1
|
Li B, Jia Y, Xu L, Zhang S, Long Z, Wang R, Guo Y, Zhang W, Jiao C, Li C, Xu Y. Transcriptional convergence after repeated duplication of an amino acid transporter gene leads to the independent emergence of the black husk/pericarp trait in barley and rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1282-1298. [PMID: 38124464 PMCID: PMC11022822 DOI: 10.1111/pbi.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/09/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
The repeated emergence of the same trait (convergent evolution) in distinct species is an interesting phenomenon and manifests visibly the power of natural selection. The underlying genetic mechanisms have important implications to understand how the genome evolves under environmental challenges. In cereal crops, both rice and barley can develop black-coloured husk/pericarp due to melanin accumulation. However, it is unclear if this trait shares a common origin. Here, we fine-mapped the barley HvBlp gene controlling the black husk/pericarp trait and confirmed its function by gene silencing. The result was further supported by a yellow husk/pericarp mutant with deletion of the HvBlp gene, derived from gamma ray radiation of the wild-type W1. HvBlp encodes a putative tyrosine transporter homologous to the black husk gene OsBh4 in rice. Surprisingly, synteny and phylogenetic analyses showed that HvBlp and OsBh4 belonged to different lineages resulted from dispersed and tandem duplications, respectively, suggesting that the black husk/pericarp trait has emerged independently. The dispersed duplication (dated at 21.23 MYA) yielding HvBlp occurred exclusively in the common ancestor of Triticeae. HvBlp and OsBh4 displayed converged transcription in husk/pericarp tissues, contributing to the black husk/pericarp trait. Further transcriptome and metabolome data identified critical candidate genes and metabolites related to melanin production in barley. Taken together, our study described a compelling case of convergent evolution resulted from transcriptional convergence after repeated gene duplication, providing valuable genetic insights into phenotypic evolution. The identification of the black husk/pericarp genes in barley also has great potential in breeding for stress-resilient varieties with higher nutritional values.
Collapse
Affiliation(s)
- Bo Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement & Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Molecular Breeding, Food Crops InstituteHubei Academy of Agricultural SciencesWuhanChina
| | - Yong Jia
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Le Xu
- Hubei Collaborative Innovation Centre for the industrialization of Major Grain Crops, College of AgricultureYangtze UniversityJingzhouChina
| | - Shuo Zhang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement & Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Molecular Breeding, Food Crops InstituteHubei Academy of Agricultural SciencesWuhanChina
| | - Zhoukai Long
- Hubei Collaborative Innovation Centre for the industrialization of Major Grain Crops, College of AgricultureYangtze UniversityJingzhouChina
| | - Rong Wang
- Hubei Collaborative Innovation Centre for the industrialization of Major Grain Crops, College of AgricultureYangtze UniversityJingzhouChina
| | - Ying Guo
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement & Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Molecular Breeding, Food Crops InstituteHubei Academy of Agricultural SciencesWuhanChina
| | - Wenying Zhang
- Hubei Collaborative Innovation Centre for the industrialization of Major Grain Crops, College of AgricultureYangtze UniversityJingzhouChina
| | - Chunhai Jiao
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement & Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Molecular Breeding, Food Crops InstituteHubei Academy of Agricultural SciencesWuhanChina
| | - Chengdao Li
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
- Department of Primary Industries and Regional DevelopmentSouth PerthWestern AustraliaAustralia
| | - Yanhao Xu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement & Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Molecular Breeding, Food Crops InstituteHubei Academy of Agricultural SciencesWuhanChina
| |
Collapse
|
2
|
Zeng ZH, Zhong L, Sun HY, Wu ZK, Wang X, Wang H, Li DZ, Barrett SCH, Zhou W. Parallel evolution of morphological and genomic selfing syndromes accompany the breakdown of heterostyly. THE NEW PHYTOLOGIST 2024; 242:302-316. [PMID: 38214455 DOI: 10.1111/nph.19522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Evolutionary transitions from outcrossing to selfing in flowering plants have convergent morphological and genomic signatures and can involve parallel evolution within related lineages. Adaptive evolution of morphological traits is often assumed to evolve faster than nonadaptive features of the genomic selfing syndrome. We investigated phenotypic and genomic changes associated with transitions from distyly to homostyly in the Primula oreodoxa complex. We determined whether the transition to selfing occurred more than once and investigated stages in the evolution of morphological and genomic selfing syndromes using 22 floral traits and both nuclear and plastid genomic data from 25 populations. Two independent transitions were detected representing an earlier and a more recently derived selfing lineage. The older lineage exhibited classic features of the morphological and genomic selfing syndrome. Although features of both selfing syndromes were less developed in the younger selfing lineage, they exhibited parallel development with the older selfing lineage. This finding contrasts with the prediction that some genomic changes should lag behind adaptive changes to morphological traits. Our findings highlight the value of comparative studies on the timing and extent of transitions from outcrossing to selfing between related lineages for investigating the tempo of morphological and molecular evolution.
