1
|
Lee N, Hwang DY, Lee HG, Hwang H, Kang HW, Lee W, Choi MG, Ahn YJ, Lim C, Kim JI, Kwon M, Kim ST, Paek NC, Cho H, Sohn KH, Seo PJ, Song YH. ASYMMETRIC LEAVES1 promotes leaf hyponasty in Arabidopsis by light-mediated auxin signaling. PLANT PHYSIOLOGY 2024; 197:kiae550. [PMID: 39418078 DOI: 10.1093/plphys/kiae550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024]
Abstract
In plants, balancing growth and environmental responses is crucial for maximizing fitness. Close proximity among plants and canopy shade, which negatively impacts reproduction, elicits morphological adjustments such as hypocotyl growth and leaf hyponasty, mainly through changes in light quality and auxin levels. However, how auxin, synthesized from a shaded leaf blade, distally induces elongation of hypocotyl and petiole cells remains to be elucidated. We demonstrated that ASYMMETRIC LEAVES1 (AS1) promotes leaf hyponasty through the regulation of auxin biosynthesis, polar auxin transport, and auxin signaling genes in Arabidopsis (Arabidopsis thaliana). AS1 overexpression leads to elongation of the abaxial petiole cells with auxin accumulation in the petiole, resulting in hyponastic growth, which is abolished by the application of an auxin transport inhibitor to the leaf blade. In addition, the as1 mutant exhibits reduced hypocotyl growth under shade conditions. We observed that AS1 protein accumulates in the nucleus in response to shade or far-red light. Chromatin immunoprecipitation analysis identified the association of AS1 with the promoters of YUCCA8 (YUC8) and INDOLE-3-ACETIC ACID INDUCIBLE 19 (IAA19). In addition, AS1 forms complexes with PHYTOCHROME-INTERACTING FACTORs in the nucleus and synergistically induces YUC8 and IAA19 expression. Our findings suggest that AS1 plays a crucial role in facilitating phenotypic plasticity to the surroundings by connecting light and phytohormone action.
Collapse
Affiliation(s)
- Nayoung Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju 52828, Korea
| | - Dae Yeon Hwang
- Department of Life Sciences, Ajou University, Suwon 16499, Korea
| | - Hong Gil Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Hyeona Hwang
- Department of Industrial Plant Science and Technology, College of Agriculture, Life and Environmental Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Hye Won Kang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Wonbok Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Min Gi Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Ye Jin Ahn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673Korea
| | - Chaemyeong Lim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Korea
| | - Jeong-Il Kim
- Department of Biotechnology, Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Korea
| | - Moonhyuk Kwon
- Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju 52828, Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea
- Anti-aging Bio Cell factory Regional Leading Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea
| | - Nam-Chon Paek
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyunwoo Cho
- Department of Industrial Plant Science and Technology, College of Agriculture, Life and Environmental Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Kee Hoon Sohn
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| | - Pil Joon Seo
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Young Hun Song
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
2
|
Nishio H, Cano-Ramirez DL, Muranaka T, de Barros Dantas LL, Honjo MN, Sugisaka J, Kudoh H, Dodd AN. Circadian and environmental signal integration in a natural population of Arabidopsis. Proc Natl Acad Sci U S A 2024; 121:e2402697121. [PMID: 39172785 PMCID: PMC11363283 DOI: 10.1073/pnas.2402697121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Plants sense and respond to environmental cues during 24 h fluctuations in their environment. This requires the integration of internal cues such as circadian timing with environmental cues such as light and temperature to elicit cellular responses through signal transduction. However, the integration and transduction of circadian and environmental signals by plants growing in natural environments remains poorly understood. To gain insights into 24 h dynamics of environmental signaling in nature, we performed a field study of signal transduction from the nucleus to chloroplasts in a natural population of Arabidopsis halleri. Using several modeling approaches to interpret the data, we identified that the circadian clock and temperature are key regulators of this pathway under natural conditions. We identified potential time-delay steps between pathway components, and diel fluctuations in the response of the pathway to temperature cues that are reminiscent of the process of circadian gating. We found that our modeling framework can be extended to other signaling pathways that undergo diel oscillations and respond to environmental cues. This approach of combining studies of gene expression in the field with modeling allowed us to identify the dynamic integration and transduction of environmental cues, in plant cells, under naturally fluctuating diel cycles.
