1
|
Croce R, Carmo-Silva E, Cho YB, Ermakova M, Harbinson J, Lawson T, McCormick AJ, Niyogi KK, Ort DR, Patel-Tupper D, Pesaresi P, Raines C, Weber APM, Zhu XG. Perspectives on improving photosynthesis to increase crop yield. THE PLANT CELL 2024; 36:3944-3973. [PMID: 38701340 PMCID: PMC11449117 DOI: 10.1093/plcell/koae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024]
Abstract
Improving photosynthesis, the fundamental process by which plants convert light energy into chemical energy, is a key area of research with great potential for enhancing sustainable agricultural productivity and addressing global food security challenges. This perspective delves into the latest advancements and approaches aimed at optimizing photosynthetic efficiency. Our discussion encompasses the entire process, beginning with light harvesting and its regulation and progressing through the bottleneck of electron transfer. We then delve into the carbon reactions of photosynthesis, focusing on strategies targeting the enzymes of the Calvin-Benson-Bassham (CBB) cycle. Additionally, we explore methods to increase carbon dioxide (CO2) concentration near the Rubisco, the enzyme responsible for the first step of CBB cycle, drawing inspiration from various photosynthetic organisms, and conclude this section by examining ways to enhance CO2 delivery into leaves. Moving beyond individual processes, we discuss two approaches to identifying key targets for photosynthesis improvement: systems modeling and the study of natural variation. Finally, we revisit some of the strategies mentioned above to provide a holistic view of the improvements, analyzing their impact on nitrogen use efficiency and on canopy photosynthesis.
Collapse
Affiliation(s)
- Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, theNetherlands
| | | | - Young B Cho
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Maria Ermakova
- School of Biological Sciences, Faculty of Science, Monash University, Melbourne, VIC 3800, Australia
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Alistair J McCormick
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Dhruv Patel-Tupper
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Paolo Pesaresi
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Christine Raines
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| | - Xin-Guang Zhu
- Key Laboratory of Carbon Capture, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
2
|
Leverett A, Kromdijk J. The long and tortuous path towards improving photosynthesis by engineering elevated mesophyll conductance. PLANT, CELL & ENVIRONMENT 2024; 47:3411-3427. [PMID: 38804598 DOI: 10.1111/pce.14940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/13/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
The growing demand for global food production is likely to be a defining issue facing humanity over the next 50 years. To tackle this challenge, there is a desire to bioengineer crops with higher photosynthetic efficiencies, to increase yields. Recently, there has been a growing interest in engineering leaves with higher mesophyll conductance (gm), which would allow CO2 to move more efficiently from the substomatal cavities to the chloroplast stroma. However, if crop yield gains are to be realised through this approach, it is essential that the methodological limitations associated with estimating gm are fully appreciated. In this review, we summarise these limitations, and outline the uncertainties and assumptions that can affect the final estimation of gm. Furthermore, we critically assess the predicted quantitative effect that elevating gm will have on assimilation rates in crop species. We highlight the need for more theoretical modelling to determine whether altering gm is truly a viable route to improve crop performance. Finally, we offer suggestions to guide future research on gm, which will help mitigate the uncertainty inherently associated with estimating this parameter.
Collapse
Affiliation(s)
- Alistair Leverett
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
3
|
Zhang Y, Gu S, Du J, Huang G, Shi J, Lu X, Wang J, Yang W, Guo X, Zhao C. Plant microphenotype: from innovative imaging to computational analysis. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:802-818. [PMID: 38217351 PMCID: PMC10955502 DOI: 10.1111/pbi.14244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 01/15/2024]
Abstract
The microphenotype plays a key role in bridging the gap between the genotype and the complex macro phenotype. In this article, we review the advances in data acquisition and the intelligent analysis of plant microphenotyping and present applications of microphenotyping in plant science over the past two decades. We then point out several challenges in this field and suggest that cross-scale image acquisition strategies, powerful artificial intelligence algorithms, advanced genetic analysis, and computational phenotyping need to be established and performed to better understand interactions among genotype, environment, and management. Microphenotyping has entered the era of Microphenotyping 3.0 and will largely advance functional genomics and plant science.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shenghao Gu
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jianjun Du
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Guanmin Huang
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiawei Shi
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xianju Lu
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jinglu Wang
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xinyu Guo
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chunjiang Zhao
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
4
|
Sloan J, Wang S, Ngai QY, Xiao Y, Armand J, Wilson MJ, Zhu X, Fleming AJ. Conserved cellular patterning in the mesophyll of rice leaves. PLANT DIRECT 2023; 7:e549. [PMID: 38054113 PMCID: PMC10695703 DOI: 10.1002/pld3.549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023]
Abstract
The mesophyll cells of grass leaves, such as rice, are traditionally viewed as displaying a relatively uniform pattern, in contrast to the clear distinctions of palisade and spongy layers in typical eudicot leaves. This quantitative analysis of mesophyll cell size and shape in rice leaves reveals that there is an inherent pattern in which cells in the middle layer of the mesophyll are larger and less circular and have a distinct orientation of their long axis compared to mesophyll cells in other layers. Moreover, this pattern was observed in a range of rice cultivars and species. The significance of this pattern with relation to potential photosynthetic function and the implication of the widespread use of middle layer mesophyll cells as typical of the rice leaf have been investigated and discussed.
Collapse
Affiliation(s)
- Jen Sloan
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Saranrat Wang
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Qi Yang Ngai
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Yi Xiao
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana ChampaignUrbanaILUSA
| | - Jodie Armand
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Matthew J. Wilson
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Xin‐Guang Zhu
- Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Andrew J. Fleming
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
5
|
Zhang P, Huang J, Ma Y, Wang X, Kang M, Song Y. Crop/Plant Modeling Supports Plant Breeding: II. Guidance of Functional Plant Phenotyping for Trait Discovery. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0091. [PMID: 37780969 PMCID: PMC10538623 DOI: 10.34133/plantphenomics.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/26/2023] [Indexed: 10/03/2023]
Abstract
Observable morphological traits are widely employed in plant phenotyping for breeding use, which are often the external phenotypes driven by a chain of functional actions in plants. Identifying and phenotyping inherently functional traits for crop improvement toward high yields or adaptation to harsh environments remains a major challenge. Prediction of whole-plant performance in functional-structural plant models (FSPMs) is driven by plant growth algorithms based on organ scale wrapped up with micro-environments. In particular, the models are flexible for scaling down or up through specific functions at the organ nexus, allowing the prediction of crop system behaviors from the genome to the field. As such, by virtue of FSPMs, model parameters that determine organogenesis, development, biomass production, allocation, and morphogenesis from a molecular to the whole plant level can be profiled systematically and made readily available for phenotyping. FSPMs can provide rich functional traits representing biological regulatory mechanisms at various scales in a dynamic system, e.g., Rubisco carboxylation rate, mesophyll conductance, specific leaf nitrogen, radiation use efficiency, and source-sink ratio apart from morphological traits. High-throughput phenotyping such traits is also discussed, which provides an unprecedented opportunity to evolve FSPMs. This will accelerate the co-evolution of FSPMs and plant phenomics, and thus improving breeding efficiency. To expand the great promise of FSPMs in crop science, FSPMs still need more effort in multiscale, mechanistic, reproductive organ, and root system modeling. In summary, this study demonstrates that FSPMs are invaluable tools in guiding functional trait phenotyping at various scales and can thus provide abundant functional targets for phenotyping toward crop improvement.
Collapse
Affiliation(s)
- Pengpeng Zhang
- School of Agronomy, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Jingyao Huang
- School of Agronomy, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Yuntao Ma
- College of Land Science and Technology, China Agricultural University, Beijing 100094, China
| | - Xiujuan Wang
- The State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Mengzhen Kang
- The State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4350, Australia
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4350, Australia
| |
Collapse
|
6
|
Głowacka K, Kromdijk J, Salesse-Smith CE, Smith C, Driever SM, Long SP. Is chloroplast size optimal for photosynthetic efficiency? THE NEW PHYTOLOGIST 2023; 239:2197-2211. [PMID: 37357337 DOI: 10.1111/nph.19091] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/04/2023] [Indexed: 06/27/2023]
Abstract
Improving photosynthetic efficiency has recently emerged as a promising way to increase crop production in a sustainable manner. While chloroplast size may affect photosynthetic efficiency in several ways, we aimed to explore whether chloroplast size manipulation can be a viable approach to improving photosynthetic performance. Several tobacco (Nicotiana tabacum) lines with contrasting chloroplast sizes were generated via manipulation of chloroplast division genes to assess photosynthetic performance under steady-state and fluctuating light. A selection of lines was included in a field trial to explore productivity. Lines with enlarged chloroplasts underperformed in most of the measured traits. Lines with smaller and more numerous chloroplasts showed a similar efficiency compared with wild-type (WT) tobacco. Chloroplast size only weakly affected light absorptance and light profiles within the leaf. Increasing chloroplast size decreased mesophyll conductance (gm ) but decreased chloroplast size did not increase gm . Increasing chloroplast size reduced chloroplast movements and enhanced non-photochemical quenching. The chloroplast smaller than WT appeared to be no better than WT for photosynthetic efficiency and productivity under field conditions. The results indicate that chloroplast size manipulations are therefore unlikely to lead to higher photosynthetic efficiency or growth.
Collapse
Affiliation(s)
- Katarzyna Głowacka
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, 1901 Vine Street, Lincoln, NE, 68588, USA
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, Poznań, 60-479, Poland
| | - Johannes Kromdijk
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Coralie E Salesse-Smith
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| | - Cailin Smith
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, 1901 Vine Street, Lincoln, NE, 68588, USA
- Goshen College, 1700 South Main Street, Goshen, IN, 46526, USA
| | - Steven M Driever
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
- Centre for Crop Systems Analysis, Wageningen University, Bornsesteeg 48, Wageningen, 6708PE, the Netherlands
| | - Stephen P Long
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
- Departments of Plant Biology and of Crop Sciences, University of Illinois, 505 South Goodwin Avenue, Urbana, IL, 61801, USA
| |
Collapse
|
7
|
Abstract
When microscopy meets modelling the exciting concept of a 'virtual leaf' is born. The goal of a 'virtual leaf' is to capture complex physiology in a virtual environment, resulting in the capacity to run experiments computationally. One example of a 'virtual leaf' application is capturing 3D anatomy from volume microscopy data and estimating where water evaporates in the leaf and the proportions of apoplastic, symplastic and gas phase water transport. The same 3D anatomy could then be used to improve established 3D reaction-diffusion models, providing a better understanding of the transport of CO2 across the stomata, through the airspace and across the mesophyll cell wall. This viewpoint discusses recent progress that has been made in transitioning from a bulk leaf approach to a 3D understanding of leaf physiology, in particular, the movement of CO2 and H2O within the leaf.
Collapse
|