j.tig.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
Whole-genome duplications (WGDs) are widespread genomic events in eukaryotes that are hypothesized to contribute to the evolutionary success of many lineages, including flowering plants, Saccharomyces yeast, and vertebrates. WGDs generally can be classified into autopolyploids (ploidy increase descended from one species) or allopolyploids (ploidy increase descended from multiple species). Assignment of allopolyploid progenitor species (called subgenomes in the polyploid) is important to understanding the biology and evolution of polyploids, including the asymmetric subgenome evolution following hybridization (biased fractionation). Here, I review the different methodologies used to identify the ancestors of allopolyploid subgenomes, discuss the advantages and disadvantages of these methods, and outline the implications of how these methods affect the subsequent evolutionary analysis of these genomes.
Collapse
Affiliation(s)
- Adam M Session
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA.
| |
Collapse
|
17
|
Li F, Hou Z, Xu S, Han D, Li B, Hu H, Liu J, Cai S, Gan Z, Gu Y, Zhang X, Zhou X, Wang S, Zhao J, Mei Y, Zhang J, Wang Z, Wang J. Haplotype-resolved genomes of octoploid species in Phyllanthaceae family reveal a critical role for polyploidization and hybridization in speciation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:348-363. [PMID: 38606539 DOI: 10.1111/tpj.16767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/14/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
The Phyllanthaceae family comprises a diverse range of plants with medicinal, edible, and ornamental value, extensively cultivated worldwide. Polyploid species commonly occur in Phyllanthaceae. Due to the rather complex genomes and evolutionary histories, their speciation process has been still lacking in research. In this study, we generated chromosome-scale haplotype-resolved genomes of two octoploid species (Phyllanthus emblica and Sauropus spatulifolius) in Phyllanthaceae family. Combined with our previously reported one tetraploid (Sauropus androgynus) and one diploid species (Phyllanthus cochinchinensis) from the same family, we explored their speciation history. The three polyploid species were all identified as allopolyploids with subgenome A/B. Each of their two distinct subgenome groups from various species was uncovered to independently share a common diploid ancestor (Ancestor-AA and Ancestor-BB). Via different evolutionary routes, comprising various scenarios of bifurcating divergence, allopolyploidization (hybrid polyploidization), and autopolyploidization, they finally evolved to the current tetraploid S. androgynus, and octoploid S. spatulifolius and P. emblica, respectively. We further discuss the variations in copy number of alleles and the potential impacts within the two octoploids. In addition, we also investigated the fluctuation of metabolites with medical values and identified the key factor in its biosynthesis process in octoploids species. Our study reconstructed the evolutionary history of these Phyllanthaceae species, highlighting the critical roles of polyploidization and hybridization in their speciation processes. The high-quality genomes of the two octoploid species provide valuable genomic resources for further research of evolution and functional genomics.
Collapse
Affiliation(s)
- Fangping Li
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhuangwei Hou
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Shiqiang Xu
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
| | - Danlu Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Bin Li
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
| | - Haifei Hu
- Rice Research Institute & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jieying Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Shike Cai
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
| | - Zhenpeng Gan
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Yan Gu
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
| | - Xiufeng Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaofan Zhou
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Shaokui Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Junliang Zhao
- Rice Research Institute & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yu Mei
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
| | - Jisen Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources, Guangxi University, Nanning, 530005, China
| | - Zefu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Jihua Wang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
| |
Collapse
|
18
|
Liu Z, Yang F, Deng C, Wan H, Tang H, Feng J, Wang Q, Yang N, Li J, Yang W. Chromosome-level assembly of the synthetic hexaploid wheat-derived cultivar Chuanmai 104. Sci Data 2024; 11:670. [PMID: 38909086 PMCID: PMC11193762 DOI: 10.1038/s41597-024-03527-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024] Open
Abstract
Synthetic hexaploid wheats (SHWs) are effective genetic resources for transferring agronomically important genes from wild relatives to common wheat (Triticum aestivum L.). Dozens of reference-quality pseudomolecule assemblies of hexaploid wheat have been generated, but none is reported for SHW-derived cultivars. Here, we generated a chromosome-scale assembly for the SHW-derived cultivar 'Chuanmai 104' based on PacBio HiFi reads and chromosome conformation capture sequencing. The total assembly size was 14.81 Gb with a contig N50 length of 58.25 Mb. A BUSCO analysis yielded a completeness score of 99.30%. In total, repetitive elements comprised 81.36% of the genome and 122,554 high-confidence protein-coding gene models were predicted. In summary, the first chromosome-level assembly for a SHW-derived cultivar presents a promising outlook for the study and utilization of SHWs in wheat improvement, which is essential to meet the global food demand.
Collapse
Affiliation(s)
- Zehou Liu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Chengdu, China
- Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Fan Yang
- Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Cao Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Departments of Bioinformatics, DNA Stories Bioinformatics Center, Chengdu, China
| | - Hongshen Wan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Chengdu, China
- Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Hao Tang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Chengdu, China
- Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Junyan Feng
- Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qin Wang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Chengdu, China
- Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Ning Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Chengdu, China
- Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.
- Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, China.
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Chengdu, China.
- Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China.
| | - Wuyun Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.
- Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, China.
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Chengdu, China.
- Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China.
| |
Collapse
|
19
|
Yan X, Shi G, Sun M, Shan S, Chen R, Li R, Wu S, Zhou Z, Li Y, Liu Z, Hu Y, Liu Z, Soltis PS, Zhang J, Soltis DE, Ning G, Bao M. Genome evolution of the ancient hexaploid Platanus × acerifolia (London planetree). Proc Natl Acad Sci U S A 2024; 121:e2319679121. [PMID: 38830106 PMCID: PMC11181145 DOI: 10.1073/pnas.2319679121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Whole-genome duplication (WGD; i.e., polyploidy) and chromosomal rearrangement (i.e., genome shuffling) significantly influence genome structure and organization. Many polyploids show extensive genome shuffling relative to their pre-WGD ancestors. No reference genome is currently available for Platanaceae (Proteales), one of the sister groups to the core eudicots. Moreover, Platanus × acerifolia (London planetree; Platanaceae) is a widely used street tree. Given the pivotal phylogenetic position of Platanus and its 2-y flowering transition, understanding its flowering-time regulatory mechanism has significant evolutionary implications; however, the impact of Platanus genome evolution on flowering-time genes remains unknown. Here, we assembled a high-quality, chromosome-level reference genome for P. × acerifolia using a phylogeny-based subgenome phasing method. Comparative genomic analyses revealed that P. × acerifolia (2n = 42) is an ancient hexaploid with three subgenomes resulting from two sequential WGD events; Platanus does not seem to share any WGD with other Proteales or with core eudicots. Each P. × acerifolia subgenome is highly similar in structure and content to the reconstructed pre-WGD ancestral eudicot genome without chromosomal rearrangements. The P. × acerifolia genome exhibits karyotypic stasis and gene sub-/neo-functionalization and lacks subgenome dominance. The copy number of flowering-time genes in P. × acerifolia has undergone an expansion compared to other noncore eudicots, mainly via the WGD events. Sub-/neo-functionalization of duplicated genes provided the genetic basis underlying the unique flowering-time regulation in P. × acerifolia. The P. × acerifolia reference genome will greatly expand understanding of the evolution of genome organization, genetic diversity, and flowering-time regulation in angiosperms.