Collapse
Affiliation(s)
- Haruki Nishio
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
- Data Science and AI Innovation Research Promotion Center, Shiga University, Hikone, Shiga522-8522, Japan
| | - Dora L. Cano-Ramirez
- The Sainsbury Laboratory, University of Cambridge, CambridgeCB2 1LR, United Kingdom
- School of Biological Sciences, University of Bristol, BristolBS8 1TQ, United Kingdom
| | - Tomoaki Muranaka
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi464-0814, Japan
| | | | - Mie N. Honjo
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
| | - Jiro Sugisaka
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
| | - Antony N. Dodd
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7RU, United Kingdom
| |
Collapse
|
3
|
Takagi H, Ito S, Shim JS, Kubota A, Hempton AK, Lee N, Suzuki T, Yang C, Nolan CT, Bubb KL, Alexandre CM, Kurihara D, Sato Y, Tada Y, Kiba T, Pruneda-Paz JL, Queitsch C, Cuperus JT, Imaizumi T. A florigen-expressing subpopulation of companion cells expresses other small proteins and reveals a nitrogen-sensitive FT repressor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.17.608367. [PMID: 39229231 PMCID: PMC11370445 DOI: 10.1101/2024.08.17.608367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The precise onset of flowering is crucial to ensure successful plant reproduction. The gene FLOWERING LOCUS T (FT) encodes florigen, a mobile signal produced in leaves that initiates flowering at the shoot apical meristem. In response to seasonal changes, FT is induced in phloem companion cells located in distal leaf regions. Thus far, a detailed molecular characterization of the FT-expressing cells has been lacking. Here, we used bulk nuclei RNA-seq and single nuclei RNA (snRNA)-seq to investigate gene expression in FT-expressing cells and other phloem companion cells. Our bulk nuclei RNA-seq demonstrated that FT-expressing cells in cotyledons and in true leaves differed transcriptionally. Within the true leaves, our snRNA-seq analysis revealed that companion cells with high FT expression form a unique cluster in which many genes involved in ATP biosynthesis are highly upregulated. The cluster also expresses other genes encoding small proteins, including the flowering and stem growth inducer FPF1-LIKE PROTEIN 1 (FLP1) and the anti-florigen BROTHER OF FT AND TFL1 (BFT). In addition, we found that the promoters of FT and the genes co-expressed with FT in the cluster were enriched for the consensus binding motifs of NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1 (NIGT1). Overexpression of the paralogous NIGT1.2 and NIGT1.4 repressed FT expression and significantly delayed flowering under nitrogen-rich conditions, consistent with NIGT1s acting as nitrogen-dependent FT repressors. Taken together, our results demonstrate that major FT-expressing cells show a distinct expression profile that suggests that these cells may produce multiple systemic signals to regulate plant growth and development.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Shogo Ito
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Jae Sung Shim
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, South Korea
| | - Akane Kubota
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- Division of Biological Science, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | - Andrew K. Hempton
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
| | - Nayoung Lee
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju, 52828, South Korea
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, 487-8501, Japan
| | - Chansie Yang
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
| | - Christine T. Nolan
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
| | - Kerry L. Bubb
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, USA
| | - Cristina M. Alexandre
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, USA
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
- Institute for Advanced Research (IAR), Nagoya University, Nagoya, 464-8601, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
| | - Yasuomi Tada
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Takatoshi Kiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Jose L. Pruneda-Paz
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, 98195, USA
| | - Josh T. Cuperus
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, 98195, USA
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| |
Collapse
|
4
|
Li Z, Huang Y, Shen Z, Wu M, Huang M, Hong SB, Xu L, Zang Y. Advances in functional studies of plant MYC transcription factors. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:195. [PMID: 39103657 DOI: 10.1007/s00122-024-04697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Myelocytomatosis (MYC) transcription factors (TFs) belong to the basic helix-loop-helix (bHLH) family in plants and play a central role in governing a wide range of physiological processes. These processes encompass plant growth, development, adaptation to biotic and abiotic stresses, as well as secondary metabolism. In recent decades, significant strides have been made in comprehending the multifaceted regulatory functions of MYCs. This advancement has been achieved through the cloning of MYCs and the characterization of plants with MYC deficiencies or overexpression, employing comprehensive genome-wide 'omics' and protein-protein interaction technologies. MYCs act as pivotal components in integrating signals from various phytohormones' transcriptional regulators to orchestrate genome-wide transcriptional reprogramming. In this review, we have compiled current research on the role of MYCs as molecular switches that modulate signal transduction pathways mediated by phytohormones and phytochromes. This comprehensive overview allows us to address lingering questions regarding the interplay of signals in response to environmental cues and developmental shift. It also sheds light on the potential implications for enhancing plant resistance to diverse biotic and abiotic stresses through genetic improvements achieved by plant breeding and synthetic biology efforts.
