1
|
Fang H, Wu J, Xie L, Li Y, Huang J, Yan X, He X, Deng W, Chen J, Ji Y, Li R, Wen C, Yu W, Wang P. Telomere-to-telomere genome assembly of eggplant (Solanum melongena L.) promotes gene fine localization of the green stripe (GS) in pericarp. Int J Biol Macromol 2025; 284:138094. [PMID: 39608550 DOI: 10.1016/j.ijbiomac.2024.138094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Fruit appearance of eggplant is a key commercial trait, and the precise selection of new varieties with diverse aesthetics aligns with current breeding objectives. However, functional genomics research in eggplant remains underdeveloped. Here, we assembled the first telomere-to-telomere (T2T) eggplant genome, as well as chloroplast and mitochondrial genomes for the inbred line 'NO211'. The 1.06-Gb SmT2T genome is anchored to 12 chromosomes, nine of which are gap-free, totaling three gaps. This assembly harbors 36,505 genes and 64.08 % repetitive sequences, identifying 12 centromeres and 22 telomeres. Utilizing the SmT2T genome for bulked segregant analysis (BSA) and forward genetic approach with green-striped 'NO211' and pure green 'P13' as parents, the green stripe (GS) locus was finely mapped to a 9-Kb region on Chr4, containing a single gene, eggplant.04G07850 (GLK protein). Sequence analysis and qRT-PCR revealed that a single-base deletion in the exon of SmGLK in 'P13' led to premature stop codon, and SmGLK expression was significantly higher in the pericarp of 'NO211' compared to 'P13'. A marker was developed and validated in 36 germplasms, demonstrating co-segregation with green-striped rind trait. This study provides an ideal reference genome for eggplant functional genomics studies, facilitating mechanistic research on peel stripe formation and molecular-assisted selection for fruit appearance.
Collapse
Affiliation(s)
- Huarong Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China.
| | - Jie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China.
| | - Liang Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China.
| | - Yizhiqi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China.
| | - Jingjing Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China.
| | - Xiaoyun Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China.
| | - Xuehan He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China.
| | - Wentao Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China.
| | - Jie Chen
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| | - Yanhai Ji
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| | - Ruirui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China.
| | - Changlong Wen
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| | - Wenjin Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China.
| | - Peng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Khojayori FN, Ponraj U, Buch K, Zhao Y, Herrera-Ubaldo H, Glover BJ. Evolution and development of complex floral displays. Development 2024; 151:dev203027. [PMID: 39498660 PMCID: PMC11574353 DOI: 10.1242/dev.203027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Flowering plants - angiosperms - display an astounding diversity of floral features, which have evolved in response to animal pollination and have resulted in the most species-rich plant clade. Combinations of macroscale (e.g. colour, symmetry, organ number) and microscale (e.g. cell type, tissue patterning) features often lead to highly elaborate floral displays. Most studies have focused on model species with simple floral displays to uncover the genetic and evolutionary mechanisms involved in flower evolution, yet few studies have focused on complex floral displays. Here, we review current knowledge on the development and evolution of complex floral displays. We review gene regulatory networks involved in four developmental pathways contributing to overall floral display (inflorescence architecture, organ identity, flower symmetry and flower colour) in classical plant models. We then discuss how evolutionary modification of one or more of these pathways has resulted in the production of a range of complex floral displays. Finally, we explore modular systems in which multiple pathways have been modified simultaneously, generating the most elaborate floral displays.
Collapse
Affiliation(s)
- Farahnoz N Khojayori
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Udhaya Ponraj
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Kristina Buch
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Yi Zhao
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Humberto Herrera-Ubaldo
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
3
|
Duan AQ, Deng YJ, Liu H, Xu ZS, Xiong AS. An anthocyanin activation gene underlies the purple central flower pigmentation in wild carrot. PLANT PHYSIOLOGY 2024; 196:1147-1162. [PMID: 39046113 DOI: 10.1093/plphys/kiae391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024]
Abstract
Many organisms have complex pigmentation patterns. However, how these patterns are formed remains largely unknown. In wild carrot (Daucus carota subsp. carota), which is also known as Queen Anne's lace, one or several purple central flowers occur in white umbels. Here, we investigated the unique central flower pigmentation pattern in wild carrot umbels. Using wild and cultivated carrot (D. carota subsp. sativus L.) accessions, transcriptome analysis, protein interaction, stable transformation, and CRISPR/Cas9-mediated knockout, an anthocyanin-activating R2R3-myeloblastosis (MYB) gene, Purple Central Flower (DcPCF), was identified as the causal gene that triggers only central flowers to possess the purple phenotype. The expression of DcPCF was only detected in tiny central flowers. We propose that the transition from purple to nonpurple flowers in the center of the umbel occurred after 3 separate adverse events: insertion of transposons in the promoter region, premature termination of the coding sequence (caused by a C-T substitution in the open reading frame), and the emergence of unknown anthocyanin suppressors. These 3 events could have occurred either consecutively or independently. The intriguing purple central flower pattern and its underlying mechanism may provide evidence that it is a remnant of ancient conditions of the species, reflecting the original appearance of Umbelliferae (also called Apiaceae) when a single flower was present.