Collapse
Affiliation(s)
- Zhi-Hua Zeng
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhong
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua-Ying Sun
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Zhi-Kun Wu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550002, China
| | - Xin Wang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Hong Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Wei Zhou
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, Yunnan, 674100, China
| |
Collapse
|
3
|
Zhou F, Wang S, Qin H, Zeng H, Ye J, Yang J, Cai G, Wu Z, Zhang Z. Genome-wide association analysis unveils candidate genes and loci associated with aplasia cutis congenita in pigs. BMC Genomics 2023; 24:701. [PMID: 37990155 PMCID: PMC10664689 DOI: 10.1186/s12864-023-09803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/11/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Aplasia cutis congenita (ACC) is a rare genetic disorder characterized by the localized or widespread absence of skin in humans and animals. Individuals with ACC may experience developmental abnormalities in the skeletal and muscular systems, as well as potential complications. Localized and isolated cases of ACC can be treated through surgical and medical interventions, while extensive cases of ACC may result in neonatal mortality. The presence of ACC in pigs has implications for animal welfare. It contributes to an elevated mortality rate among piglets at birth, leading to substantial economic losses in the pig farming industry. In order to elucidate candidate genetic loci associated with ACC, we performed a Genome-Wide Association Study analysis on 216 Duroc pigs. The primary goal of this study was to identify candidate genes that associated with ACC. RESULTS This study identified nine significant SNPs associated with ACC. Further analysis revealed the presence of two quantitative trait loci, 483 kb (5:18,196,971-18,680,098) on SSC 5 and 159 kb (13:20,713,440-207294431 bp) on SSC13. By annotating candidate genes within a 1 Mb region surrounding the significant SNPs, a total of 11 candidate genes were identified on SSC5 and SSC13, including KRT71, KRT1, KRT4, ITGB7, CSAD, RARG, SP7, PFKL, TRPM2, SUMO3, and TSPEAR. CONCLUSIONS The results of this study further elucidate the potential mechanisms underlying and genetic architecture of ACC and identify reliable candidate genes. These results lay the foundation for treating and understanding ACC in humans.
Collapse
Affiliation(s)
- Fuchen Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China
| | - Shenghui Wang
- Guangdong Wens Breeding Swine Technology Co., Ltd, Guangdong, 527400, P.R. China
| | - Haojun Qin
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China
| | - Haiyu Zeng
- Guangdong Wens Breeding Swine Technology Co., Ltd, Guangdong, 527400, P.R. China
| | - Jian Ye
- Guangdong Wens Breeding Swine Technology Co., Ltd, Guangdong, 527400, P.R. China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China
- Guangdong Wens Breeding Swine Technology Co., Ltd, Guangdong, 527400, P.R. China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.