Collapse
Affiliation(s)
- Zewei Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yunshuai Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zhiwei Shen
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Meifang Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Mujun Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX, 77058-1098, USA
| | - Liai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
5
|
Mehta D, Scandola S, Kennedy C, Lummer C, Gallo MCR, Grubb LE, Tan M, Scarpella E, Uhrig RG. Twilight length alters growth and flowering time in Arabidopsis via LHY/ CCA1. SCIENCE ADVANCES 2024; 10:eadl3199. [PMID: 38941453 PMCID: PMC11212724 DOI: 10.1126/sciadv.adl3199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/28/2024] [Indexed: 06/30/2024]
Abstract
Decades of research have uncovered how plants respond to two environmental variables that change across latitudes and over seasons: photoperiod and temperature. However, a third such variable, twilight length, has so far gone unstudied. Here, using controlled growth setups, we show that the duration of twilight affects growth and flowering time via the LHY/CCA1 clock genes in the model plant Arabidopsis. Using a series of progressively truncated no-twilight photoperiods, we also found that plants are more sensitive to twilight length compared to equivalent changes in solely photoperiods. Transcriptome and proteome analyses showed that twilight length affects reactive oxygen species metabolism, photosynthesis, and carbon metabolism. Genetic analyses suggested a twilight sensing pathway from the photoreceptors PHY E, PHY B, PHY D, and CRY2 through LHY/CCA1 to flowering modulation through the GI-FT pathway. Overall, our findings call for more nuanced models of day-length perception in plants and posit that twilight is an important determinant of plant growth and development.
Collapse
Affiliation(s)
- Devang Mehta
- Department of Biosystems, KU Leuven, B-3001 Leuven, Belgium
- Leuven Plant Institute, KU Leuven, B-3001 Leuven, Belgium
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Sabine Scandola
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Curtis Kennedy
- Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Christina Lummer
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | | | - Lauren E. Grubb
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Maryalle Tan
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - R. Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
6
|
Lee N, Shim JS, Kang MK, Kwon M. Insight from expression profiles of FT orthologs in plants: conserved photoperiodic transcriptional regulatory mechanisms. FRONTIERS IN PLANT SCIENCE 2024; 15:1397714. [PMID: 38887456 PMCID: PMC11180818 DOI: 10.3389/fpls.2024.1397714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024]
Abstract
Floral transition from the vegetative to the reproductive stages is precisely regulated by both environmental and endogenous signals. Among these signals, photoperiod is one of the most important environmental factors for onset of flowering. A florigen, FLOWERING LOCUS T (FT) in Arabidopsis, has thought to be a major hub in the photoperiod-dependent flowering time regulation. Expression levels of FT likely correlates with potence of flowering. Under long days (LD), FT is mainly synthesized in leaves, and FT protein moves to shoot apical meristem (SAM) where it functions and in turns induces flowering. Recently, it has been reported that Arabidopsis grown under natural LD condition flowers earlier than that grown under laboratory LD condition, in which a red (R)/far-red (FR) ratio of light sources determines FT expression levels. Additionally, FT expression profile changes in response to combinatorial effects of FR light and photoperiod. FT orthologs exist in most of plants and functions are thought to be conserved. Although molecular mechanisms underlying photoperiodic transcriptional regulation of FT orthologs have been studied in several plants, such as rice, however, dynamics in expression profiles of FT orthologs have been less spotlighted. This review aims to revisit previously reported but overlooked expression information of FT orthologs from various plant species and classify these genes depending on the expression profiles. Plants, in general, could be classified into three groups depending on their photoperiodic flowering responses. Thus, we discuss relationship between photoperiodic responsiveness and expression of FT orthologs. Additionally, we also highlight the expression profiles of FT orthologs depending on their activities in flowering. Comparative analyses of diverse plant species will help to gain insight into molecular mechanisms for flowering in nature, and this can be utilized in the future for crop engineering to improve yield by controlling flowering time.
Collapse
Affiliation(s)
- Nayoung Lee
- Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Min-Kyoung Kang
- Division of Applied Life Science (BK21 Four), Anti-aging Bio Cell factory Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Moonhyuk Kwon
- Division of Applied Life Science (BK21 Four), ABC-RLRC, RIMA, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
7
|
Takagi H, Lee N, Hempton AK, Purushwani S, Notaguchi M, Yamauchi K, Shirai K, Kawakatsu Y, Uehara S, Albers WG, Downing BLR, Ito S, Suzuki T, Matsuura T, Mori IC, Mitsuda N, Kurihara D, Matsushita T, Song YH, Sato Y, Nomoto M, Tada Y, Hanada K, Cuperus JT, Queitsch C, Imaizumi T. Florigen-producing cells express FPF1-LIKE PROTEIN 1 that accelerates flowering and stem growth in long days with sunlight red/far-red ratio in Arabidopsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591289. [PMID: 38746097 PMCID: PMC11092471 DOI: 10.1101/2024.04.26.591289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Seasonal changes in spring induce flowering by expressing the florigen, FLOWERING LOCUS T (FT), in Arabidopsis. FT is expressed in unique phloem companion cells with unknown characteristics. The question of which genes are co-expressed with FT and whether they have roles in flowering remains elusive. Through tissue-specific translatome analysis, we discovered that under long-day conditions with the natural sunlight red/far-red ratio, the FT-producing cells express a gene encoding FPF1-LIKE PROTEIN 1 (FLP1). The master FT regulator, CONSTANS (CO), controls FLP1 expression, suggesting FLP1's involvement in the photoperiod pathway. FLP1 promotes early flowering independently of FT, is active in the shoot apical meristem, and induces the expression of SEPALLATA 3 (SEP3), a key E-class homeotic gene. Unlike FT, FLP1 facilitates inflorescence stem elongation. Our cumulative evidence indicates that FLP1 may act as a mobile signal. Thus, FLP1 orchestrates floral initiation together with FT and promotes inflorescence stem elongation during reproductive transitions.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Department of Biology, University of Washington, Seattle, Washington, 98195-1800, USA
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Nayoung Lee
- Department of Biology, University of Washington, Seattle, Washington, 98195-1800, USA
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| | - Andrew K. Hempton
- Department of Biology, University of Washington, Seattle, Washington, 98195-1800, USA
| | - Savita Purushwani
- Department of Biology, University of Washington, Seattle, Washington, 98195-1800, USA
| | - Michitaka Notaguchi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601, Japan
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Kota Yamauchi
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, 820-8502, Japan
| | - Kazumasa Shirai
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, 820-8502, Japan
| | - Yaichi Kawakatsu
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601, Japan
| | - Susumu Uehara
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - William G. Albers
- Department of Biology, University of Washington, Seattle, Washington, 98195-1800, USA
| | | | - Shogo Ito
- Department of Biology, University of Washington, Seattle, Washington, 98195-1800, USA
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, 487-8501, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Izumi C. Mori
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
- Institute for Advanced Research (IAR), Nagoya University, Nagoya, 464-8601, Japan
| | - Tomonao Matsushita
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Young Hun Song
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
| | - Mika Nomoto
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Yasuomi Tada
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Kousuke Hanada
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, 820-8502, Japan
| | - Josh T. Cuperus
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195-5065, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195-5065, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, 98195-8047, USA
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, Washington, 98195-1800, USA
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| |
Collapse
|
8
|
Cho SW, Lokhandwala J, Park JS, Kang HW, Choi M, Yang HQ, Imaizumi T, Zoltowski BD, Song YH. Disrupting FKF1 homodimerization increases FT transcript levels in the evening by enhancing CO stabilization. PLANT CELL REPORTS 2024; 43:121. [PMID: 38635077 PMCID: PMC11026275 DOI: 10.1007/s00299-024-03207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