Collapse
Affiliation(s)
- Xu Yan
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Gehui Shi
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Miao Sun
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Shengchen Shan
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611
| | - Runzhou Chen
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Runhui Li
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Songlin Wu
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Zheng Zhou
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Yuhan Li
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | | | - Yonghong Hu
- Shanghai Chenshan Botanical Garden, Shanghai201602, China
| | - Zhongjian Liu
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou350002, China
| | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611
- Biodiversity Institute, University of Florida, Gainesville, FL32611
- Genetics Institute, University of Florida, Gainesville, FL32608
| | - Jiaqi Zhang
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Douglas E. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611
- Biodiversity Institute, University of Florida, Gainesville, FL32611
- Genetics Institute, University of Florida, Gainesville, FL32608
- Department of Biology, University of Florida, Gainesville, FL32611
| | - Guogui Ning
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| |
Collapse
|
20
|
Wang Y, Li Y, Wu W, Shao S, Fang Q, Xu S, Guo Z, Shi S, He Z. The evolution history of an allotetraploid mangrove tree analysed with a new tool Allo4D. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1491-1503. [PMID: 38157253 PMCID: PMC11123425 DOI: 10.1111/pbi.14281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Mangrove species are broadly classified as true mangroves and mangrove associates. The latter are amphibious plants that can survive in the intertidal zone and reproduce naturally in terrestrial environments. Their widespread distribution and extensive adaptability make them ideal research materials for exploring adaptive evolution. In this study, we de novo assembled two genomes of mangrove associates (the allotetraploid Barringtonia racemosa (2n = 4x = 52) and diploid Barringtonia asiatica (2n = 2x = 26)) to investigate the role of allopolyploidy in the evolutionary history of mangrove species. We developed a new allotetraploid-dividing tool Allo4D to distinguish between allotetraploid scaffold-scale subgenomes and verified its accuracy and reliability using real and simulated data. According to the two subgenomes of allotetraploid B. racemosa divided using Allo4D, the allopolyploidization event was estimated to have occurred approximately one million years ago (Mya). We found that B. racemosa, B. asiatica, and Diospyros lotus shared a whole genome duplication (WGD) event during the K-Pg (Cretaceous-Paleozoic) period. K-Pg WGD and recent allopolyploidization events contributed to the speciation of B. racemosa and its adaptation to coastal habitats. We found that genes in the glucosinolates (GSLs) pathway, an essential pathway in response to various biotic and abiotic stresses, expanded rapidly in B. racemosa during polyploidization. In summary, this study provides a typical example of the adaptation of allopolyploid plants to extreme environmental conditions. The newly developed tool, Allo4D, can effectively divide allotetraploid subgenomes and explore the evolutionary history of polyploid plants, especially for species whose ancestors are unknown or extinct.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yulong Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
- School of EcologySun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Weihong Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Shao Shao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Qi Fang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Shaohua Xu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
- School of EcologySun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zixiao Guo
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
21
|
Song Y, Zhang Y, Wang X, Yu X, Liao Y, Zhang H, Li L, Wang Y, Liu B, Li W. Telomere-to-telomere reference genome for Panax ginseng highlights the evolution of saponin biosynthesis. HORTICULTURE RESEARCH 2024; 11:uhae107. [PMID: 38883331 PMCID: PMC11179851 DOI: 10.1093/hr/uhae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/31/2024] [Indexed: 06/18/2024]
Abstract
Ginseng (Panax ginseng) is a representative of Chinese traditional medicine, also used worldwide, while the triterpene saponin ginsenoside is the most important effective compound within it. Ginseng is an allotetraploid, with complex genetic background, making the study of its metabolic evolution challenging. In this study, we assembled a telomere-to-telomere ginseng reference genome, constructed of 3.45 Gb with 24 chromosomes and 77 266 protein-coding genes. Additionally, the reference genome was divided into two subgenomes, designated as subgenome A and B. Subgenome A contains a larger number of genes, whereas subgenome B has a general expression advantage, suggesting that ginseng subgenomes experienced asymmetric gene loss with biased gene expression. The two subgenomes separated approximately 6.07 million years ago, and subgenome B shows the closest relation to Panax vietnamensis var. fuscidiscus. Comparative genomics revealed an expansion of gene families associated with ginsenoside biosynthesis in both ginseng subgenomes. Furthermore, both tandem duplications and proximal duplications play crucial roles in ginsenoside biosynthesis. We also screened functional genes identified in previous research and found that some of these genes located in colinear regions between subgenomes have divergence functions, revealing an unbalanced evolution in both subgenomes and the saponin biosynthesis pathway in ginseng. Our work provides important resources for future genetic studies and breeding programs of ginseng, as well as the biosynthesis of ginsenosides.
Collapse
Affiliation(s)
- Yiting Song
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yating Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xu Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xikai Yu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yi Liao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Hao Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Linfeng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of Yangtze River Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200433, China
| | - Yingping Wang
- State-Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agricultural University, Changchun 130118, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Wei Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| |
Collapse
|
22
|
He X, Qi Z, Liu Z, Chang X, Zhang X, Li J, Wang M. Pangenome analysis reveals transposon-driven genome evolution in cotton. BMC Biol 2024; 22:92. [PMID: 38654264 DOI: 10.1186/s12915-024-01893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Transposable elements (TEs) have a profound influence on the trajectory of plant evolution, driving genome expansion and catalyzing phenotypic diversification. The pangenome, a comprehensive genetic pool encompassing all variations within a species, serves as an invaluable tool, unaffected by the confounding factors of intraspecific diversity. This allows for a more nuanced exploration of plant TE evolution. RESULTS Here, we constructed a pangenome for diploid A-genome cotton using 344 accessions from representative geographical regions, including 223 from China as the main component. We found 511 Mb of non-reference sequences (NRSs) and revealed the presence of 5479 previously undiscovered protein-coding genes. Our comprehensive approach enabled us to decipher the genetic underpinnings of the distinct geographic distributions of cotton. Notably, we identified 3301 presence-absence variations (PAVs) that are closely tied to gene expression patterns within the pangenome, among which 2342 novel expression quantitative trait loci (eQTLs) were found residing in NRSs. Our investigation also unveiled contrasting patterns of transposon proliferation between diploid and tetraploid cotton, with long terminal repeat (LTR) retrotransposons exhibiting a synchronized surge in polyploids. Furthermore, the invasion of LTR retrotransposons from the A subgenome to the D subgenome triggered a substantial expansion of the latter following polyploidization. In addition, we found that TE insertions were responsible for the loss of 36.2% of species-specific genes, as well as the generation of entirely new species-specific genes. CONCLUSIONS Our pangenome analyses provide new insights into cotton genomics and subgenome dynamics after polyploidization and demonstrate the power of pangenome approaches for elucidating transposon impacts and genome evolution.
Collapse
Affiliation(s)
- Xin He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhengyang Qi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xing Chang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
23
|
Tomlin CM, Rajaraman S, Sebesta JT, Scheen AC, Bendiksby M, Low YW, Salojärvi J, Michael TP, Albert VA, Lindqvist C. Allopolyploid origin and diversification of the Hawaiian endemic mints. Nat Commun 2024; 15:3109. [PMID: 38600100 PMCID: PMC11006916 DOI: 10.1038/s41467-024-47247-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
Island systems provide important contexts for studying processes underlying lineage migration, species diversification, and organismal extinction. The Hawaiian endemic mints (Lamiaceae family) are the second largest plant radiation on the isolated Hawaiian Islands. We generated a chromosome-scale reference genome for one Hawaiian species, Stenogyne calaminthoides, and resequenced 45 relatives, representing 34 species, to uncover the continental origins of this group and their subsequent diversification. We further resequenced 109 individuals of two Stenogyne species, and their purported hybrids, found high on the Mauna Kea volcano on the island of Hawai'i. The three distinct Hawaiian genera, Haplostachys, Phyllostegia, and Stenogyne, are nested inside a fourth genus, Stachys. We uncovered four independent polyploidy events within Stachys, including one allopolyploidy event underlying the Hawaiian mints and their direct western North American ancestors. While the Hawaiian taxa may have principally diversified by parapatry and drift in small and fragmented populations, localized admixture may have played an important role early in lineage diversification. Our genomic analyses provide a view into how organisms may have radiated on isolated island chains, settings that provided one of the principal natural laboratories for Darwin's thinking about the evolutionary process.
Collapse
Affiliation(s)
- Crystal M Tomlin
- Department of Biological Sciences, University at Buffalo, New York, USA
| | - Sitaram Rajaraman
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | | | - Mika Bendiksby
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Yee Wen Low
- Singapore Botanic Gardens, National Parks Board, Singapore, Singapore
| | - Jarkko Salojärvi
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Todd P Michael
- The Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, New York, USA.
| | | |
Collapse
|
24
|
Liu Y, Zhou Y, Cheng F, Zhou R, Yang Y, Wang Y, Zhang X, Soltis DE, Xiao N, Quan Z, Li J. Chromosome-level genome of putative autohexaploid Actinidia deliciosa provides insights into polyploidisation and evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:73-89. [PMID: 38112590 DOI: 10.1111/tpj.16592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Actinidia ('Mihoutao' in Chinese) includes species with complex ploidy, among which diploid Actinidia chinensis and hexaploid Actinidia deliciosa are economically and nutritionally important fruit crops. Actinidia deliciosa has been proposed to be an autohexaploid (2n = 174) with diploid A. chinensis (2n = 58) as the putative parent. A CCS-based assembly anchored to a high-resolution linkage map provided a chromosome-resolved genome for hexaploid A. deliciosa yielded a 3.91-Gb assembly of 174 pseudochromosomes comprising 29 homologous groups with 6 members each, which contain 39 854 genes with an average of 4.57 alleles per gene. Here we provide evidence that much of the hexaploid genome matches diploid A. chinensis; 95.5% of homologous gene pairs exhibited >90% similarity. However, intragenome and intergenome comparisons of synteny indicate chromosomal changes. Our data, therefore, indicate that if A. deliciosa is an autoploid, chromosomal rearrangement occurred following autohexaploidy. A highly diversified pattern of gene expression and a history of rapid population expansion after polyploidisation likely facilitated the adaptation and niche differentiation of A. deliciosa in nature. The allele-defined hexaploid genome of A. deliciosa provides new genomic resources to accelerate crop improvement and to understand polyploid genome evolution.
Collapse
Affiliation(s)
- Yongbo Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| | - Yi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, 10008, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yinqing Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, 10008, China
| | - Yanchang Wang
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Nengwen Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| | - Zhanjun Quan
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| | - Junsheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| |
Collapse
|
25
|
Kan S, Liao X, Lan L, Kong J, Wang J, Nie L, Zou J, An H, Wu Z. Cytonuclear Interactions and Subgenome Dominance Shape the Evolution of Organelle-Targeted Genes in the Brassica Triangle of U. Mol Biol Evol 2024; 41:msae043. [PMID: 38391484 PMCID: PMC10919925 DOI: 10.1093/molbev/msae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
The interaction and coevolution between nuclear and cytoplasmic genomes are one of the fundamental hallmarks of eukaryotic genome evolution and, 2 billion yr later, are still major contributors to the formation of new species. Although many studies have investigated the role of cytonuclear interactions following allopolyploidization, the relative magnitude of the effect of subgenome dominance versus cytonuclear interaction on genome evolution remains unclear. The Brassica triangle of U features 3 diploid species that together have formed 3 separate allotetraploid species on similar evolutionary timescales, providing an ideal system for understanding the contribution of the cytoplasmic donor to hybrid polyploid. Here, we investigated the evolutionary pattern of organelle-targeted genes in Brassica carinata (BBCC) and 2 varieties of Brassica juncea (AABB) at the whole-genome level, with particular focus on cytonuclear enzyme complexes. We found partial evidence that plastid-targeted genes experience selection to match plastid genomes, but no obvious corresponding signal in mitochondria-targeted genes from these 2 separately formed allopolyploids. Interestingly, selection acting on plastid genomes always reduced the retention rate of plastid-targeted genes encoded by the B subgenome, regardless of whether the Brassica nigra (BB) subgenome was contributed by the paternal or maternal progenitor. More broadly, this study illustrates the distinct selective pressures experienced by plastid- and mitochondria-targeted genes, despite a shared pattern of inheritance and natural history. Our study also highlights an important role for subgenome dominance in allopolyploid genome evolution, even in genes whose function depends on separately inherited molecules.
Collapse
Affiliation(s)
- Shenglong Kan
- Marine College, Shandong University, Weihai 264209, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lan Lan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, 6150 Western Australia, Australia
| | - Jiali Kong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, 6150 Western Australia, Australia
| | - Liyun Nie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong An
- Bioinformatics and Analytics Core, University of Missouri, Columbia, MO, USA
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
26
|
Nie B, Chen X, Hou Z, Guo M, Li C, Sun W, Ji J, Zang L, Yang S, Fan P, Zhang W, Li H, Tan Y, Li W, Wang L. Haplotype-phased genome unveils the butylphthalide biosynthesis and homoploid hybrid origin of Ligusticum chuanxiong. SCIENCE ADVANCES 2024; 10:eadj6547. [PMID: 38324681 PMCID: PMC10849598 DOI: 10.1126/sciadv.adj6547] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
Butylphthalide is one of the first-line drugs for ischemic stroke therapy, while no biosynthetic enzyme for butylphthalide has been reported. Here, we present a haplotype-resolved genome of Ligusticum chuanxiong, a long-cultivated and phthalide-rich medicinal plant in Apiaceae. On the basis of comprehensive screening, four Fe(II)- and 2-oxoglutarate-dependent dioxygenases and two CYPs were mined and further biochemically verified as phthalide C-4/C-5 desaturases (P4,5Ds) that effectively promoted the forming of (S)-3-n-butylphthalide and butylidenephthalide. The substrate promiscuity and functional redundancy featured for P4,5Ds may contribute to the high phthalide diversity in L. chuanxiong. Notably, comparative genomic evidence supported L. chuanxiong as a homoploid hybrid with Ligusticum sinense as a potential parent. The two haplotypes demonstrated exceptional structure variance and diverged around 3.42 million years ago. Our study is an icebreaker for the dissection of phthalide biosynthetic pathway and reveals the hybrid origin of L. chuanxiong, which will facilitate the metabolic engineering for (S)-3-n-butylphthalide production and breeding for L. chuanxiong.
Collapse
Affiliation(s)
- Bao Nie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xueqing Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhuangwei Hou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Miaoxian Guo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Cheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wenkai Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jiaojiao Ji
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lanlan Zang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Song Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Pengxiang Fan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310063, China
| | - Wenhao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
27
|
Zong D, Liu H, Gan P, Ma S, Liang H, Yu J, Li P, Jiang T, Sahu SK, Yang Q, Zhang D, Li L, Qiu X, Shao W, Yang J, Li Y, Guang X, He C. Chromosomal-scale genomes of two Rosa species provide insights into genome evolution and ascorbate accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1264-1280. [PMID: 37964640 DOI: 10.1111/tpj.16543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
Rosa roxburghii and Rosa sterilis, two species belonging to the Rosaceae family, are widespread in the southwest of China. These species have gained recognition for their remarkable abundance of ascorbate in their fresh fruits, making them an ideal vitamin C resource. In this study, we generated two high-quality chromosome-scale genome assemblies for R. roxburghii and R. sterilis, with genome sizes of 504 and 981.2 Mb, respectively. Notably, we present a haplotype-resolved, chromosome-scale assembly for diploid R. sterilis. Our results indicated that R. sterilis originated from the hybridization of R. roxburghii and R. longicuspis. Genome analysis revealed the absence of recent whole-genome duplications in both species and identified a series of duplicated genes that possibly contributing to the accumulation of flavonoids. We identified two genes in the ascorbate synthesis pathway, GGP and GalLDH, that show signs of positive selection, along with high expression levels of GDP-d-mannose 3', 5'-epimerase (GME) and GDP-l-galactose phosphorylase (GGP) during fruit development. Furthermore, through co-expression network analysis, we identified key hub genes (MYB5 and bZIP) that likely regulate genes in the ascorbate synthesis pathway, promoting ascorbate biosynthesis. Additionally, we observed the expansion of terpene synthase genes in these two species and tissue expression patterns, suggesting their involvement in terpenoid biosynthesis. Our research provides valuable insights into genome evolution and the molecular basis of the high concentration of ascorbate in these two Rosa species.
Collapse
Affiliation(s)
- Dan Zong
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Peihua Gan
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Shaojie Ma
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Hongping Liang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Jinde Yu
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Peilin Li
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Tao Jiang
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Qingqing Yang
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Deguo Zhang
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 20032, China
| | - Xu Qiu
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Wenwen Shao
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | | | - Yonghe Li
- Yunnan Agricultural University, Kunming, 650201, China
| | - Xuanmin Guang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| |
Collapse
|
28
|
Wang H, Xu D, Jiang F, Wang S, Wang A, Liu H, Lei L, Qian W, Fan W. The genomes of Dahlia pinnata, Cosmos bipinnatus, and Bidens alba in tribe Coreopsideae provide insights into polyploid evolution and inulin biosynthesis. Gigascience 2024; 13:giae032. [PMID: 38869151 PMCID: PMC11170221 DOI: 10.1093/gigascience/giae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/04/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The Coreopsideae tribe, a subset of the Asteraceae family, encompasses economically vital genera like Dahlia, Cosmos, and Bidens, which are widely employed in medicine, horticulture, ecology, and food applications. Nevertheless, the lack of reference genomes hinders evolutionary and biological investigations in this tribe. RESULTS Here, we present 3 haplotype-resolved chromosome-level reference genomes of the tribe Coreopsideae, including 2 popular flowering plants (Dahlia pinnata and Cosmos bipinnatus) and 1 invasive weed plant (Bidens alba), with assembled genome sizes 3.93 G, 1.02 G, and 1.87 G, respectively. We found that Gypsy transposable elements contribute mostly to the larger genome size of D. pinnata, and multiple chromosome rearrangements have occurred in tribe Coreopsideae. Besides the shared whole-genome duplication (WGD-2) in the Heliantheae alliance, our analyses showed that D. pinnata and B. alba each underwent an independent recent WGD-3 event: in D. pinnata, it is more likely to be a self-WGD, while in B. alba, it is from the hybridization of 2 ancestor species. Further, we identified key genes in the inulin metabolic pathway and found that the pseudogenization of 1-FEH1 and 1-FEH2 genes in D. pinnata and the deletion of 3 key residues of 1-FFT proteins in C. bipinnatus and B. alba may probably explain why D. pinnata produces much more inulin than the other 2 plants. CONCLUSIONS Collectively, the genomic resources for the Coreopsideae tribe will promote phylogenomics in Asteraceae plants, facilitate ornamental molecular breeding improvements and inulin production, and help prevent invasive weeds.
Collapse
Affiliation(s)
- Hengchao Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Dong Xu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Fan Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Sen Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Anqi Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Hangwei Liu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Lihong Lei
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Wanqiang Qian
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Wei Fan
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| |
Collapse
|
29
|
Huang Y, Guo L, Xie L, Shang N, Wu D, Ye C, Rudell EC, Okada K, Zhu QH, Song BK, Cai D, Junior AM, Bai L, Fan L. A reference genome of Commelinales provides insights into the commelinids evolution and global spread of water hyacinth (Pontederia crassipes). Gigascience 2024; 13:giae006. [PMID: 38486346 PMCID: PMC10938897 DOI: 10.1093/gigascience/giae006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/20/2023] [Accepted: 02/08/2024] [Indexed: 03/18/2024] Open
Abstract
Commelinales belongs to the commelinids clade, which also comprises Poales that includes the most important monocot species, such as rice, wheat, and maize. No reference genome of Commelinales is currently available. Water hyacinth (Pontederia crassipes or Eichhornia crassipes), a member of Commelinales, is one of the devastating aquatic weeds, although it is also grown as an ornamental and medical plant. Here, we present a chromosome-scale reference genome of the tetraploid water hyacinth with a total length of 1.22 Gb (over 95% of the estimated size) across 8 pseudochromosome pairs. With the representative genomes, we reconstructed a phylogeny of the commelinids, which supported Zingiberales and Commelinales being sister lineages of Arecales and shed lights on the controversial relationship of the orders. We also reconstructed ancestral karyotypes of the commelinids clade and confirmed the ancient commelinids genome having 8 chromosomes but not 5 as previously reported. Gene family analysis revealed contraction of disease-resistance genes during polyploidization of water hyacinth, likely a result of fitness requirement for its role as a weed. Genetic diversity analysis using 9 water hyacinth lines from 3 continents (South America, Asia, and Europe) revealed very closely related nuclear genomes and almost identical chloroplast genomes of the materials, as well as provided clues about the global dispersal of water hyacinth. The genomic resources of P. crassipes reported here contribute a crucial missing link of the commelinids species and offer novel insights into their phylogeny.