Collapse
Affiliation(s)
- Ao-Qi Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yuan-Jie Deng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
4
|
Lv X, Wang Y, Wang X, Zhang M, Zhang Y, Zhao L, Zhang X. Development and anatomy of petals with specialized nectar holder and pollen container in Fumarioideae (Papaveraceae). PLANTA 2024; 260:21. [PMID: 38847829 DOI: 10.1007/s00425-024-04453-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/28/2024] [Indexed: 07/03/2024]
Abstract
MAIN CONCLUSION Petal developmental characteristics in Fumarioideae were similar at early stages, and the specialized nectar holder/pollen container formed by the outer/inner petals. The micro-morphology of these two structures, however, shows diversity in seven species. Elaborate petals have been modified to form different types, including petal lobes, ridges, protuberances, and spurs, each with specialized functions. Nectar holder and pollen container presumably have a function in plant-pollinator interactions. In Fumarioideae, four elaborate petals of the disymmetric/zygomorphic flower present architecture forming the "nectar holder" and "pollen container" structure at the bottom and top separately. In the present study, the petals of seven species in Fumarioideae were investigated by scanning electron microscopy, light microscope, and transmission electron microscopes. The results show that petal development could divided into six stages: initiation, enlargement, adaxial/abaxial differentiation, elaborate specializations (sacs, spurs, and lobes formed), extension, and maturation, while the specialized "nectar holder" and "pollen container" structures mainly formed in stage 4. "Nectar holder" is developed from the shallow sac/spur differentiated at the base of the outer petal, eventually forming a multi-organized complex structure, together with staminal nectaries (1-2) with individual sizes. A semi-closed ellipsoidal "pollen container" is developed from the apical part of the 3-lobed inner petals fused by middle lobes and attain different sizes. The adaxial epidermis cells are specialized, with more distinct punctate/dense columnar protrusions or wavy cuticles presented on obviously thickening cell walls. In addition, a large and well-developed cavity appears between the inner and outer epidermis of the petals. As an exception, Hypecoum erectum middle lobes present stamen mimicry. Elaborate petal structure is crucial for comprehending the petal diversity in Fumarioideae and provides more evidence for further exploration of the reproductive study in Papaveraceae.
Collapse
Affiliation(s)
- Xuqian Lv
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yaxi Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Xiaojia Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Mingyue Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yuqu Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Xianyang, China
| | - Liang Zhao
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Xiaohui Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| |
Collapse
|
5
|
Zhou X, Wang X, Wei H, Zhang H, Wu Q, Wang L. Integrative analysis of transcriptome and target metabolites uncovering flavonoid biosynthesis regulation of changing petal colors in Nymphaea 'Feitian 2'. BMC PLANT BIOLOGY 2024; 24:370. [PMID: 38714932 PMCID: PMC11075258 DOI: 10.1186/s12870-024-05078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Nymphaea (waterlily) is known for its rich colors and role as an important aquatic ornamental plant globally. Nymphaea atrans and some hybrids, including N. 'Feitian 2,' are more appealing due to the gradual color change of their petals at different flower developmental stages. The petals of N. 'Feitian 2' gradually change color from light blue-purple to deep rose-red throughout flowering. The mechanism of the phenomenon remains unclear. RESULTS In this work, flavonoids in the petals of N. 'Feitian 2' at six flowering stages were examined to identify the influence of flavonoid components on flower color changes. Additionally, six cDNA libraries of N. 'Feitian 2' over two blooming stages were developed, and the transcriptome was sequenced to identify the molecular mechanism governing petal color changes. As a result, 18 flavonoid metabolites were identified, including five anthocyanins and 13 flavonols. Anthocyanin accumulation during flower development is the primary driver of petal color change. A total of 12 differentially expressed genes (DEGs) in the flavonoid biosynthesis pathway were uncovered, and these DEGs were significantly positively correlated with anthocyanin accumulation. Six structural genes were ultimately focused on, as their expression levels varied significantly across different flowering stages. Moreover, 104 differentially expressed transcription factors (TFs) were uncovered, and three MYBs associated with flavonoid biosynthesis were screened. The RT-qPCR results were generally aligned with high-throughput sequencing results. CONCLUSIONS This research offers a foundation to clarify the mechanisms underlying changes in the petal color of waterlilies.