KEY MESSAGE FKF1 dimerization is crucial for proper FT levels to fine-tune flowering time. Attenuating FKF1 homodimerization increased CO abundance by enhancing its COP1 binding, thereby accelerating flowering under long days. In Arabidopsis (Arabidopsis thaliana), the blue-light photoreceptor FKF1 (FLAVIN-BINDING, KELCH REPEAT, F-BOX 1) plays a key role in inducing the expression of FLOWERING LOCUS T (FT), encoding the main florigenic signal in plants, in the late afternoon under long-day conditions (LDs) by forming dimers with FT regulators. Although structural studies have unveiled a variant of FKF1 (FKF1 I160R) that disrupts homodimer formation in vitro, the mechanism by which disrupted FKF1 homodimer formation regulates flowering time remains elusive. In this study, we determined that the attenuation of FKF1 homodimer formation enhances FT expression in the evening by promoting the increased stability of CONSTANS (CO), a primary activator of FT, in the afternoon, thereby contributing to early flowering. In contrast to wild-type FKF1, introducing the FKF1 I160R variant into the fkf1 mutant led to increased FT expression under LDs. In addition, the FKF1 I160R variant exhibited diminished dimerization with FKF1, while its interaction with GIGANTEA (GI), a modulator of FKF1 function, was enhanced under LDs. Furthermore, the FKF1 I160R variant increased the level of CO in the afternoon under LDs by enhancing its binding to COP1, an E3 ubiquitin ligase responsible for CO degradation. These findings suggest that the regulation of FKF1 homodimerization and heterodimerization allows plants to finely adjust FT expression levels around dusk by modulating its interactions with GI and COP1.
Collapse
Affiliation(s)
- Sung Won Cho
- Department of Biology, Ajou University, Suwon, Korea
- Institute of Agricultural Life Sciences, Seoul National University, Seoul, Korea
| | | | - Jun Sang Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Hye Won Kang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Mingi Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Brian D Zoltowski
- Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Young Hun Song
- Institute of Agricultural Life Sciences, Seoul National University, Seoul, Korea.
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea.
| |
Collapse
|
9
|
Kim H, Kang HW, Hwang DY, Lee N, Kubota A, Imaizumi T, Song YH. Low temperature-mediated repression and far-red light-mediated induction determine morning FLOWERING LOCUS T expression levels. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:103-120. [PMID: 38088490 PMCID: PMC10829767 DOI: 10.1111/jipb.13595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
In order to flower in the appropriate season, plants monitor light and temperature changes and alter downstream pathways that regulate florigen genes such as Arabidopsis (Arabidopsis thaliana) FLOWERING LOCUS T (FT). In Arabidopsis, FT messenger RNA levels peak in the morning and evening under natural long-day conditions (LDs). However, the regulatory mechanisms governing morning FT induction remain poorly understood. The morning FT peak is absent in typical laboratory LDs characterized by high red:far-red light (R:FR) ratios and constant temperatures. Here, we demonstrate that ZEITLUPE (ZTL) interacts with the FT repressors TARGET OF EATs (TOEs), thereby repressing morning FT expression in natural environments. Under LDs with simulated sunlight (R:FR = 1.0) and daily temperature cycles, which are natural LD-mimicking environmental conditions, FT transcript levels in the ztl mutant were high specifically in the morning, a pattern that was mirrored in the toe1 toe2 double mutant. Low night-to-morning temperatures increased the inhibitory effect of ZTL on morning FT expression by increasing ZTL protein levels early in the morning. Far-red light counteracted ZTL activity by decreasing its abundance (possibly via phytochrome A (phyA)) while increasing GIGANTEA (GI) levels and negatively affecting the formation of the ZTL-GI complex in the morning. Therefore, the phyA-mediated high-irradiance response and GI play pivotal roles in morning FT induction. Our findings suggest that the delicate balance between low temperature-mediated ZTL activity and the far-red light-mediated functions of phyA and GI offers plants flexibility in fine-tuning their flowering time by controlling FT expression in the morning.
Collapse
Affiliation(s)
- Hayeon Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Hye Won Kang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Dae Yeon Hwang
- Department of Biology, Ajou University, Suwon, 16499, Korea
| | - Nayoung Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| | - Akane Kubota
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Young Hun Song
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
- Institute of Agricultural Life Sciences, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|