1
|
Wu X, Wang L, Xing Q, Zhao Y, Qi H. CmPIF8-CmERF27-CmACS10-mediated ethylene biosynthesis modulates red light-induced powdery mildew resistance in oriental melon. PLANT, CELL & ENVIRONMENT 2024; 47:4135-4150. [PMID: 38923433 DOI: 10.1111/pce.15015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Powdery mildew is a serious fungal disease in protected melon cultivation that affects the growth, development and production of melon plants. Previous studies have shown that red light can improve oriental melon seedlings resistance to powdery mildew. Here, after inoculation with Podosphaera xanthii, an obligate fungal pathogen eliciting powdery mildew, we found that red light pretreatment increased ethylene production and this improved the resistance of melon seedlings to powdery mildew, and the ethylene biosynthesis gene CmACS10 played an important role in this process. By analysing the CmACS10 promoter, screening yeast one-hybrid library, it was found that CmERF27 positively regulated the expression of CmACS10, increased powdery mildew resistance and interacted with PHYTOCHROME INTERACTING FACTOR8 (CmPIF8) at the protein level to participate in the regulation of ethylene biosynthesis to respond to the red light-induced resistance to P. xanthii, Furthermore, CmPIF8 also directly targeted the promoter of CmACS10, negatively participated in this process. In summary, this study revealed the specific mechanism by which the CmPIF8-CmERF27-CmACS10 module regulates red light-induced ethylene biosynthesis to resist P. xanthii infection, elucidate the interaction between light and plant hormones under biological stress, provide a reference and genetic resources for breeding of disease-resistant melon plants.
Collapse
Affiliation(s)
- Xutong Wu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| | - Lixia Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| | - Qiaojuan Xing
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yaping Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| |
Collapse
|
2
|
Pale M, Pérez-Torres CA, Arenas-Huertero C, Villafán E, Sánchez-Rangel D, Ibarra-Laclette E. Genome-Wide Transcriptional Response of Avocado to Fusarium sp. Infection. PLANTS (BASEL, SWITZERLAND) 2024; 13:2886. [PMID: 39458832 PMCID: PMC11511450 DOI: 10.3390/plants13202886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
The avocado crop is relevant for its economic importance and because of its unique evolutionary history. However, there is a lack of information regarding the molecular processes during the defense response against fungal pathogens. Therefore, using a genome-wide approach in this work, we investigated the transcriptional response of the Mexican horticultural race of avocado (Persea americana var. drymifolia), including miRNAs profile and their possible targets. For that, we established an avocado-Fusarium hydroponic pathosystem and studied the response for 21 days. To guarantee robustness in the analysis, first, we improved the avocado genome assembly available for this variety, resulting in 822.49 Mbp in length with 36,200 gene models. Then, using an RNA-seq approach, we identified 13,778 genes differentially expressed in response to the Fusarium infection. According to their expression profile across time, these genes can be clustered into six groups, each associated with specific biological processes. Regarding non-coding RNAs, 8 of the 57 mature miRNAs identified in the avocado genome are responsive to infection caused by Fusarium, and the analysis revealed a total of 569 target genes whose transcript could be post-transcriptionally regulated. This study represents the first research in avocados to comprehensively explore the role of miRNAs in orchestrating defense responses against Fusarium spp. Also, this work provides valuable data about the genes involved in the intricate response of the avocado during fungal infection.
Collapse
Affiliation(s)
- Michel Pale
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
| | - Claudia-Anahí Pérez-Torres
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
- Investigador por México-CONAHCYT en el Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico
| | - Catalina Arenas-Huertero
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78295, San Luis Potosí, Mexico;
| | - Emanuel Villafán
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
| | - Diana Sánchez-Rangel
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
- Investigador por México-CONAHCYT en el Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
| |
Collapse
|
3
|
Chen L, Zhang Y, Hao Q, Fu J, Bao Z, Bu Y, Sun N, Wu X, Lu L, Kong Z, Qin L, Zhou Y, Jing Y, Wang X. Enhancement of in situ detection and imaging of phytohormones in plant tissues by MALDI-MSI using 2,4-dihydroxy-5-nitrobenzoic acid as a novel matrix. THE NEW PHYTOLOGIST 2024; 243:2021-2036. [PMID: 39014531 DOI: 10.1111/nph.19964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/27/2024] [Indexed: 07/18/2024]
Abstract
Phytohormones possess unique chemical structures, and their physiological effects are regulated through intricate interactions or crosstalk among multiple phytohormones. MALDI-MSI enables the simultaneous detection and imaging of multiple hormones. However, its application for tracing phytohormones is currently restricted by low abundance of hormone in plant and suboptimal matrix selection. 2,4-Dihydroxy-5-nitrobenzoic acid (DHNBA) was reported as a new MALDI matrix for the enhanced detection and imaging of multiple phytohormones in plant tissues. DHNBA demonstrates remarkable sensitivity improvement when compared to the commonly used matrix, 2,5-dihydroxybenzoic acid (DHB), in the detection of isoprenoid cytokinins (trans-zeatin (tZ), dihy-drozeatin (DHZ), meta-topolin (mT), and N6-(Δ2-isopentenyl) adenine (iP)), jasmonic acid (JA), abscisic acid (ABA), and 1-aminocyclo-propane-1-carboxylic acid (ACC) standards. The distinctive properties of DHNBA (i.e. robust UV absorption, uniform matrix deposition, negligible background interference, and high ionization efficiency of phytohormones) make it as an ideal matrix for enhanced detection and imaging of phytohormones, including tZ, DHZ, ABA, indole-3-acetic acid (IAA), and ACC, by MALDI-MSI in various plant tissues, for example germinating seeds, primary/lateral roots, and nodules. Employing DHNBA significantly enhances our capability to concurrently track complex phytohormone biosynthesis pathways while providing precise differentiation of the specific roles played by individual phytohormones within the same category. This will propel forward the comprehensive exploration of phytohormonal functions in plant science.
Collapse
Affiliation(s)
- Lulu Chen
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Qichen Hao
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing, 100081, China
| | - Jinxiang Fu
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing, 100081, China
| | - Zhibin Bao
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing, 100081, China
| | - Yufen Bu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Na Sun
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Xinyuan Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Liang Lu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liang Qin
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing, 100081, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing, 100081, China
| | - Yanping Jing
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Xiaodong Wang
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing, 100081, China
| |
Collapse
|
4
|
Liu L, Zhang Y, Tang C, Wu J, Fu J, Wang Q. Genome-wide identification of ZmMYC2 binding sites and target genes in maize. BMC Genomics 2024; 25:397. [PMID: 38654166 PMCID: PMC11036654 DOI: 10.1186/s12864-024-10297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Jasmonate (JA) is the important phytohormone to regulate plant growth and adaption to stress signals. MYC2, an bHLH transcription factor, is the master regulator of JA signaling. Although MYC2 in maize has been identified, its function remains to be clarified. RESULTS To understand the function and regulatory mechanism of MYC2 in maize, the joint analysis of DAP-seq and RNA-seq is conducted to identify the binding sites and target genes of ZmMYC2. A total of 3183 genes are detected both in DAP-seq and RNA-seq data, potentially as the directly regulating genes of ZmMYC2. These genes are involved in various biological processes including plant growth and stress response. Besides the classic cis-elements like the G-box and E-box that are bound by MYC2, some new motifs are also revealed to be recognized by ZmMYC2, such as nGCATGCAnn, AAAAAAAA, CACGTGCGTGCG. The binding sites of many ZmMYC2 regulating genes are identified by IGV-sRNA. CONCLUSIONS All together, abundant target genes of ZmMYC2 are characterized with their binding sites, providing the basis to construct the regulatory network of ZmMYC2 and better understanding for JA signaling in maize.
Collapse
Affiliation(s)
- Lijun Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, 611130, Chengdu, China
- College of Life Science, Sichuan Agricultural University, 625014, Yaan, China
| | - Yuhan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, 611130, Chengdu, China
| | - Chen Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, 611130, Chengdu, China
| | - Jine Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, 611130, Chengdu, China
| | - Jingye Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, 611130, Chengdu, China.
| | - Qiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, 611130, Chengdu, China.
| |
Collapse
|
5
|
Fu J, Pei W, He L, Ma B, Tang C, Zhu L, Wang L, Zhong Y, Chen G, Wang Q, Wang Q. ZmEREB92 plays a negative role in seed germination by regulating ethylene signaling and starch mobilization in maize. PLoS Genet 2023; 19:e1011052. [PMID: 37976306 PMCID: PMC10691696 DOI: 10.1371/journal.pgen.1011052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/01/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023] Open
Abstract
Rapid and uniform seed germination is required for modern cropping system. Thus, it is important to optimize germination performance through breeding strategies in maize, in which identification for key regulators is needed. Here, we characterized an AP2/ERF transcription factor, ZmEREB92, as a negative regulator of seed germination in maize. Enhanced germination in ereb92 mutants is contributed by elevated ethylene signaling and starch degradation. Consistently, an ethylene signaling gene ZmEIL7 and an α-amylase gene ZmAMYa2 are identified as direct targets repressed by ZmEREB92. OsERF74, the rice ortholog of ZmEREB92, shows conserved function in negatively regulating seed germination in rice. Importantly, this orthologous gene pair is likely experienced convergently selection during maize and rice domestication. Besides, mutation of ZmEREB92 and OsERF74 both lead to enhanced germination under cold condition, suggesting their regulation on seed germination might be coupled with temperature sensitivity. Collectively, our findings uncovered the ZmEREB92-mediated regulatory mechanism of seed germination in maize and provide breeding targets for maize and rice to optimize seed germination performance towards changing climates.
Collapse
Affiliation(s)
- Jingye Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Wenzheng Pei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Linqian He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Ben Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Chen Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Li Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Liping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yuanyuan Zhong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Gang Chen
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Qi Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Yactayo-Chang JP, Block AK. The impact of climate change on maize chemical defenses. Biochem J 2023; 480:1285-1298. [PMID: 37622733 DOI: 10.1042/bcj20220444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Climate change is increasingly affecting agriculture, both at the levels of crops themselves, and by altering the distribution and damage caused by insect or microbial pests. As global food security depends on the reliable production of major crops such as maize (Zea mays), it is vital that appropriate steps are taken to mitigate these negative impacts. To do this a clear understanding of what the impacts are and how they occur is needed. This review focuses on the impact of climate change on the production and effectiveness of maize chemical defenses, including volatile organic compounds, terpenoid phytoalexins, benzoxazinoids, phenolics, and flavonoids. Drought, flooding, heat stress, and elevated concentrations of atmospheric carbon dioxide, all impact the production of maize chemical defenses, in a compound and tissue-specific manner. Furthermore, changes in stomatal conductance and altered soil conditions caused by climate change can impact environmental dispersal and effectiveness certain chemicals. This can alter both defensive barrier formation and multitrophic interactions. The production of defense chemicals is controlled by stress signaling networks. The use of similar networks to co-ordinate the response to abiotic and biotic stress can lead to complex integration of these networks in response to the combinatorial stresses that are likely to occur in a changing climate. The impact of multiple stressors on maize chemical defenses can therefore be different from the sum of the responses to individual stressors and challenging to predict. Much work remains to effectively leverage these protective chemicals in climate-resilient maize.
Collapse
Affiliation(s)
- Jessica P Yactayo-Chang
- United States Department of Agriculture-Agricultural Research Service, Chemistry Research Unit, Gainesville, FL, U.S.A
| | - Anna K Block
- United States Department of Agriculture-Agricultural Research Service, Chemistry Research Unit, Gainesville, FL, U.S.A
| |
Collapse
|
7
|
Advances of Apetala2/Ethylene Response Factors in Regulating Development and Stress Response in Maize. Int J Mol Sci 2023; 24:ijms24065416. [PMID: 36982510 PMCID: PMC10049130 DOI: 10.3390/ijms24065416] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Apetala2/ethylene response factor (AP2/ERF) is one of the largest families of transcription factors, regulating growth, development, and stress response in plants. Several studies have been conducted to clarify their roles in Arabidopsis and rice. However, less research has been carried out on maize. In this review, we systematically identified the AP2/ERFs in the maize genome and summarized the research progress related to AP2/ERF genes. The potential roles were predicted from rice homologs based on phylogenetic and collinear analysis. The putative regulatory interactions mediated by maize AP2/ERFs were discovered according to integrated data sources, implying that they involved complex networks in biological activities. This will facilitate the functional assignment of AP2/ERFs and their applications in breeding strategy.
Collapse
|