Collapse
Affiliation(s)
- Xian Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haohui Wei
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- Hunan Agricultural University, Changsha, 410128, China
| | - Huijin Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Qian Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| | - Liangsheng Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Wang H, Kong Y, Dou X, Yang Y, Chi X, Lang L, Zhang Q, Pan H, Bai J. Integrative Metabolomic and Transcriptomic Analyses Reveal the Mechanism of Petal Blotch Formation in Rosa persica. Int J Mol Sci 2024; 25:4030. [PMID: 38612838 PMCID: PMC11012444 DOI: 10.3390/ijms25074030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Petal blotch is a specific flower color pattern commonly found in angiosperm families. In particular, Rosa persica is characterized by dark red blotches at the base of yellow petals. Modern rose cultivars with blotches inherited the blotch trait from R. persica. Therefore, understanding the mechanism for blotch formation is crucial for breeding rose cultivars with various color patterns. In this study, the metabolites and genes responsible for the blotch formation in R. persica were identified for the first time through metabolomic and transcriptomic analyses using LC-MS/MS and RNA-seq. A total of 157 flavonoids were identified, with 7 anthocyanins as the major flavonoids, namely, cyanidin 3-O-(6″-O-malonyl) glucoside 5-O-glucoside, cyanidin-3-O-glucoside, cyanidin 3-O-galactoside, cyanidin O-rutinoside-O-malonylglucoside, pelargonidin 3-O-glucoside, pelargonidin 3,5-O-diglucoside, and peonidin O-rutinoside-O-malonylglucoside, contributing to pigmentation and color darkening in the blotch parts of R. persica, whereas carotenoids predominantly influenced the color formation of non-blotch parts. Zeaxanthin and antheraxanthin mainly contributed to the yellow color formation of petals at the semi-open and full bloom stages. The expression levels of two 4-coumarate: CoA ligase genes (Rbe014123 and Rbe028518), the dihydroflavonol 4-reductase gene (Rbe013916), the anthocyanidin synthase gene (Rbe016466), and UDP-flavonoid glucosyltransferase gene (Rbe026328) indicated that they might be the key structural genes affecting the formation and color of petal blotch. Correlation analysis combined with weighted gene co-expression network analysis (WGCNA) further characterized 10 transcription factors (TFs). These TFs might participate in the regulation of anthocyanin accumulation in the blotch parts of petals by modulating one or more structural genes. Our results elucidate the compounds and molecular mechanisms underlying petal blotch formation in R. persica and provide valuable candidate genes for the future genetic improvement of rose cultivars with novel flower color patterns.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (H.W.); (Y.Y.); (X.C.); (Q.Z.)
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China; (Y.K.); (X.D.); (L.L.)
| | - Ying Kong
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China; (Y.K.); (X.D.); (L.L.)
| | - Xiaoying Dou
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China; (Y.K.); (X.D.); (L.L.)
| | - Yi Yang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (H.W.); (Y.Y.); (X.C.); (Q.Z.)
| | - Xiufeng Chi
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (H.W.); (Y.Y.); (X.C.); (Q.Z.)
| | - Lixin Lang
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China; (Y.K.); (X.D.); (L.L.)
| | - Qixiang Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (H.W.); (Y.Y.); (X.C.); (Q.Z.)
| | - Huitang Pan
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (H.W.); (Y.Y.); (X.C.); (Q.Z.)
| | - Jinrong Bai
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China; (Y.K.); (X.D.); (L.L.)
| |
Collapse
|
7
|
Wei Y, Li A, Zhao Y, Li W, Dong Z, Zhang L, Zhu Y, Zhang H, Gao Y, Zhang Q. Time-Course Transcriptomic Analysis Reveals Molecular Insights into the Inflorescence and Flower Development of Cardiocrinum giganteum. PLANTS (BASEL, SWITZERLAND) 2024; 13:649. [PMID: 38475495 DOI: 10.3390/plants13050649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Cardiocrinum giganteum is an endemic species of east Asia which is famous for its showy inflorescence and medicinal bulbs. Its inflorescence is a determinate raceme and the flowers bloom synchronously. Morphological observation and time-course transcriptomic analysis were combined to study the process of inflorescence and flower development of C. giganteum. The results show that the autonomic pathway, GA pathway, and the vernalization pathway are involved in the flower formation pathway of C. giganteum. A varied ABCDE flowering model was deduced from the main development process. Moreover, it was found that the flowers in different parts of the raceme in C. giganteum gradually synchronized during development, which is highly important for both evolution and ecology. The results obtained in this work improve our understanding of the process and mechanism of inflorescence and flower development and could be useful for the flowering period regulation and breeding of C. giganteum.
Collapse
Affiliation(s)
- Yu Wei
- Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Ex Situ Conservation, Beijing Botanical Garden, Beijing 100093, China
| | - Aihua Li
- Key Laboratory of National Forestry and Grassland Administration on Plant Ex Situ Conservation, Beijing Botanical Garden, Beijing 100093, China
| | - Yiran Zhao
- Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Wenqi Li
- Key Laboratory of National Forestry and Grassland Administration on Plant Ex Situ Conservation, Beijing Botanical Garden, Beijing 100093, China
| | - Zhiyang Dong
- Key Laboratory of National Forestry and Grassland Administration on Plant Ex Situ Conservation, Beijing Botanical Garden, Beijing 100093, China
| | - Lei Zhang
- Key Laboratory of National Forestry and Grassland Administration on Plant Ex Situ Conservation, Beijing Botanical Garden, Beijing 100093, China
| | - Yuntao Zhu
- Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Hui Zhang
- Key Laboratory of National Forestry and Grassland Administration on Plant Ex Situ Conservation, Beijing Botanical Garden, Beijing 100093, China
| | - Yike Gao
- Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qixiang Zhang
- Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|