- Guangdong Wens Breeding Swine Technology Co., Ltd, Guangdong, 527400, P.R. China.
| | - Zebin Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.
| |
Collapse
|
4
|
Zhou F, Quan J, Ruan D, Qiu Y, Ding R, Xu C, Ye Y, Cai G, Liu L, Zhang Z, Yang J, Wu Z, Zheng E. Identification of Candidate Genes for Economically Important Carcass Cutting in Commercial Pigs through GWAS. Animals (Basel) 2023; 13:3243. [PMID: 37893967 PMCID: PMC10603759 DOI: 10.3390/ani13203243] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
During the process of pork production, the carcasses of pigs are divided and sold, which provides better economic benefits and market competitiveness for pork production than selling the carcass as a whole. Due to the significant cost of post-slaughter phenotypic measurement, the genetic architecture of tenderloin weight (TLNW) and rib weight (RIBW)-important components of pig carcass economic value-remain unknown. In this study, we conducted genome-wide association studies (GWAS) for TLNW and RIBW traits in a population of 431 Duroc × Landrace × Yorkshire (DLY) pigs. In our study, the most significant single nucleotide polymorphism (SNP) associated with TLNW was identified as ASGA0085853 (3.28 Mb) on Sus scrofa chromosome 12 (SSC12), while for RIBW, it was Affx-1115046258 (172.45 Mb) on SSC13. Through haplotype block analysis, we discovered a novel quantitative trait locus (QTL) associated with TLNW, spanning a 5 kb region on SSC12, and a novel RIBW-associated QTL spanning 1.42 Mb on SSC13. Furthermore, we hypothesized that three candidate genes, TIMP2 and EML1, and SMN1, are associated with TLNW and RIBW, respectively. Our research not only addresses the knowledge gap regarding TLNW, but also serves as a valuable reference for studying RIBW. The identified SNP loci strongly associated with TLNW and RIBW may prove useful for marker-assisted selection in pig breeding programs.
Collapse
Affiliation(s)
- Fuchen Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (J.Q.); (D.R.); (Y.Q.); (R.D.); (C.X.); (Y.Y.); (G.C.); (L.L.); (Z.Z.); (J.Y.)
| | - Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (J.Q.); (D.R.); (Y.Q.); (R.D.); (C.X.); (Y.Y.); (G.C.); (L.L.); (Z.Z.); (J.Y.)
| | - Donglin Ruan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (J.Q.); (D.R.); (Y.Q.); (R.D.); (C.X.); (Y.Y.); (G.C.); (L.L.); (Z.Z.); (J.Y.)
| | - Yibin Qiu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (J.Q.); (D.R.); (Y.Q.); (R.D.); (C.X.); (Y.Y.); (G.C.); (L.L.); (Z.Z.); (J.Y.)
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (J.Q.); (D.R.); (Y.Q.); (R.D.); (C.X.); (Y.Y.); (G.C.); (L.L.); (Z.Z.); (J.Y.)
| | - Cineng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (J.Q.); (D.R.); (Y.Q.); (R.D.); (C.X.); (Y.Y.); (G.C.); (L.L.); (Z.Z.); (J.Y.)
| | - Yong Ye
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (J.Q.); (D.R.); (Y.Q.); (R.D.); (C.X.); (Y.Y.); (G.C.); (L.L.); (Z.Z.); (J.Y.)
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (J.Q.); (D.R.); (Y.Q.); (R.D.); (C.X.); (Y.Y.); (G.C.); (L.L.); (Z.Z.); (J.Y.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Zhongxin Breeding Technology Co., Ltd., Guangzhou 510642, China
| | - Langqing Liu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (J.Q.); (D.R.); (Y.Q.); (R.D.); (C.X.); (Y.Y.); (G.C.); (L.L.); (Z.Z.); (J.Y.)
| | - Zebin Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (J.Q.); (D.R.); (Y.Q.); (R.D.); (C.X.); (Y.Y.); (G.C.); (L.L.); (Z.Z.); (J.Y.)
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (J.Q.); (D.R.); (Y.Q.); (R.D.); (C.X.); (Y.Y.); (G.C.); (L.L.); (Z.Z.); (J.Y.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (J.Q.); (D.R.); (Y.Q.); (R.D.); (C.X.); (Y.Y.); (G.C.); (L.L.); (Z.Z.); (J.Y.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Zhongxin Breeding Technology Co., Ltd., Guangzhou 510642, China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu 527400, China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (J.Q.); (D.R.); (Y.Q.); (R.D.); (C.X.); (Y.Y.); (G.C.); (L.L.); (Z.Z.); (J.Y.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|