1
|
He Y, Zhou J, Lv C, Zhang J, Zhong L, Zhang D, Li P, Xiao L, Quan M, Wang D, Zhang D, Du Q. Binding of PtoRAP2.12 to demethylated and accessible chromatin regions in the PtoGntK promoter stimulates growth of poplar. THE NEW PHYTOLOGIST 2025; 245:232-248. [PMID: 39487606 DOI: 10.1111/nph.20228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/07/2024] [Indexed: 11/04/2024]
Abstract
DNA methylation is an essential epigenetic modification for gene regulation in plant growth and development. However, the precise mechanisms of DNA methylation remain poorly understood, especially in woody plants. We employed whole-genome bisulfite sequencing (WGBS), assays for transposase-accessible chromatin using sequencing (ATAC-seq), and RNA-Seq to investigate epigenetic regulatory relationships in Populus tomentosa treated with DNA methylation inhibitor 5-azacitidine. Expression-quantitative trait methylation analysis (eQTM), epigenome-wide association study (EWAS), and joint linkage-linkage disequilibrium mapping were used to explore the epigenetic regulatory genes, and using CRISPR/Cas9 to identify the role of candidate genes. Plant developmental abnormalities occurred when DNA methylation levels were substantially reduced. DNA methylation regulated 112 expressed genes via chromatin accessibility, of which 61 genes were significantly influenced by DNA methylation variation at the population level. One DNA methylation-regulated gene, PtoGntK, was located in a major quantitative trait locus (QTL) for poplar growth. Overexpression and CRISPR/Cas9 of PtoGntK revealed it affected poplar height and stem diameter. The PtoRAP2.12 was found to bind to the demethylated accessible region in the PtoGntK promoter, thereby promoting growth in poplar. This study identified key genes with epigenetic regulation for plant growth and provides insights into epigenetic regulation mechanisms in woody plants.
Collapse
Affiliation(s)
- Yuling He
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Jiaxuan Zhou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Chenfei Lv
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Jinhan Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Leishi Zhong
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Donghai Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Peng Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Liang Xiao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Mingyang Quan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Dan Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Deqiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Qingzhang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
2
|
Nilsen AML, Hoarau G, Smolina I, Coyer JA, Boström C, Kopp MEL, Jueterbock A. The methylome of clonal seagrass shoots shows age-associated variation and differentiation of roots from other tissues. Biochim Biophys Acta Gen Subj 2024:130748. [PMID: 39719185 DOI: 10.1016/j.bbagen.2024.130748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/30/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024]
Abstract
Factors influencing variance of DNA methylation in vegetatively reproducing plants, both terrestrial plants and aquatic seagrasses, is just beginning to be understood. Improving our knowledge of these mechanisms will increase understanding of transgenerational epigenetics in plant clones, of the relationship between DNA methylation and seagrass development, and of the drivers of epigenetic variation, which may underly acclimation in clonally reproducing plants. Here, we sampled leaves, rhizomes and roots of three physically and spatially separated ramet sections from a clonally propagated field of the seagrass Zostera marina. Using reduced methylome sequencing, we studied variations in the methylome of seagrass Zostera marina between the sampled tissue types and across age groups. Our analysis of ramets of different ages showed variations in methylation between older and younger samples in both specific methylation patterns and global methylation levels. Our analysis of tissue types showed a marked differentiation of the roots from the rhizomes and leaves, which showed more similar methylation patterns. These findings are in agreement with the strong connection of DNA methylation and plant development and tissue differentiation. We also suggest an effect of differential environmental exposures on the methylome of the younger versus the older ramets due to the forming of molecular stress memories.
Collapse
Affiliation(s)
- Anne M L Nilsen
- Algal and Microbial Biotechnology Division, Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway.
