1
|
Lundquist CR, Rudall PJ, Sukri RS, Conejero M, Smith A, Lopez-Garcia M, Vignolini S, Metali F, Whitney HM. Living jewels: iterative evolution of iridescent blue leaves from helicoidal cell walls. ANNALS OF BOTANY 2024; 134:131-150. [PMID: 38551515 PMCID: PMC11161568 DOI: 10.1093/aob/mcae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND AND AIMS Structural colour is responsible for the remarkable metallic blue colour seen in the leaves of several plants. Species belonging to only ten genera have been investigated to date, revealing four photonic structures responsible for structurally coloured leaves. One of these is the helicoidal cell wall, known to create structural colour in the leaf cells of five taxa. Here we investigate a broad selection of land plants to understand the phylogenetic distribution of this photonic structure in leaves. METHODS We identified helicoidal structures in the leaf epidermal cells of 19 species using transmission electron microscopy. Pitch measurements of the helicoids were compared with the reflectance spectra of circularly polarized light from the cells to confirm the structure-colour relationship. RESULTS By incorporating species examined with a polarizing filter, our results increase the number of taxa with photonic helicoidal cell walls to species belonging to at least 35 genera. These include 19 monocot genera, from the orders Asparagales (Orchidaceae) and Poales (Cyperaceae, Eriocaulaceae, Rapateaceae) and 16 fern genera, from the orders Marattiales (Marattiaceae), Schizaeales (Anemiaceae) and Polypodiales (Blechnaceae, Dryopteridaceae, Lomariopsidaceae, Polypodiaceae, Pteridaceae, Tectariaceae). CONCLUSIONS Our investigation adds considerably to the recorded diversity of plants with structurally coloured leaves. The iterative evolution of photonic helicoidal walls has resulted in a broad phylogenetic distribution, centred on ferns and monocots. We speculate that the primary function of the helicoidal wall is to provide strength and support, so structural colour could have evolved as a potentially beneficial chance function of this structure.
Collapse
Affiliation(s)
- Clive R Lundquist
- School of Biological Sciences, University of Bristol, Bristol, UK
- Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey, UK
| | - Paula J Rudall
- Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey, UK
| | - Rahayu S Sukri
- Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
| | - María Conejero
- Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey, UK
| | - Alyssa Smith
- Department of Chemistry, University of Cambridge, UK
| | - Martin Lopez-Garcia
- Department of Nanophotonics, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Silvia Vignolini
- Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Faizah Metali
- Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
| | | |
Collapse
|
2
|
Middleton R, Tunstad SA, Knapp A, Winters S, McCallum S, Whitney H. Self-assembled, disordered structural color from fruit wax bloom. SCIENCE ADVANCES 2024; 10:eadk4219. [PMID: 38324684 PMCID: PMC10849586 DOI: 10.1126/sciadv.adk4219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
Many visually guided frugivores have eyes highly adapted for blue sensitivity, which makes it perhaps surprising that blue pigmented fruits are not more common. However, some fruits are blue even though they do not contain blue pigments. We investigate dark pigmented fruits with wax blooms, like blueberries, plums, and juniper cones, and find that a structural color mechanism is responsible for their appearance. The chromatic blue-ultraviolet reflectance arises from the interaction of the randomly arranged nonspherical scatterers with light. We reproduce the structural color in the laboratory by recrystallizing wax bloom, allowing it to self-assemble to produce the blue appearance. We demonstrate that blue fruits and structurally colored fruits are not constrained to those with blue subcuticular structure or pigment. Further, convergent optical properties appear across a wide phylogenetic range despite diverse morphologies. Epicuticular waxes are elements of the future bioengineering toolbox as sustainable and biocompatible, self-assembling, self-cleaning, and self-repairing optical biomaterials.
Collapse
Affiliation(s)
- Rox Middleton
- University of Bristol, Bristol, UK
- Technische Universität Dresden, Dresden, Germany
| | | | | | - Sandra Winters
- University of Bristol, Bristol, UK
- University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
3
|
Sinnott-Armstrong MA, Middleton R, Ogawa Y, Jacucci G, Moyroud E, Glover BJ, Rudall PJ, Vignolini S, Donoghue MJ. Multiple origins of lipid-based structural colors contribute to a gradient of fruit colors in Viburnum (Adoxaceae). THE NEW PHYTOLOGIST 2023; 237:643-655. [PMID: 36229924 DOI: 10.1111/nph.18538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Structural color is poorly known in plants relative to animals. In fruits, only a handful of cases have been described, including in Viburnum tinus where the blue color results from a disordered multilayered reflector made of lipid droplets. Here, we examine the broader evolutionary context of fruit structural color across the genus Viburnum. We obtained fresh and herbarium fruit material from 30 Viburnum species spanning the phylogeny and used transmission electron microscopy, optical simulations, and ancestral state reconstruction to identify the presence/absence of photonic structures in each species, understand the mechanism producing structural color in newly identified species, relate the development of cell wall structure to reflectance in Viburnum dentatum, and describe the evolution of cell wall architecture across Viburnum. We identify at least two (possibly three) origins of blue fruit color in Viburnum in species which produce large photonic structures made of lipid droplets embedded in the cell wall and which reflect blue light. Examining the full spectrum of mechanisms producing color in pl, including structural color as well as pigments, will yield further insights into the diversity, ecology, and evolution of fruit color.
Collapse
Affiliation(s)
- Miranda A Sinnott-Armstrong
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Ecology & Evolutionary Biology, University of Colorado-Boulder, Boulder, CO, 80303, USA
- Department of Ecology & Evolutionary Biology, Yale University, PO Box 208106, New Haven, CT, 06520, USA
| | - Rox Middleton
- Department of Biological Sciences, University of Bristol, 24 Tyndall Av, Bristol, BS8 1TQ, UK
| | - Yu Ogawa
- CERMAV, CNRS, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Gianni Jacucci
- UMR 8552, Laboratoire Kastler Brossel, Collège de France, Sorbonne Université, Ecole Normale Supérieure-Paris Sciences et Lettres Research University, Centre Nationale de la Recherche Scientifique, 24 rue Lhomond, 75005, Paris, France
| | - Edwige Moyroud
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 ILR, UK
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EJ, UK
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | | | - Silvia Vignolini
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Michael J Donoghue
- Department of Ecology & Evolutionary Biology, Yale University, PO Box 208106, New Haven, CT, 06520, USA
| |
Collapse
|