Collapse
Affiliation(s)
- Yujie Huang
- Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhongyuan Institute of Zhejiang University, Zhengzhou 450000, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Lingjuan Xie
- Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Nianmin Shang
- Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dongya Wu
- Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chuyu Ye
- Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Eduardo Carlos Rudell
- Department of Crop Sciences, Agricultural School, Federal University of Rio Grande do Sul, Porto Alegre, RS 68011, Brazil
| | - Kazunori Okada
- Agro-Biotechnology Research Center (AgTECH), University of Tokyo, Tokyo 113-8657, Japan
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Black Mountain Laboratories, Canberra, ACT 2601, Australia
| | - Beng-Kah Song
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia
| | - Daguang Cai
- Department of Molecular Phytopathology and Biotechnology, Christian Albrechts University of Kiel, Kiel D-24118, Germany
| | - Aldo Merotto Junior
- Department of Crop Sciences, Agricultural School, Federal University of Rio Grande do Sul, Porto Alegre, RS 68011, Brazil
| | - Lianyang Bai
- Hunan Weed Science Key Laboratory, Hunan Academy of Agriculture Science, Changsha 410125, China
| | - Longjiang Fan
- Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhongyuan Institute of Zhejiang University, Zhengzhou 450000, China
| |
Collapse
|
30
|
Luo H, Wang X, You C, Wu X, Pan D, Lv Z, Li T, Zhang D, Shen Z, Zhang X, Liu G, He K, Ye Q, Jia Y, Zhao Q, Deng X, Cao X, Song X, Huang G. Telomere-to-telomere genome of the allotetraploid legume Sesbania cannabina reveals transposon-driven subgenome divergence and mechanisms of alkaline stress tolerance. SCIENCE CHINA. LIFE SCIENCES 2024; 67:149-160. [PMID: 37897613 DOI: 10.1007/s11427-023-2463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/10/2023] [Indexed: 10/30/2023]
Abstract
Alkaline soils pose an increasing problem for agriculture worldwide, but using stress-tolerant plants as green manure can improve marginal land. Here, we show that the legume Sesbania cannabina is very tolerant to alkaline conditions and, when used as a green manure, substantially improves alkaline soil. To understand genome evolution and the mechanisms of stress tolerance in this allotetraploid legume, we generated the first telomere-to-telomere genome assembly of S. cannabina spanning ∼2,087 Mb. The assembly included all centromeric regions, which contain centromeric satellite repeats, and complete chromosome ends with telomeric characteristics. Further genome analysis distinguished A and B subgenomes, which diverged approximately 7.9 million years ago. Comparative genomic analysis revealed that the chromosome homoeologs underwent large-scale inversion events (>10 Mb) and a significant, transposon-driven size expansion of the chromosome 5A homoeolog. We further identified four specific alkali-induced phosphate transporter genes in S. cannabina; these may function in alkali tolerance by relieving the deficiency in available phosphorus in alkaline soil. Our work highlights the significance of S. cannabina as a green tool to improve marginal lands and sheds light on subgenome evolution and adaptation to alkaline soils.
Collapse
Affiliation(s)
- Haofei Luo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofei Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572025, China
| | - Changqing You
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuedan Wu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Duofeng Pan
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zhiyao Lv
- Hainan Yazhou Bay Seed Lab, Sanya, 572025, China
| | - Tong Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dongmei Zhang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zhongbao Shen
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xiaodong Zhang
- Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257345, China
- Shandong Green Manure Ecological Technology Co., Ltd, Dongying, 257345, China
| | - Guodao Liu
- State Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Kaixuan He
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572025, China
| | - Qingtong Ye
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yajun Jia
- Hainan Yazhou Bay Seed Lab, Sanya, 572025, China
| | - Qinghua Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Gai Huang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
31
|
Song Y, Peng Y, Liu L, Li G, Zhao X, Wang X, Cao S, Muyle A, Zhou Y, Zhou H. Phased gap-free genome assembly of octoploid cultivated strawberry illustrates the genetic and epigenetic divergence among subgenomes. HORTICULTURE RESEARCH 2024; 11:uhad252. [PMID: 38269295 PMCID: PMC10807706 DOI: 10.1093/hr/uhad252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/18/2023] [Indexed: 01/26/2024]
Abstract
The genetic and epigenetic mechanisms underlying the coexistence and coordination of the four diverged subgenomes (ABCD) in octoploid strawberries (Fragaria × ananassa) remains poorly understood. In this study, we have assembled a haplotype-phased gap-free octoploid genome for the strawberry, which allowed us to uncover the sequence, structure, and epigenetic divergences among the subgenomes. The diploid progenitors of the octoploid strawberry, apart from subgenome A (Fragaria vesca), have been a subject of public controversy. Phylogenomic analyses revealed a close relationship between diploid species Fragaria iinumae and subgenomes B, C, and D. Subgenome A, closely related to F. vesca, retains the highest number of genes, exhibits the lowest content of transposable elements (TEs), experiences the strongest purifying selection, shows the lowest DNA methylation levels, and displays the highest expression level compared to the other three subgenomes. Transcriptome and DNA methylome analyses revealed that subgenome A-biased genes were enriched in fruit development biological processes. In contrast, although subgenomes B, C, and D contain equivalent amounts of repetitive sequences, they exhibit diverged methylation levels, particularly for TEs located near genes. Taken together, our findings provide valuable insights into the evolutionary patterns of subgenome structure, divergence and epigenetic dynamics in octoploid strawberries, which could be utilized in strawberry genetics and breeding research.
Collapse
Affiliation(s)
- Yanhong Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Yanling Peng
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lifeng Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Gang Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Xia Zhao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Xu Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shuo Cao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Aline Muyle
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier 34000, France
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 570000, China
| | - Houcheng Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| |
Collapse
|
32
|
Xu MRX, Liao ZY, Brock JR, Du K, Li GY, Chen ZQ, Wang YH, Gao ZN, Agarwal G, Wei KHC, Shao F, Pang S, Platts AE, van de Velde J, Lin HM, Teresi SJ, Bird K, Niederhuth CE, Xu JG, Yu GH, Yang JY, Dai SF, Nelson A, Braasch I, Zhang XG, Schartl M, Edger PP, Han MJ, Zhang HH. Maternal dominance contributes to subgenome differentiation in allopolyploid fishes. Nat Commun 2023; 14:8357. [PMID: 38102128 PMCID: PMC10724154 DOI: 10.1038/s41467-023-43740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Teleost fishes, which are the largest and most diverse group of living vertebrates, have a rich history of ancient and recent polyploidy. Previous studies of allotetraploid common carp and goldfish (cyprinids) reported a dominant subgenome, which is more expressed and exhibits biased gene retention. However, the underlying mechanisms contributing to observed 'subgenome dominance' remains poorly understood. Here we report high-quality genomes of twenty-one cyprinids to investigate the origin and subsequent subgenome evolution patterns following three independent allopolyploidy events. We identify the closest extant relatives of the diploid progenitor species, investigate genetic and epigenetic differences among subgenomes, and conclude that observed subgenome dominance patterns are likely due to a combination of maternal dominance and transposable element densities in each polyploid. These findings provide an important foundation to understanding subgenome dominance patterns observed in teleost fishes, and ultimately the role of polyploidy in contributing to evolutionary innovations.
Collapse
Affiliation(s)
- Min-Rui-Xuan Xu
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Zhen-Yang Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jordan R Brock
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Kang Du
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA
| | - Guo-Yin Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | | | - Ying-Hao Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhong-Nan Gao
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Gaurav Agarwal
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Kevin H-C Wei
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University, School of Life Sciences, Chongqing, China
| | | | - Adrian E Platts
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Jozefien van de Velde
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Hong-Min Lin
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Scott J Teresi
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Kevin Bird
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Chad E Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Jin-Gen Xu
- Jiujiang Academy of Agricultural Sciences, Jiujiang, China
| | - Guo-Hua Yu
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Jian-Yuan Yang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Si-Fa Dai
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | | | - Ingo Braasch
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| | - Xiao-Gu Zhang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| | - Manfred Schartl
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA.
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Bayern, Germany.
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, USA.
| | - Min-Jin Han
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China.
| | - Hua-Hao Zhang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| |
Collapse
|
33
|
Xu Y, Bush SJ, Yang X, Xu L, Wang B, Ye K. Evolutionary analysis of conserved non-coding elements subsequent to whole-genome duplication in opium poppy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1804-1824. [PMID: 37706612 DOI: 10.1111/tpj.16466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Whole-genome duplication (WGD) leads to the duplication of both coding and non-coding sequences within an organism's genome, providing an abundant supply of genetic material that can drive evolution, ultimately contributing to plant adaptation and speciation. Although non-coding sequences contain numerous regulatory elements, they have been understudied compared to coding sequences. In order to address this gap, we explored the evolutionary patterns of regulatory sequences, coding sequences and transcriptomes using conserved non-coding elements (CNEs) as regulatory element proxies following the recent WGD event in opium poppy (Papaver somniferum). Our results showed similar evolutionary patterns in subgenomes of regulatory and coding sequences. Specifically, the biased or unbiased retention of coding sequences reflected the same pattern as retention levels in regulatory sequences. Further, the divergence of gene expression patterns mediated by regulatory element variations occurred at a more rapid pace than that of gene coding sequences. However, gene losses were purportedly dependent on relaxed selection pressure in coding sequences. Specifically, the rapid evolution of tissue-specific benzylisoquinoline alkaloid production in P. somniferum was associated with regulatory element changes. The origin of a novel stem-specific ACR, which utilized ancestral cis-elements as templates, is likely to be linked to the evolutionary trajectory behind the transition of the PSMT1-CYP719A21 cluster from high levels of expression solely in P. rhoeas root tissue to its elevated expression in P. somniferum stem tissue. Our findings demonstrate that rapid regulatory element evolution can contribute to the emergence of new phenotypes and provide valuable insights into the high evolvability of regulatory elements.
Collapse
Affiliation(s)
- Yu Xu
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Stephen J Bush
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xinyi Yang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Linfeng Xu
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bo Wang
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kai Ye
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Genome Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
34
|
Saul F, Scharmann M, Wakatake T, Rajaraman S, Marques A, Freund M, Bringmann G, Channon L, Becker D, Carroll E, Low YW, Lindqvist C, Gilbert KJ, Renner T, Masuda S, Richter M, Vogg G, Shirasu K, Michael TP, Hedrich R, Albert VA, Fukushima K. Subgenome dominance shapes novel gene evolution in the decaploid pitcher plant Nepenthes gracilis. NATURE PLANTS 2023; 9:2000-2015. [PMID: 37996654 DOI: 10.1038/s41477-023-01562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/09/2023] [Indexed: 11/25/2023]
Abstract
Subgenome dominance after whole-genome duplication generates distinction in gene number and expression at the level of chromosome sets, but it remains unclear how this process may be involved in evolutionary novelty. Here we generated a chromosome-scale genome assembly of the Asian pitcher plant Nepenthes gracilis to analyse how its novel traits (dioecy and carnivorous pitcher leaves) are linked to genomic evolution. We found a decaploid karyotype and a clear indication of subgenome dominance. A male-linked and pericentromerically located region on the putative sex chromosome was identified in a recessive subgenome and was found to harbour three transcription factors involved in flower and pollen development, including a likely neofunctionalized LEAFY duplicate. Transcriptomic and syntenic analyses of carnivory-related genes suggested that the paleopolyploidization events seeded genes that subsequently formed tandem clusters in recessive subgenomes with specific expression in the digestive zone of the pitcher, where specialized cells digest prey and absorb derived nutrients. A genome-scale analysis suggested that subgenome dominance likely contributed to evolutionary innovation by permitting recessive subgenomes to diversify functions of novel tissue-specific duplicates. Our results provide insight into how polyploidy can give rise to novel traits in divergent and successful high-ploidy lineages.
Collapse
Affiliation(s)
- Franziska Saul
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Mathias Scharmann
- Institute for Biochemistry and Biology (IBB), University of Potsdam, Potsdam, Germany
| | - Takanori Wakatake
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Sitaram Rajaraman
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Matthias Freund
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Louisa Channon
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Dirk Becker
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Emily Carroll
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yee Wen Low
- Singapore Botanic Gardens, National Parks Board, Singapore, Singapore
| | | | - Kadeem J Gilbert
- Department of Plant Biology & W.K. Kellogg Biological Station & Program in Ecology, Evolution, and Behavior, Michigan State University, Hickory Corners, MI, USA
| | - Tanya Renner
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Sachiko Masuda
- Riken Center for Sustainable Resource Science, Yokohama, Japan
| | - Michaela Richter
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Gerd Vogg
- Botanical Garden, University of Würzburg, Würzburg, Germany
| | - Ken Shirasu
- Riken Center for Sustainable Resource Science, Yokohama, Japan
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Kenji Fukushima
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
35
|
Zhang RG, Shang HY, Jia KH, Ma YP. Subgenome phasing for complex allopolyploidy: case-based benchmarking and recommendations. Brief Bioinform 2023; 25:bbad513. [PMID: 38189536 PMCID: PMC10772947 DOI: 10.1093/bib/bbad513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Accurate subgenome phasing is crucial for understanding the origin, evolution and adaptive potential of polyploid genomes. SubPhaser and WGDI software are two common methodologies for subgenome phasing in allopolyploids, particularly in scenarios lacking known diploid progenitors. Triggered by a recent debate over the subgenomic origins of the cultivated octoploid strawberry, we examined four well-documented complex allopolyploidy cases as benchmarks, to evaluate and compare the accuracy of the two software. Our analysis demonstrates that the subgenomic structure phased by both software is in line with prior research, effectively tracing complex allopolyploid evolutionary trajectories despite the limitations of each software. Furthermore, using these validated methodologies, we revisited the controversial issue regarding the progenitors of the octoploid strawberry. The results of both methodologies reaffirm Fragaria vesca and Fragaria iinumae as progenitors of the octoploid strawberry. Finally, we propose recommendations for enhancing the accuracy of subgenome phasing in future studies, recognizing the potential of integrated tools for advanced complex allopolyploidy research and offering a new roadmap for robust subgenome-based phylogenetic analysis.
Collapse
Affiliation(s)
- Ren-Gang Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201 Yunnan, China
- University of Chinese Academy of Sciences, Beijing 101408 Beijing, China
| | - Hong-Yun Shang
- State Key Laboratory of Plant Diversity and Specialty Crops/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201 Yunnan, China
| | - Kai-Hua Jia
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100 Shandong, China
| | - Yong-Peng Ma
- State Key Laboratory of Plant Diversity and Specialty Crops/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201 Yunnan, China
| |
Collapse
|
36
|
Wang L, Li LL, Chen L, Zhang RG, Zhao SW, Yan H, Gao J, Chen X, Si YJ, Chen Z, Liu H, Xie XM, Zhao W, Han B, Qin X, Jia KH. Telomere-to-telomere and haplotype-resolved genome assembly of the Chinese cork oak ( Quercus variabilis). FRONTIERS IN PLANT SCIENCE 2023; 14:1290913. [PMID: 38023918 PMCID: PMC10652414 DOI: 10.3389/fpls.2023.1290913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
The Quercus variabilis, a deciduous broadleaved tree species, holds significant ecological and economical value. While a chromosome-level genome for this species has been made available, it remains riddled with unanchored sequences and gaps. In this study, we present a nearly complete comprehensive telomere-to-telomere (T2T) and haplotype-resolved reference genome for Q. variabilis. This was achieved through the integration of ONT ultra-long reads, PacBio HiFi long reads, and Hi-C data. The resultant two haplotype genomes measure 789 Mb and 768 Mb in length, with a contig N50 of 65 Mb and 56 Mb, and were anchored to 12 allelic chromosomes. Within this T2T haplotype-resolved assembly, we predicted 36,830 and 36,370 protein-coding genes, with 95.9% and 96.0% functional annotation for each haplotype genome. The availability of the T2T and haplotype-resolved reference genome lays a solid foundation, not only for illustrating genome structure and functional genomics studies but also to inform and facilitate genetic breeding and improvement of cultivated Quercus species.
Collapse
Affiliation(s)
- Longxin Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Lei-Lei Li
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Li Chen
- Shandong Saienfu Stem Cell Engineering Group Co., Ltd, Jinan, China
| | - Ren-Gang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shi-Wei Zhao
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Han Yan
- The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Jie Gao
- Chinese Academy of Sciences (CAS), Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| | - Xue Chen
- Weifang Academy of Agricultural Sciences, Weifang, China
| | - Yu-Jun Si
- Weifang Academy of Agricultural Sciences, Weifang, China
| | - Zhe Chen
- InvoGenomics Biotechnology Co., Ltd., Jinan, China
| | - Haibo Liu
- Jinan Academy of Landscape and Forestry Science, Jinan, China
| | - Xiao-Man Xie
- Key Laboratory of State Forestry and Grassland Administration Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Biao Han
- Key Laboratory of State Forestry and Grassland Administration Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Kai-Hua Jia
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
37
|
Li T, Tang S, Li W, Zhang S, Wang J, Pan D, Lin Z, Ma X, Chang Y, Liu B, Sun J, Wang X, Zhao M, You C, Luo H, Wang M, Ye X, Zhai J, Shen Z, Du H, Song X, Huang G, Cao X. Genome evolution and initial breeding of the Triticeae grass Leymus chinensis dominating the Eurasian Steppe. Proc Natl Acad Sci U S A 2023; 120:e2308984120. [PMID: 37874858 PMCID: PMC10623014 DOI: 10.1073/pnas.2308984120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
Leymus chinensis, a dominant perennial grass in the Eurasian Steppe, is well known for its remarkable adaptability and forage quality. Hardly any breeding has been done on the grass, limiting its potential in ecological restoration and forage productivity. To enable genetic improvement of the untapped, important species, we obtained a 7.85-Gb high-quality genome of L. chinensis with a particularly long contig N50 (318.49 Mb). Its allotetraploid genome is estimated to originate 5.29 million years ago (MYA) from a cross between the Ns-subgenome relating to Psathyrostachys and the unknown Xm-subgenome. Multiple bursts of transposons during 0.433-1.842 MYA after genome allopolyploidization, which involved predominantly the Tekay and Angela of LTR retrotransposons, contributed to its genome expansion and complexity. With the genome resource available, we successfully developed a genetic transformation system as well as the gene-editing pipeline in L. chinensis. We knocked out the monocot-specific miR528 using CRISPR/Cas9, resulting in the improvement of yield-related traits with increases in the tiller number and growth rate. Our research provides valuable genomic resources for Triticeae evolutionary studies and presents a conceptual framework illustrating the utilization of genomic information and genome editing to accelerate the improvement of wild L. chinensis with features such as polyploidization and self-incompatibility.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Shanjie Tang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Wei Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding071000, China
| | - Shuaibin Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Jianli Wang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin150086, China
| | - Duofeng Pan
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin150086, China
| | - Zhelong Lin
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Xuan Ma
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin300387, China
| | - Yanan Chang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Bo Liu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Xiaofei Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Mengjie Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Changqing You
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Haofei Luo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Meijia Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Zhongbao Shen
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin150086, China
| | - Huilong Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding071000, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Gai Huang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing100101, China
| |
Collapse
|
38
|
Zhao H, Wang W, Yang Y, Wang Z, Sun J, Yuan K, Rabbi SMHA, Khanam M, Kabir MS, Seraj ZI, Rahman MS, Zhang Z. A high-quality chromosome-level wild rice genome of Oryza coarctata. Sci Data 2023; 10:701. [PMID: 37838726 PMCID: PMC10576809 DOI: 10.1038/s41597-023-02594-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/25/2023] [Indexed: 10/16/2023] Open
Abstract
Oryza coarctata (2n = 4X = 48, KKLL) is an allotetraploid, undomesticated relative of rice and the only species in the genus Oryza with tolerance to high salinity and submergence. Therefore, it contains important stress and tolerance genes/factors for rice. The initial draft genome published was limited by data and technical restrictions, leading to an incomplete and highly fragmented assembly. This study reports a new, highly contiguous chromosome-level genome assembly and annotation of O. coarctata. PacBio high-quality HiFi reads generated 460 contigs with a total length of 573.4 Mb and an N50 of 23.1 Mb, which were assembled into scaffolds with Hi-C data, anchoring 96.99% of the assembly onto 24 chromosomes. The genome assembly comprises 45,571 genes, and repetitive content contributes 25.5% of the genome. This study provides the novel identification of the KK and LL genome types of the genus Oryza, leading to valuable insights into rice genome evolution. The chromosome-level genome assembly of O. coarctata is a valuable resource for rice research and molecular breeding.
Collapse
Affiliation(s)
- Hang Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, Belgium
| | - Wenzheng Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yirong Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiwei Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kaijun Yuan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Duke university, Durham, USA
| | | | - Munnujan Khanam
- Bangladesh Rice Research Institute, Gazipur, 1701, Bangladesh
| | | | - Zeba I Seraj
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | | | - Zhiguo Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
39
|
Yang F, Ge J, Guo Y, Olmstead R, Sun W. Deciphering complex reticulate evolution of Asian Buddleja (Scrophulariaceae): insights into the taxonomy and speciation of polyploid taxa in the Sino-Himalayan region. ANNALS OF BOTANY 2023; 132:15-28. [PMID: 36722368 PMCID: PMC10550280 DOI: 10.1093/aob/mcad022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND AIMS Species of the genus Buddleja in Asia are mainly distributed in the Sino-Himalayan region and form a challenging taxonomic group, with extensive hybridization and polyploidization. A phylogenetic approach to unravelling the history of reticulation in this lineage will deepen our understanding of the speciation in biodiversity hotspots. METHODS For this study, we obtained 80 accessions representing all the species in the Asian Buddleja clade, and the ploidy level of each taxon was determined by flow cytometry analyses. Whole plastid genomes, nuclear ribosomal DNA, single nucleotide polymorphisms and a large number of low-copy nuclear genes assembled from genome skimming data were used to investigate the reticulate evolutionary history of Asian Buddleja. Complex cytonuclear conflicts were detected through a comparison of plastid and species trees. Gene tree incongruence was also analysed to detect any reticulate events in the history of this lineage. KEY RESULTS Six hybridization events were detected, which are able to explain the cytonuclear conflict in Asian Buddleja. Furthermore, PhyloNet analysis combining species ploidy data indicated several allopolyploid speciation events. A strongly supported species tree inferred from a large number of low-copy nuclear genes not only corrected some earlier misinterpretations, but also indicated that there are many Asian Buddleja species that have been lumped mistakenly. Divergent time estimation shows two periods of rapid diversification (8-10 and 0-3 Mya) in the Asian Buddleja clade, which might coincide with the final uplift of the Hengduan Mountains and Quaternary climate fluctuations, respectively. CONCLUSIONS This study presents a well-supported phylogenetic backbone for the Asian Buddleja species, elucidates their complex and reticulate evolutionary history and suggests that tectonic activity, climate fluctuations, polyploidization and hybridization together promoted the diversification of this lineage.
Collapse
Affiliation(s)
- Fengmao Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming 650201, Yunnan, China
| | - Jia Ge
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming 650201, Yunnan, China
| | - Yongjie Guo
- Germplasm Bank of Wild Species of China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Richard Olmstead
- Department of Biology and Burke Museum, University of Washington, Seattle, WA 98195, USA
| | - Weibang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming 650201, Yunnan, China
| |
Collapse
|
40
|
Jin X, Du H, Zhu C, Wan H, Liu F, Ruan J, Mower JP, Zhu A. Haplotype-resolved genomes of wild octoploid progenitors illuminate genomic diversifications from wild relatives to cultivated strawberry. NATURE PLANTS 2023; 9:1252-1266. [PMID: 37537397 DOI: 10.1038/s41477-023-01473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/03/2023] [Indexed: 08/05/2023]
Abstract
Strawberry is an emerging model for studying polyploid genome evolution and rapid domestication of fruit crops. Here we report haplotype-resolved genomes of two wild octoploids (Fragaria chiloensis and Fragaria virginiana), the progenitor species of cultivated strawberry. Substantial variation is identified between species and between haplotypes. We redefine the four subgenomes and track the genetic contributions of diploid species by additional sequencing of the diploid F. nipponica genome. We provide multiple lines of evidence that F. vesca and F. iinumae, rather than other described extant species, are the closest living relatives of these wild and cultivated octoploids. In response to coexistence with quadruplicate gene copies, the octoploid strawberries have experienced subgenome dominance, homoeologous exchanges and coordinated expression of homoeologous genes. However, some homoeologues have substantially altered expression bias after speciation and during domestication. These findings enhance our understanding of the origin, genome evolution and domestication of strawberries.
Collapse
Affiliation(s)
- Xin Jin
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyuan Du
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chumeng Zhu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong Wan
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Fang Liu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jiwei Ruan
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, USA.
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, USA.
| | - Andan Zhu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
41
|
Liston A. On the origin of strawberries. NATURE PLANTS 2023; 9:1176-1177. [PMID: 37558809 DOI: 10.1038/s41477-023-01488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Affiliation(s)
- Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
42
|
Wang R, Li W, He Q, Zhang H, Wang M, Zheng X, Liu Z, Wang Y, Du C, Du H, Xing L. The genome of okra ( Abelmoschus esculentus) provides insights into its genome evolution and high nutrient content. HORTICULTURE RESEARCH 2023; 10:uhad120. [PMID: 37554345 PMCID: PMC10405168 DOI: 10.1093/hr/uhad120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/26/2023] [Indexed: 08/10/2023]
Abstract
Okra (Abelmoschus esculentus) is an important vegetable crop with high nutritional value. However, the mechanism underlying its high nutrient content remains poorly understood. Here, we present a chromosome-scale genome of okra with a size of 1.19 Gb. Comparative genomics analysis revealed the phylogenetic status of A. esculentus, as well as whole-genome duplication (WGD) events that have occurred widely across the Malvaceae species. We found that okra has experienced three additional WGDs compared with the diploid cotton Gossypium raimondii, resulting in a large chromosome number (2n = 130). After three WGDs, okra has undergone extensive genomic deletions and retained substantial numbers of genes related to secondary metabolite biosynthesis and environmental adaptation, resulting in significant differences between okra and G. raimondii in the gene families related to cellulose synthesis. Combining transcriptomic and metabolomic analysis, we revealed the relationship between gene expression and metabolite content change across different okra developmental stages. Furthermore, the sinapic acid/S-lignin biosynthesis-related gene families have experienced remarkable expansion in okra, and the expression of key enzymes involved in the sinapic acid/S-lignin biosynthesis pathway vary greatly across developmental periods, which partially explains the differences in metabolite content across the different stages. Our study gains insights into the comprehensive evolutionary history of Malvaceae species and the genetic basis that underlies the nutrient content changes in okra, which will facilitate the functional study and genetic improvement of okra varieties.
Collapse
Affiliation(s)
- Ruyu Wang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Wei Li
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
- Hebei Basic Science Center for Biotic Interaction, Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Qiang He
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
- Hebei Basic Science Center for Biotic Interaction, Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Hongyu Zhang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Meijia Wang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Xinyuan Zheng
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Ze Liu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Yu Wang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Cailian Du
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Huilong Du
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
- Hebei Basic Science Center for Biotic Interaction, Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Longsheng Xing
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
- Hebei Basic Science Center for Biotic Interaction, Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| |
Collapse
|
43
|
Shen F, Xu S, Shen Q, Bi C, Lysak MA. The allotetraploid horseradish genome provides insights into subgenome diversification and formation of critical traits. Nat Commun 2023; 14:4102. [PMID: 37491530 PMCID: PMC10368706 DOI: 10.1038/s41467-023-39800-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 06/29/2023] [Indexed: 07/27/2023] Open
Abstract
Polyploidization can provide a wealth of genetic variation for adaptive evolution and speciation, but understanding the mechanisms of subgenome evolution as well as its dynamics and ultimate consequences remains elusive. Here, we report the telomere-to-telomere (T2T) gap-free reference genome of allotetraploid horseradish (Armoracia rusticana) sequenced using a comprehensive strategy. The (epi)genomic architecture and 3D chromatin structure of the A and B subgenomes differ significantly, suggesting that both the dynamics of the dominant long terminal repeat retrotransposons and DNA methylation have played critical roles in subgenome diversification. Investigation of the genetic basis of biosynthesis of glucosinolates (GSLs) and horseradish peroxidases reveals both the important role of polyploidization and subgenome differentiation in shaping the key traits. Continuous duplication and divergence of essential genes of GSL biosynthesis (e.g., FMOGS-OX, IGMT, and GH1 gene family) contribute to the broad GSL profile in horseradish. Overall, the T2T assembly of the allotetraploid horseradish genome expands our understanding of polyploid genome evolution and provides a fundamental genetic resource for breeding and genetic improvement of horseradish.
Collapse
Affiliation(s)
- Fei Shen
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Shixiao Xu
- Tobacco College, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qi Shen
- Genome Research Center, Leeuwenhoek Biotechnology Inc., Hong Kong, China
- Shangji Biotechnology Inc., Tianjin, China
- PheniX, Plant Phenomics Research Centre, Nanjing Agricultural University, Nanjing, China
| | - Changwei Bi
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, China
| | - Martin A Lysak
- Central European Institute of Technology and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
44
|
Xing L, Wang M, He Q, Zhang H, Liang H, Zhou Q, Liu Y, Liu Z, Wang Y, Du C, Xiao Y, Liu J, Li W, Liu G, Du H. Differential subgenome expression underlies biomass accumulation in allotetraploid Pennisetum giganteum. BMC Biol 2023; 21:161. [PMID: 37480118 PMCID: PMC10362693 DOI: 10.1186/s12915-023-01643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/06/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Pennisetum giganteum (AABB, 2n = 4x = 28) is a C4 plant in the genus Pennisetum with origin in Africa but currently also grown in Asia and America. It is a crucial forage and potential energy grass with significant advantages in yield, stress resistance, and environmental adaptation. However, the mechanisms underlying these advantageous traits remain largely unexplored. Here, we present a high-quality genome assembly of the allotetraploid P. giganteum aiming at providing insights into biomass accumulation. RESULTS Our assembly has a genome size 2.03 Gb and contig N50 of 88.47 Mb that was further divided into A and B subgenomes. Genome evolution analysis revealed the evolutionary relationships across the Panicoideae subfamily lineages and identified numerous genome rearrangements that had occurred in P. giganteum. Comparative genomic analysis showed functional differentiation between the subgenomes. Transcriptome analysis found no subgenome dominance at the overall gene expression level; however, differentially expressed homoeologous genes and homoeolog-specific expressed genes between the two subgenomes were identified, suggesting that complementary effects between the A and B subgenomes contributed to biomass accumulation of P. giganteum. Besides, C4 photosynthesis-related genes were significantly expanded in P. giganteum and their sequences and expression patterns were highly conserved between the two subgenomes, implying that both subgenomes contributed greatly and almost equally to the highly efficient C4 photosynthesis in P. giganteum. We also identified key candidate genes in the C4 photosynthesis pathway that showed sustained high expression across all developmental stages of P. giganteum. CONCLUSIONS Our study provides important genomic resources for elucidating the genetic basis of advantageous traits in polyploid species, and facilitates further functional genomics research and genetic improvement of P. giganteum.
Collapse
Affiliation(s)
- Longsheng Xing
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
- Hebei Basic Science Center for Biotic Interaction, Baoding, 071000, China
| | - Meijia Wang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Qiang He
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
- Hebei Basic Science Center for Biotic Interaction, Baoding, 071000, China
| | - Hongyu Zhang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Hanfei Liang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Qinghong Zhou
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Yu Liu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Ze Liu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Yu Wang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Cailian Du
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Yao Xiao
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Jianan Liu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Wei Li
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
- Hebei Basic Science Center for Biotic Interaction, Baoding, 071000, China
| | - Guixia Liu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China.
- Hebei Basic Science Center for Biotic Interaction, Baoding, 071000, China.
| | - Huilong Du
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China.
- Hebei Basic Science Center for Biotic Interaction, Baoding, 071000, China.
| |
Collapse
|
45
|
Ma L, Liu KW, Li Z, Hsiao YY, Qi Y, Fu T, Tang GD, Zhang D, Sun WH, Liu DK, Li Y, Chen GZ, Liu XD, Liao XY, Jiang YT, Yu X, Hao Y, Huang J, Zhao XW, Ke S, Chen YY, Wu WL, Hsu JL, Lin YF, Huang MD, Li CY, Huang L, Wang ZW, Zhao X, Zhong WY, Peng DH, Ahmad S, Lan S, Zhang JS, Tsai WC, Van de Peer Y, Liu ZJ. Diploid and tetraploid genomes of Acorus and the evolution of monocots. Nat Commun 2023; 14:3661. [PMID: 37339946 DOI: 10.1038/s41467-023-38829-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/17/2023] [Indexed: 06/22/2023] Open
Abstract
Monocots are a major taxon within flowering plants, have unique morphological traits, and show an extraordinary diversity in lifestyle. To improve our understanding of monocot origin and evolution, we generate chromosome-level reference genomes of the diploid Acorus gramineus and the tetraploid Ac. calamus, the only two accepted species from the family Acoraceae, which form a sister lineage to all other monocots. Comparing the genomes of Ac. gramineus and Ac. calamus, we suggest that Ac. gramineus is not a potential diploid progenitor of Ac. calamus, and Ac. calamus is an allotetraploid with two subgenomes A, and B, presenting asymmetric evolution and B subgenome dominance. Both the diploid genome of Ac. gramineus and the subgenomes A and B of Ac. calamus show clear evidence of whole-genome duplication (WGD), but Acoraceae does not seem to share an older WGD that is shared by most other monocots. We reconstruct an ancestral monocot karyotype and gene toolkit, and discuss scenarios that explain the complex history of the Acorus genome. Our analyses show that the ancestors of monocots exhibit mosaic genomic features, likely important for that appeared in early monocot evolution, providing fundamental insights into the origin, evolution, and diversification of monocots.
Collapse
Affiliation(s)
- Liang Ma
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ke-Wei Liu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Center for Biotechnology and Biomedicine, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, State Key Laboratory of Health Sciences and Technology, Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Yu-Yun Hsiao
- Orchid Research and Development Center, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Yiying Qi
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Tao Fu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Guang-Da Tang
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China
| | - Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei-Hong Sun
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ding-Kun Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuanyuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Gui-Zhen Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xue-Die Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xing-Yu Liao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yu-Ting Jiang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xia Yu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yang Hao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jie Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xue-Wei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shijie Ke
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - You-Yi Chen
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, 701, Taiwan
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wan-Lin Wu
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Jui-Ling Hsu
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yu-Fu Lin
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ming-Der Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Chia-Ying Li
- Department of Applied Chemistry, National Pingtung University, Pingtung City, Pingtung County, 900003, Taiwan
| | - Laiqiang Huang
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Center for Biotechnology and Biomedicine, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, State Key Laboratory of Health Sciences and Technology, Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | | | | | | | - Dong-Hui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Sagheer Ahmad
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Ji-Sen Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, China.
- State Key Lab for Conservation and Utilization of Subtropical AgroBiological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, 530004, China.
| | - Wen-Chieh Tsai
- Orchid Research and Development Center, National Cheng Kung University, Tainan City, 701, Taiwan.
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
- VIB Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium.
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
- College of Horticulture, Nanjing Agricultural University, Academy for Advanced Interdisciplinary Studies, Nanjing, 210095, China.
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Center for Biotechnology and Biomedicine, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, State Key Laboratory of Health Sciences and Technology, Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
- Institute of Vegetable and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, China.
| |
Collapse
|
46
|
Goeckeritz CZ, Rhoades KE, Childs KL, Iezzoni AF, VanBuren R, Hollender CA. Genome of tetraploid sour cherry (Prunus cerasus L.) 'Montmorency' identifies three distinct ancestral Prunus genomes. HORTICULTURE RESEARCH 2023; 10:uhad097. [PMID: 37426879 PMCID: PMC10323630 DOI: 10.1093/hr/uhad097] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/04/2023] [Indexed: 07/11/2023]
Abstract
Sour cherry (Prunus cerasus L.) is a valuable fruit crop in the Rosaceae family and a hybrid between progenitors closely related to extant Prunus fruticosa (ground cherry) and Prunus avium (sweet cherry). Here we report a chromosome-scale genome assembly for sour cherry cultivar Montmorency, the predominant cultivar grown in the USA. We also generated a draft assembly of P. fruticosa to use alongside a published P. avium sequence for syntelog-based subgenome assignments for 'Montmorency' and provide compelling evidence P. fruticosa is also an allotetraploid. Using hierarchal k-mer clustering and phylogenomics, we show 'Montmorency' is trigenomic, containing two distinct subgenomes inherited from a P. fruticosa-like ancestor (A and A') and two copies of the same subgenome inherited from a P. avium-like ancestor (BB). The genome composition of 'Montmorency' is AA'BB and little-to-no recombination has occurred between progenitor subgenomes (A/A' and B). In Prunus, two known classes of genes are important to breeding strategies: the self-incompatibility loci (S-alleles), which determine compatible crosses, successful fertilization, and fruit set, and the Dormancy Associated MADS-box genes (DAMs), which strongly affect dormancy transitions and flowering time. The S-alleles and DAMs in 'Montmorency' and P. fruticosa were manually annotated and support subgenome assignments. Lastly, the hybridization event 'Montmorency' is descended from was estimated to have occurred less than 1.61 million years ago, making sour cherry a relatively recent allotetraploid. The 'Montmorency' genome highlights the evolutionary complexity of the genus Prunus and will inform future breeding strategies for sour cherry, comparative genomics in the Rosaceae, and questions regarding neopolyploidy.
Collapse
Affiliation(s)
- Charity Z Goeckeritz
- Department of Horticulture, Michigan State University, 1066 Bogue St, East Lansing, MI 48824, USA
| | - Kathleen E Rhoades
- Department of Horticulture, Michigan State University, 1066 Bogue St, East Lansing, MI 48824, USA
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| | - Amy F Iezzoni
- Department of Horticulture, Michigan State University, 1066 Bogue St, East Lansing, MI 48824, USA
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, 1066 Bogue St, East Lansing, MI 48824, USA
| | - Courtney A Hollender
- Department of Horticulture, Michigan State University, 1066 Bogue St, East Lansing, MI 48824, USA
| |
Collapse
|
47
|
Zhang RG, Lu C, Li GY, Lv J, Wang L, Wang ZX, Chen Z, Liu D, Zhao Y, Shi TL, Zhang W, Tang ZH, Mao JF, Ma YP, Jia KH, Zhao W. Subgenome-aware analyses suggest a reticulate allopolyploidization origin in three Papaver genomes. Nat Commun 2023; 14:2204. [PMID: 37076529 PMCID: PMC10115784 DOI: 10.1038/s41467-023-37939-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/05/2023] [Indexed: 04/21/2023] Open
Affiliation(s)
- Ren-Gang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations / Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Chaoxia Lu
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Guang-Yuan Li
- Department of Bioinformatics, Ori (Shandong) Gene Science and Technology Co., Ltd., Weifang, 261322, Shandong, China
| | - Jie Lv
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Longxin Wang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, Shandong, China
| | - Zhao-Xuan Wang
- Shijiazhuang People's Medical College, Shijiazhuang, 050091, Hebei, China
| | - Zhe Chen
- InvoGenomics Biotechnology Co., Ltd., Jinan, 250109, Shandong, China
| | - Dan Liu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, Shandong, China
| | - Ye Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China
| | - Tian-Le Shi
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China
| | - Wei Zhang
- Department of Bioinformatics, Ori (Shandong) Gene Science and Technology Co., Ltd., Weifang, 261322, Shandong, China
| | - Zhao-Hui Tang
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Jian-Feng Mao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China
| | - Yong-Peng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations / Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Kai-Hua Jia
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.
| | - Wei Zhao
- Department of Ecology and Environmental Science, Umeå University, SE-901 87, Umeå, Sweden.
| |
Collapse
|
48
|
Yang X, Gao S, Xu T, Wang B, Jia Y, Ye K. Reply to "Subgenome-aware analyses suggest a reticulate allopolyploidization origin in three Papaver genomes". Nat Commun 2023; 14:2203. [PMID: 37076521 PMCID: PMC10115862 DOI: 10.1038/s41467-023-37940-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/05/2023] [Indexed: 04/21/2023] Open
Affiliation(s)
- Xiaofei Yang
- Genome Institute, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Shenghan Gao
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Tun Xu
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Bo Wang
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Yanyan Jia
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Kai Ye
- Genome Institute, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
- Faculty of Science, Leiden University, 2311 EZ, Leiden, The Netherlands.
| |
Collapse
|
49
|
Sun Y, Liu Y, Shi J, Wang L, Liang C, Yang J, Chen J, Chen M. Biased mutations and gene losses underlying diploidization of the tetraploid broomcorn millet genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:787-801. [PMID: 36575912 DOI: 10.1111/tpj.16085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Broomcorn millet (Panicum miliaceum L.) is one of the earliest domesticated crops, and is a valuable resource to secure food diversity and combat drought stresses under the global warming scenario. However, due to the absence of extant diploid progenitors, the polyploidy genome of broomcorn millet remains poorly understood. Here, we report the chromosome-scale genome assembly of broomcorn millet. We divided the broomcorn millet genome into two subgenomes using the genome sequence of Panicum hallii, a diploid relative of broomcorn millet. Our analyses revealed that the two subgenomes diverged at ~4.8 million years ago (Mya), while the allotetraploidization of broomcorn millet may have occurred about ~0.48 Mya, suggesting that broomcorn millet is a relatively recent allotetraploid. Comparative analyses showed that subgenome B was larger than subgenome A in size, which was caused by the biased accumulation of long terminal repeat retrotransposons in the progenitor of subgenome B before polyploidization. Notably, the accumulation of biased mutations in the transposable element-rich subgenome B led to more gene losses. Although no significant dominance of either subgenome was observed in the expression profiles of broomcorn millet, we found the minimally expressed genes in P. hallii tended to be lost during diploidization of broomcorn millet. These results suggest that broomcorn millet is at the early stage of diploidization and that mutations likely occurred more on genes that were marked with lower expression levels.
Collapse
Affiliation(s)
- Yanling Sun
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Yang Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100039, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jinfeng Shi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Lun Wang
- Institute of Crop Germplasm Resources, Shanxi Academy of Agricultural Sciences, 030031, Taiyuan, China
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, 201602, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Jinfeng Chen
- University of Chinese Academy of Sciences, 100039, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Mingsheng Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100039, Beijing, China
| |
Collapse
|
50
|
Mao J, Wang Y, Wang B, Li J, Zhang C, Zhang W, Li X, Li J, Zhang J, Li H, Zhang Z. High-quality haplotype-resolved genome assembly of cultivated octoploid strawberry. HORTICULTURE RESEARCH 2023; 10:uhad002. [PMID: 37077373 PMCID: PMC10108017 DOI: 10.1093/hr/uhad002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/03/2023] [Indexed: 05/03/2023]
Abstract
Cultivated strawberry (Fragaria × ananassa), a perennial herb belonging to the family Rosaceae, is a complex octoploid with high heterozygosity at most loci. However, there is no research on the haplotype of the octoploid strawberry genome. Here we aimed to obtain a high-quality genome of the cultivated strawberry cultivar, "Yanli", using single molecule real-time sequencing and high-throughput chromosome conformation capture technology. The "Yanli" genome was 823 Mb in size, with a long terminal repeat assembly index of 14.99. The genome was phased into two haplotypes, Hap1 (825 Mb with contig N50 of 26.70 Mb) and Hap2 (808 Mb with contig N50 of 27.51 Mb). Using the combination of Hap1 and Hap2, we obtained for the first time a haplotype-resolved genome with 56 chromosomes for the cultivated octoploid strawberry. We identified a ~ 10 Mb inversion and translocation on chromosome 2-1. 104 957 and 102 356 protein-coding genes were annotated in Hap1 and Hap2, respectively. Analysis of the genes related to the anthocyanin biosynthesis pathway revealed the structural diversity and complexity in the expression of the alleles in the octoploid F. × ananassa genome. In summary, we obtained a high-quality haplotype-resolved genome assembly of F. × ananassa, which will provide the foundation for investigating gene function and evolution of the genome of cultivated octoploid strawberry.
Collapse
Affiliation(s)
| | | | - Baotian Wang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Jiqi Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Chao Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Wenshuo Zhang
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Xue Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Jie Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Junxiang Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
- Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang 110866, China
| | - He Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
- Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang 110866, China
| | | |
Collapse
|