| | - Galice Hoarau
- Marine Molecular Ecology Group, Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway
| | - Irina Smolina
- Marine Molecular Ecology Group, Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway
| | - James A Coyer
- Shoals Marine Laboratory, University of New Hampshire, Morse Hall, Suite 113, 8 College Road, Durham, NH 03824, USA
| | - Christoffer Boström
- Environmental and Marine Biology, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland
| | - Martina E L Kopp
- Marine Molecular Ecology Group, Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway
| | - Alexander Jueterbock
- Algal and Microbial Biotechnology Division, Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway
| |
Collapse
|
3
|
Singh A, Verma AK, Kumar S, Bag SK, Roy S. Genome-wide DNA methylation and their transgenerational pattern differ in Arabidopsis thaliana populations originated along the elevation of West Himalaya. BMC PLANT BIOLOGY 2024; 24:936. [PMID: 39385079 PMCID: PMC11463068 DOI: 10.1186/s12870-024-05641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
Methylation at 5' cytosine of DNA molecule is an important epigenetic mark. It is known to play critical role in adaptation of organisms under different biotic and abiotic stressors via modulating gene expression and/or chromatin architecture. Plant populations evolved under variable climatic conditions may have evolved different epigenetic marks including DNA methylation. Here we, describe the genome-wide DNA methylation pattern under native field, F1 and F6 generation followed by their association with phenotypes, climate and global gene expression in the three Arabidopsis thaliana populations originated at different elevation ranges of Indian West Himalaya. We show that the global methyl cytosine (mC) content is more or less similar in the three populations but differ in their distribution across genome. There was an increase in differential methylation between the populations as elevation increased. The methylation divergence was the highest between the low and the high elevation populations. The high elevation populations were hypo-methylated than the low elevation population. The methylation in the genes was associated with population specific phenotypes and climate of the region. The genes which were differentially methylated as well as differentially expressed between the low and high elevation populations were mostly related to abiotic stresses. When grown under controlled condition, there was gain of differential methylation over native condition and the maximum percent changes was observed in CHH-sequence context. Further ~ 99.8% methylated cytosines were stably passed on from F1 to F6 generation. Overall, our data suggest that high elevation population is epigenetically more plastic under changing environmental condition.Background Arabidopsis thaliana is the model plant species and has been extensively studied to understand plants life processes. There are numerous reports on its origin, demography, evolution, epigenomes and adaptation etc. however, Indian populations of Arabidopsis thaliana evolved along wide elevation ranging from ~ 700 m amsl to ~ 3400 m amsl not explored yet. Here we, describe the genome-wide DNA methylation pattern under native field, F1 and F6 generation followed by their association with phenotypes, climate and global gene expression in the three Arabidopsis thaliana populations originated at different elevation ranges of Indian West Himalaya.Results In our study we found that total mCs percent was more or less similar in the three populations but differ in their distribution across genome. The proportion of CG-mCs was the highest, followed by CHH-mCs and CHG-mCs in all the three populations. Under native field condition the methylation divergence was more prominent between low and high elevation populations and the high elevation populations were hypo-methylated than the low elevation population. The methylation in the genes was linked to population-specific phenotypes and the regional climate. The genes that showed differential methylation and expression between low and high elevation populations were primarily associated with abiotic stress responses. When grown under controlled condition, there was gain of differential methylation compared to the native condition and the maximum percent changes was observed in CHH-sequence context. Further 99.8% methylated cytosines were stably passed on from F1 to F6 generation.Conclusions The populations of A. thaliana adapted at different climatic conditions were significantly differentially methylated both under native and controlled condition. However, the magnitude and extent of gain or loss of methylation were most significant between the low and the high elevation populations. Overall, our data suggest that high elevation population is epigenetically more plastic under changing environmental condition.
Collapse
Affiliation(s)
- Akanksha Singh
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Ashwani Kumar Verma
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sunil Kumar
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumit Kumar Bag
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Computational Biology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Sribash Roy
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
- Department of Plant Sciences, Central University of Hyderabad, Hyderabad, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Vo BT, Mas P, Johannes F. Time's up: Epigenetic clocks in plants. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102602. [PMID: 39024859 DOI: 10.1016/j.pbi.2024.102602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/30/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024]
Abstract
For over a decade, the animal field has led the way in using DNA methylation measurements to construct epigenetic clocks of aging. These clocks can predict organismal age with a level of accuracy that surpasses any other molecular proxy known to date. Evidence is finally emerging that epigenetic clocks also exist in plants. However, these clocks appear to differ from those in animals in some key aspects, including in their ability to measure time beyond the life span of an individual. Clock-like epigenetic changes can be found in plant circadian rhythms (scale: 24 h), during plant aging (scale: weeks/centuries), and across plant lineage evolution (scale: decades/millennia). Here, we provide a first classification of these different types of epigenetic clocks, highlight their main features, and discuss their biological basis.
Collapse
Affiliation(s)
- Binh Thanh Vo
- Plant Epigenomics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Paloma Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Consejo Superior de Investigaciones Científicas (CSIC), 08028 Barcelona, Spain
| | - Frank Johannes
- Plant Epigenomics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
| |
Collapse
|
5
|
Zetzsche J, Fallet M. To live or let die? Epigenetic adaptations to climate change-a review. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae009. [PMID: 39139701 PMCID: PMC11321362 DOI: 10.1093/eep/dvae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
Anthropogenic activities are responsible for a wide array of environmental disturbances that threaten biodiversity. Climate change, encompassing temperature increases, ocean acidification, increased salinity, droughts, and floods caused by frequent extreme weather events, represents one of the most significant environmental alterations. These drastic challenges pose ecological constraints, with over a million species expected to disappear in the coming years. Therefore, organisms must adapt or face potential extinctions. Adaptations can occur not only through genetic changes but also through non-genetic mechanisms, which often confer faster acclimatization and wider variability ranges than their genetic counterparts. Among these non-genetic mechanisms are epigenetics defined as the study of molecules and mechanisms that can perpetuate alternative gene activity states in the context of the same DNA sequence. Epigenetics has received increased attention in the past decades, as epigenetic mechanisms are sensitive to a wide array of environmental cues, and epimutations spread faster through populations than genetic mutations. Epimutations can be neutral, deleterious, or adaptative and can be transmitted to subsequent generations, making them crucial factors in both long- and short-term responses to environmental fluctuations, such as climate change. In this review, we compile existing evidence of epigenetic involvement in acclimatization and adaptation to climate change and discuss derived perspectives and remaining challenges in the field of environmental epigenetics. Graphical Abstract.
Collapse
Affiliation(s)
- Jonas Zetzsche
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manon Fallet
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| |
Collapse
|
6
|
Baduel P, Sammarco I, Barrett R, Coronado‐Zamora M, Crespel A, Díez‐Rodríguez B, Fox J, Galanti D, González J, Jueterbock A, Wootton E, Harney E. The evolutionary consequences of interactions between the epigenome, the genome and the environment. Evol Appl 2024; 17:e13730. [PMID: 39050763 PMCID: PMC11266121 DOI: 10.1111/eva.13730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/30/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024] Open
Abstract
The epigenome is the suite of interacting chemical marks and molecules that helps to shape patterns of development, phenotypic plasticity and gene regulation, in part due to its responsiveness to environmental stimuli. There is increasing interest in understanding the functional and evolutionary importance of this sensitivity under ecologically realistic conditions. Observations that epigenetic variation abounds in natural populations have prompted speculation that it may facilitate evolutionary responses to rapid environmental perturbations, such as those occurring under climate change. A frequent point of contention is whether epigenetic variants reflect genetic variation or are independent of it. The genome and epigenome often appear tightly linked and interdependent. While many epigenetic changes are genetically determined, the converse is also true, with DNA sequence changes influenced by the presence of epigenetic marks. Understanding how the epigenome, genome and environment interact with one another is therefore an essential step in explaining the broader evolutionary consequences of epigenomic variation. Drawing on results from experimental and comparative studies carried out in diverse plant and animal species, we synthesize our current understanding of how these factors interact to shape phenotypic variation in natural populations, with a focus on identifying similarities and differences between taxonomic groups. We describe the main components of the epigenome and how they vary within and between taxa. We review how variation in the epigenome interacts with genetic features and environmental determinants, with a focus on the role of transposable elements (TEs) in integrating the epigenome, genome and environment. And we look at recent studies investigating the functional and evolutionary consequences of these interactions. Although epigenetic differentiation in nature is likely often a result of drift or selection on stochastic epimutations, there is growing evidence that a significant fraction of it can be stably inherited and could therefore contribute to evolution independently of genetic change.
