1
|
Wang YC, Liu XL, Zhang Z, Zhou L, Zhang YF, Zhu BS, Yang YM, Zhong X, Su ZX, Ma PY, Huang XH, Yang ZN, Zhu J. The Residual Activity of Fatty Acyl-CoA Reductase Underlies Thermo-Sensitive Genic Male Sterility in Rice. PLANT, CELL & ENVIRONMENT 2025; 48:1273-1285. [PMID: 39440542 DOI: 10.1111/pce.15230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Photoperiod/thermo-sensitive genic male sterility (P/TGMS) is critical for rice two-line hybrid system. Previous studies showed that slow development of pollen is a general mechanism for sterility-to-fertility conversion of TGMS in Arabidopsis. However, whether this mechanism still exists in rice is unknown. Here, we identified a novel rice TGMS line, ostms16, which exhibits abnormal pollen exine under high temperature and fertility restoration under low temperature. In mutant, a single base mutation of OsTMS16, a fatty acyl-CoA reductase (FAR), reduced its enzyme activity, leading to defective pollen wall. Under high temperature, the mOsTMS16M549I couldn't provide sufficient protection for the microspores. Under low temperature, the enzyme activity of mOsTMS16M549I is closer to that of OsTMS16, so that the imperfect exine could still protect microspore development. These results indicated whether the residual enzyme activity in mutant could meet the requirement in different temperature is a determinant factor for fertility conversion of P/TGMS lines. Additionally, we previously found that res2, the mutant of a polygalacturonase for tetrad pectin wall degradation, restored multiple TGMS lines in Arabidopsis. In this study, we proved that the osres2 in rice restored the fertility of ostms16, indicating the slow development is also suitable for the fertility restoration in rice.
Collapse
Affiliation(s)
- Yi-Chen Wang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xing-Lu Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zheng Zhang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Lei Zhou
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yan-Fei Zhang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ben-Shun Zhu
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yan-Ming Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiang Zhong
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhen-Xin Su
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Pei-Yang Ma
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xue-Hui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhong-Nan Yang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jun Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
2
|
Dong J, Zhang S, Hu H, Wang J, Li R, Wu J, Chen J, Zhou L, Ma Y, Li W, Nie S, Wang S, Zhang G, Liu B, Zhao J, Yang T. Natural variation in CTF1 conferring cold tolerance at the flowering stage in rice. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 39887866 DOI: 10.1111/pbi.14600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/12/2024] [Accepted: 01/12/2025] [Indexed: 02/01/2025]
Abstract
Improving cold tolerance at the flowering stage (CTF) in rice is crucial for minimising yield loss, making the identification and application of cold-tolerant genes and QTLs imperative for effective molecular breeding. The long lead time, dependence on cold treatment conditions, and the inherent complexity of the trait make studying the genetic basis of CTF in rice challenging. To date, the fine-mapping or cloning of QTLs specific to CTF has not yet been achieved. In this study, single segment substitution lines (SSSLs) were constructed using HJX74 as the recipient and IR58025B, known for good CTF, as the donor. This approach led to the identification of two cold tolerance QTLs, qCTF3 and qCTF6, in rice. qCTF6 has promising breeding potential. Further, we identified the causal gene CTF1 underlying qCTF6 through map-based cloning. CTF1 which encodes a conserved putative protein, has two SNPs within its coding sequence that influence CTF in rice. Additionally, genetic variations in the promoter of CTF1 also contributes to CTF. Thirteen variant sites of CTF1 in the four cold tolerance SSSLs are consistent with the IR58025B. Moreover, we analysed 307 accessions to characterise haplotypes based on the 13 variation sites, identifying five distinct haplotypes. The selection and evolutionary analysis indicate that the cold-tolerant haplotype of CTF1 is a newly generated mutation that has undergone selection in japonica during domestication. This study not only provides a novel favourable gene for molecular breeding of CTF but also highlights the potential of CTF1 in advancing rice breeding.
Collapse
Affiliation(s)
- Jingfang Dong
- Rice Research Institute, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shaohong Zhang
- Rice Research Institute, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Haifei Hu
- Rice Research Institute, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jian Wang
- Rice Research Institute, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Risheng Li
- Rice Research Institute, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- South China Agricultural University, Guangzhou, China
| | - Jing Wu
- Rice Research Institute, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- South China Agricultural University, Guangzhou, China
| | - Jiansong Chen
- Rice Research Institute, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lian Zhou
- Rice Research Institute, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yamei Ma
- Rice Research Institute, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wenhui Li
- Rice Research Institute, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shuai Nie
- Rice Research Institute, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shaokui Wang
- South China Agricultural University, Guangzhou, China
| | - Guiquan Zhang
- South China Agricultural University, Guangzhou, China
| | - Bin Liu
- Rice Research Institute, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Junliang Zhao
- Rice Research Institute, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Tifeng Yang
- Rice Research Institute, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
3
|
Wang N, Li X, Zhu J, Yang ZN. Molecular and cellular mechanisms of photoperiod- and thermo-sensitive genic male sterility in plants. MOLECULAR PLANT 2025; 18:26-41. [PMID: 39702966 DOI: 10.1016/j.molp.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
Photoperiod- and thermo-sensitive genic male sterile (P/TGMS) lines display male sterility under high-temperature/long-day light conditions and male fertility under low-temperature/short-day light conditions. P/TGMS lines are the fundamental basis for the two-line hybrid breeding, which has notably increased the yield potential and grain quality of rice cultivars. In this review, we focus on the research progress on photoperiod- and thermo-sensitive genic male sterility in plants. The essence of P/TGMS line is their ability to produce viable pollen under varying conditions. We overview the processes involved in anther and pollen development, as well as the molecular, cellular, and genetic mechanisms underlying P/TGMS in Arabidopsis, rice, and other crops. Slow development has been identified as a common mechanism of P/TGMS fertility restoration in both Arabidopsis and rice, while reactive oxygen species homeostasis has been implicated in rice P/TGMS. Furthermore, we discuss the prospective applications of P/TGMS and potential solutions to the challenges in this field. This review deepens the understanding of the mechanisms underlying P/TGMS and its utilization in two-line hybrid breeding across diverse crops.
Collapse
Affiliation(s)
- Na Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiang Li
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jun Zhu
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
4
|
Kubo T. Ribosome-associated quality control underlies rice thermo-sensitive genic male sterility. MOLECULAR PLANT 2024:S1674-2052(24)00382-4. [PMID: 39616440 DOI: 10.1016/j.molp.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 01/02/2025]
Affiliation(s)
- Takahiko Kubo
- Plant Genetics Laboratory, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
5
|
Sun Y, Ang Y, Fu M, Bai Y, Chen J, He Y, Zeng H. Temperature change regulates pollen fertility of a PTGMS rice line PA64S by modulating the ROS homeostasis and PCD within the tapetum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:615-636. [PMID: 39226401 DOI: 10.1111/tpj.17004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
Photoperiod and temperature-sensitive male sterility rice is an important line for two-line hybrid rice, and the changes in the cultivation temperature strictly control its pollen fertility. However, the mechanism by which temperature variation regulates pollen fertility is still unclear. This study obtained stable fertile PA64S(F) and sterile PA64S(S) rice from PA64S by controlling temperature changes. PA64S(F) shows a normal anther development and fertile pollen under low temperature (21°C), and PA64S(S) shows delayed degradation of the tapetum cells, leading to abnormal pollen wall formation and ubisch development under normal temperature (28°C). The accumulation of reactive oxygen species (ROS) positively correlates with the programmed cell death (PCD) process of tapetum cells. The delayed accumulation of ROS in the PA64S(S) tapetum at early stages leads to a delayed initiation of the PCD process. Importantly, we localized ascorbic acid (ASA) accumulation in the tapetum cells and determined that ASA is a major antioxidant for ROS homeostasis. ROS-inhibited accumulation plants (PA64S-ASA) demonstrated pollen sterility, higher ASA and lower ROS accumulation in the tapetum, and the absence of PCD processes in the tapetum cell. Abnormal changes in the tapetum of PA64S(S) rice disrupted metabolic pathways such as lipid metabolism, cutin and wax synthesis, sugar accumulation, and phenylpropane, affecting pollen wall formation and substance accumulation, suggesting that the timely accumulation of ROS is critical for male fertility. This study highlights the central role of ROS homeostasis in fertility alteration and also provides an avenue to address the effect of environmental temperature changes on pollen fertility in rice.
Collapse
Affiliation(s)
- Yujun Sun
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yina Ang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ming Fu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yunxiu Bai
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiasheng Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ying He
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hanlai Zeng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Yao Q, Li P, