1
|
Taku M, Saini M, Kumar R, Debbarma P, Rathod NKK, Onteddu R, Sharma D, Pandey R, Gaikwad K, Lal SK, Talukdar A. Modified speed breeding approach reduced breeding cycle to less than half in vegetable soybean [ Glycine max (L.) Merr.]. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1463-1473. [PMID: 39310709 PMCID: PMC11413296 DOI: 10.1007/s12298-024-01503-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/28/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024]
Abstract
Vegetable soybean [Glycine max (L.) Merr.] is gaining popularity because of its high nutritive values and health benefits; however, its productivity is scarce. Recognizing the need to accelerate breeding progress, a modified approach of 'speed breeding' was used in 16 vegetable soybean genotypes to reduce the breeding periods. The genotypes were exposed to cycles of 10 h light (30 °C) and 14 h dark (25 °C) with CO2 (550 ppm) and without CO2 supplementation under the light intensity of 220 µmol m-2 s-1 at the canopy level and 70-80% relative humidity. To reduce the time further, physiologically matured pods were harvested once they changed their color from green to greenish yellow and dried in the oven for 7 days at 25 ± 2 °C with RH 10-20%. The genotypes showed variable responses towards days to flowering coupled with an increase in the number of pods, number of seeds and seed weight per plant, and 100 seed weight during a short breeding period under CO2 supplement. A couple of genotypes behaved indifferently under normal and elevated CO2 levels. The fresh oven-dried seeds displayed 73.33-100% germination, while that in the seeds stored at 4 °C for 10 months was 80-100%. Thus, the modified speed breeding technique could effectively reduce the breeding period without affecting the germination of the seeds. With this approach, we could save 6-34 days in a genotype dependent way which would at least give 4-4.5 generations of soybean per year instead of the usual 1-2 generations. Further, the reduction in maturity duration was more in longer duration genotypes than the shorter duration ones. This represents the country's initial report of rapid breeding in vegetable soybean and offers ample opportunity for rapid generation advancement in this crop. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01503-z.
Collapse
Affiliation(s)
- Meniari Taku
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Manisha Saini
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Rahul Kumar
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, ICAR, Tripura Agartala, India
| | - Pulak Debbarma
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012 India
| | | | - Reshma Onteddu
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Deepshikha Sharma
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Renu Pandey
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Kishore Gaikwad
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
| | - S. K. Lal
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Akshay Talukdar
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
2
|
Wang X, Wei X, Wu G, Chen S. Transcriptome and proteome analyses reveal high nitrate or ammonium applications alleviate photosynthetic decline of Phoebe bournei seedlings under elevated carbon dioxide by regulating glnA and rbcS. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1085-1097. [PMID: 39100876 PMCID: PMC11291807 DOI: 10.1007/s12298-024-01481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
The global CO2 concentration is predicted to reach 700 µmol·mol-1 by the end of this century. Phoebe bournei (Hemsl.) Yang is a precious timber species and is listed as a national secondary protection plant in China. P. bournei seedlings show obvious photosynthetic decline when grown long-term under an elevated CO2 concentration (eCO2, EC). This decline can be alleviated by high nitrate or ammonium applications. However, the underlying mechanisms have not yet been elucidated. We performed transcriptomic and proteomic analyses of P. bournei of seedlings grown under an ambient CO2 concentration (AC) and applied with either a moderate level of nitrate (N), a high level of nitrate (hN), or a moderate level of ammonium (A) and compared them with those of seedlings grown under eCO2 (i.e., AC_N vs EC_N, AC_hN vs EC_hN, AC_A vs EC_A) to identify differentially expressed genes (DEGs) and differentially expressed proteins (DEPs). We identified 4528 (AC_N vs EC_N), 1378 (AC_hN vs EC_hN), and 252 (AC_A vs EC_A) DEGs and 230, 514, and 234 DEPs, respectively, of which 59 specific genes and 21 specific proteins were related to the regulation of photosynthesis by nitrogen under eCO2. A combined transcriptomic and proteomic analysis identified 7 correlation-DEGs-DEPs genes. These correlation-DEGs-DEPs genes revealed crucial pathways involved in glyoxylate and dicarboxylate metabolism and nitrogen metabolism. The rbcS and glnA correlation-DEGs-DEPs genes were enriched in these two metabolisms. We propose that the rbcS and glnA correlation-DEGs-DEPs genes play an important role in photosynthetic decline and nitrogen regulation. High nitrate or ammonium applications alleviated the downregulation of glnA and rbcS and, hence, alleviated photosynthetic decline. The results of this study provide directions for the screening of germplasm resources and molecular breeding of P. bournei, which is tolerant to elevated CO2 concentrations. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01481-2.
Collapse
Affiliation(s)
- Xiao Wang
- College of Forestry, Guizhou University, Guiyang, China
- College of Agriculture, Anshun University, Anshun, China
| | - Xiaoli Wei
- College of Forestry, Guizhou University, Guiyang, China
| | - Gaoyin Wu
- College of Forestry, Guizhou University, Guiyang, China
| | - Shengqun Chen
- College of Forestry, Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Huo Q, Song R, Ma Z. Recent advances in exploring transcriptional regulatory landscape of crops. FRONTIERS IN PLANT SCIENCE 2024; 15:1421503. [PMID: 38903438 PMCID: PMC11188431 DOI: 10.3389/fpls.2024.1421503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Crop breeding entails developing and selecting plant varieties with improved agronomic traits. Modern molecular techniques, such as genome editing, enable more efficient manipulation of plant phenotype by altering the expression of particular regulatory or functional genes. Hence, it is essential to thoroughly comprehend the transcriptional regulatory mechanisms that underpin these traits. In the multi-omics era, a large amount of omics data has been generated for diverse crop species, including genomics, epigenomics, transcriptomics, proteomics, and single-cell omics. The abundant data resources and the emergence of advanced computational tools offer unprecedented opportunities for obtaining a holistic view and profound understanding of the regulatory processes linked to desirable traits. This review focuses on integrated network approaches that utilize multi-omics data to investigate gene expression regulation. Various types of regulatory networks and their inference methods are discussed, focusing on recent advancements in crop plants. The integration of multi-omics data has been proven to be crucial for the construction of high-confidence regulatory networks. With the refinement of these methodologies, they will significantly enhance crop breeding efforts and contribute to global food security.
Collapse
Affiliation(s)
| | | | - Zeyang Ma
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Lee S, Showalter J, Zhang L, Cassin-Ross G, Rouached H, Busch W. Nutrient levels control root growth responses to high ambient temperature in plants. Nat Commun 2024; 15:4689. [PMID: 38824148 PMCID: PMC11144241 DOI: 10.1038/s41467-024-49180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
Global warming will lead to significantly increased temperatures on earth. Plants respond to high ambient temperature with altered developmental and growth programs, termed thermomorphogenesis. Here we show that thermomorphogenesis is conserved in Arabidopsis, soybean, and rice and that it is linked to a decrease in the levels of the two macronutrients nitrogen and phosphorus. We also find that low external levels of these nutrients abolish root growth responses to high ambient temperature. We show that in Arabidopsis, this suppression is due to the function of the transcription factor ELONGATED HYPOCOTYL 5 (HY5) and its transcriptional regulation of the transceptor NITRATE TRANSPORTER 1.1 (NRT1.1). Soybean and Rice homologs of these genes are expressed consistently with a conserved role in regulating temperature responses in a nitrogen and phosphorus level dependent manner. Overall, our data show that root thermomorphogenesis is a conserved feature in species of the two major groups of angiosperms, monocots and dicots, that it leads to a reduction of nutrient levels in the plant, and that it is dependent on environmental nitrogen and phosphorus supply, a regulatory process mediated by the HY5-NRT1.1 module.
Collapse
Affiliation(s)
- Sanghwa Lee
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Julia Showalter
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Ling Zhang
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Gaëlle Cassin-Ross
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48823, USA
| | - Hatem Rouached
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48823, USA
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
5
|
Cassan O, Pimpare LL, Mozzanino T, Fizames C, Devidal S, Roux F, Milcu A, Lebre S, Gojon A, Martin A. Natural genetic variation underlying the negative effect of elevated CO 2 on ionome composition in Arabidopsis thaliana. eLife 2024; 12:RP90170. [PMID: 38780431 PMCID: PMC11115449 DOI: 10.7554/elife.90170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
The elevation of atmospheric CO2 leads to a decline in plant mineral content, which might pose a significant threat to food security in coming decades. Although few genes have been identified for the negative effect of elevated CO2 on plant mineral composition, several studies suggest the existence of genetic factors. Here, we performed a large-scale study to explore genetic diversity of plant ionome responses to elevated CO2, using six hundred Arabidopsis thaliana accessions, representing geographical distributions ranging from worldwide to regional and local environments. We show that growth under elevated CO2 leads to a global decrease of ionome content, whatever the geographic distribution of the population. We observed a high range of genetic diversity, ranging from the most negative effect to resilience or even to a benefit in response to elevated CO2. Using genome-wide association mapping, we identified a large set of genes associated with this response, and we demonstrated that the function of one of these genes is involved in the negative effect of elevated CO2 on plant mineral composition. This resource will contribute to understand the mechanisms underlying the effect of elevated CO2 on plant mineral nutrition, and could help towards the development of crops adapted to a high-CO2 world.
Collapse
Affiliation(s)
- Oceane Cassan
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut AgroMontpellierFrance
| | - Lea-Lou Pimpare
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut AgroMontpellierFrance
| | - Timothy Mozzanino
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut AgroMontpellierFrance
| | - Cecile Fizames
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut AgroMontpellierFrance
| | - Sebastien Devidal
- Montpellier European Ecotron, Univ Montpellier, CNRS, Campus BaillarguetMontpellierFrance
| | - Fabrice Roux
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CNRS, Université de ToulouseCastanet-TolosanFrance
| | - Alexandru Milcu
- Montpellier European Ecotron, Univ Montpellier, CNRS, Campus BaillarguetMontpellierFrance
- CEFE, Univ Montpellier, CNRS, EPHE, IRDMontpellierFrance
| | | | - Alain Gojon
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut AgroMontpellierFrance
| | - Antoine Martin
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut AgroMontpellierFrance
| |
Collapse
|
6
|
Wang W, Kim J, Martinez TS, Huq E, Sung S. COP1 controls light-dependent chromatin remodeling. Proc Natl Acad Sci U S A 2024; 121:e2312853121. [PMID: 38349881 PMCID: PMC10895365 DOI: 10.1073/pnas.2312853121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Light is a crucial environmental factor that impacts various aspects of plant development. Phytochromes, as light sensors, regulate myriads of downstream genes to mediate developmental reprogramming in response to changes in environmental conditions. CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) is an E3 ligase for a number of substrates in light signaling, acting as a central repressor of photomorphogenesis. The interplay between phytochrome B (phyB) and COP1 forms an antagonistic regulatory module that triggers extensive gene expression reprogramming when exposed to light. Here, we uncover a role of COP1 in light-dependent chromatin remodeling through the regulation of VIL1 (VIN3-LIKE 1)/VERNALIZATION 5, a Polycomb protein. VIL1 directly interacts with phyB and regulates photomorphogenesis through the formation of repressive chromatin loops at downstream growth-promoting genes in response to light. Furthermore, we reveal that COP1 governs light-dependent formation of chromatin loop and limiting a repressive histone modification to fine-tune expressions of growth-promoting genes during photomorphogenesis through VIL1.
Collapse
Affiliation(s)
- Wenli Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Junghyun Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Teresa S. Martinez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Enamul Huq
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Sibum Sung
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
7
|
López-Pozo M, Adams WW, Demmig-Adams B. Lemnaceae as Novel Crop Candidates for CO 2 Sequestration and Additional Applications. PLANTS (BASEL, SWITZERLAND) 2023; 12:3090. [PMID: 37687337 PMCID: PMC10490035 DOI: 10.3390/plants12173090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
Atmospheric carbon dioxide (CO2) is projected to be twice as high as the pre-industrial level by 2050. This review briefly highlights key responses of terrestrial plants to elevated CO2 and compares these with the responses of aquatic floating plants of the family Lemnaceae (duckweeds). Duckweeds are efficient at removing CO2 from the atmosphere, which we discuss in the context of their exceptionally high growth rates and capacity for starch storage in green tissue. In contrast to cultivation of terrestrial crops, duckweeds do not contribute to CO2 release from soils. We briefly review how this potential for contributions to stabilizing atmospheric CO2 levels is paired with multiple additional applications and services of duckweeds. These additional roles include wastewater phytoremediation, feedstock for biofuel production, and superior nutritional quality (for humans and livestock), while requiring minimal space and input of light and fertilizer. We, furthermore, elaborate on other environmental factors, such as nutrient availability, light supply, and the presence of a microbiome, that impact the response of duckweed to elevated CO2. Under a combination of elevated CO2 with low nutrient availability and moderate light supply, duckweeds' microbiome helps maintain CO2 sequestration and relative growth rate. When incident light intensity increases (in the presence of elevated CO2), the microbiome minimizes negative feedback on photosynthesis from increased sugar accumulation. In addition, duckweed shows a clear propensity for absorption of ammonium over nitrate, accepting ammonium from their endogenous N2-fixing Rhizobium symbionts, and production of large amounts of vegetative storage protein. Finally, cultivation of duckweed could be further optimized using hydroponic vertical farms where nutrients and water are recirculated, saving both resources, space, and energy to produce high-value products.
Collapse
Affiliation(s)
- Marina López-Pozo
- Department of Plant Biology & Ecology, University of the Basque Country, 48940 Leioa, Spain
| | - William W. Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|