Collapse
Affiliation(s)
- Pierre Baduel
- Institut de Biologie de l'Ecole Normale SupérieurePSL University, CNRSParisFrance
| | - Iris Sammarco
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzechia
| | - Rowan Barrett
- Redpath Museum and Department of BiologyMcGill UniversityMontrealCanada
| | | | | | | | - Janay Fox
- Redpath Museum and Department of BiologyMcGill UniversityMontrealCanada
| | - Dario Galanti
- Institute of Evolution and Ecology (EvE)University of TuebingenTübingenGermany
| | | | - Alexander Jueterbock
- Algal and Microbial Biotechnology Division, Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Eric Wootton
- Redpath Museum and Department of BiologyMcGill UniversityMontrealCanada
| | - Ewan Harney
- Institute of Evolutionary BiologyCSIC, UPFBarcelonaSpain
- School of BiosciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
7
|
Song B, Yu J, Li X, Li J, Fan J, Liu H, Wei W, Zhang L, Gu K, Liu D, Zhao K, Wu J. Increased DNA methylation contributes to the early ripening of pear fruits during domestication and improvement. Genome Biol 2024; 25:87. [PMID: 38581061 PMCID: PMC10996114 DOI: 10.1186/s13059-024-03220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/18/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND DNA methylation is an essential epigenetic modification. However, its contribution to trait changes and diversity in the domestication of perennial fruit trees remains unknown. RESULTS Here, we investigate the variation in DNA methylation during pear domestication and improvement using whole-genome bisulfite sequencing in 41 pear accessions. Contrary to the significant decrease during rice domestication, we detect a global increase in DNA methylation during pear domestication and improvement. We find this specific increase in pear is significantly correlated with the downregulation of Demeter-like1 (DML1, encoding DNA demethylase) due to human selection. We identify a total of 5591 differentially methylated regions (DMRs). Methylation in the CG and CHG contexts undergoes co-evolution during pear domestication and improvement. DMRs have higher genetic diversity than selection sweep regions, especially in the introns. Approximately 97% of DMRs are not associated with any SNPs, and these DMRs are associated with starch and sucrose metabolism and phenylpropanoid biosynthesis. We also perform correlation analysis between DNA methylation and gene expression. We find genes close to the hypermethylated DMRs that are significantly associated with fruit ripening. We further verify the function of a hyper-DMR-associated gene, CAMTA2, and demonstrate that overexpression of CAMTA2 in tomato and pear callus inhibits fruit ripening. CONCLUSIONS Our study describes a specific pattern of DNA methylation in the domestication and improvement of a perennial pear tree and suggests that increased DNA methylation plays an essential role in the early ripening of pear fruits.
Collapse
Affiliation(s)
- Bobo Song
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Jinshan Yu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Xiaolong Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Jiaming Li
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Jing Fan
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430072, China
| | - Hainan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Weilin Wei
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Lingchao Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Kaidi Gu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Dongliang Liu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Kejiao Zhao
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
8
|
Bogan SN, Yi SV. Potential Role of DNA Methylation as a Driver of Plastic Responses to the Environment Across Cells, Organisms, and Populations. Genome Biol Evol 2024; 16:evae022. [PMID: 38324384 PMCID: PMC10899001 DOI: 10.1093/gbe/evae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
There is great interest in exploring epigenetic modifications as drivers of adaptive organismal responses to environmental change. Extending this hypothesis to populations, epigenetically driven plasticity could influence phenotypic changes across environments. The canonical model posits that epigenetic modifications alter gene regulation and subsequently impact phenotypes. We first discuss origins of epigenetic variation in nature, which may arise from genetic variation, spontaneous epimutations, epigenetic drift, or variation in epigenetic capacitors. We then review and synthesize literature addressing three facets of the aforementioned model: (i) causal effects of epigenetic modifications on phenotypic plasticity at the organismal level, (ii) divergence of epigenetic patterns in natural populations distributed across environmental gradients, and (iii) the relationship between environmentally induced epigenetic changes and gene expression at the molecular level. We focus on DNA methylation, the most extensively studied epigenetic modification. We find support for environmentally associated epigenetic structure in populations and selection on stable epigenetic variants, and that inhibition of epigenetic enzymes frequently bears causal effects on plasticity. However, there are pervasive confounding issues in the literature. Effects of chromatin-modifying enzymes on phenotype may be independent of epigenetic marks, alternatively resulting from functions and protein interactions extrinsic of epigenetics. Associations between environmentally induced changes in DNA methylation and expression are strong in plants and mammals but notably absent in invertebrates and nonmammalian vertebrates. Given these challenges, we describe emerging approaches to better investigate how epigenetic modifications affect gene regulation, phenotypic plasticity, and divergence among populations.
Collapse
Affiliation(s)
- Samuel N Bogan
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Soojin V Yi
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| |
Collapse
|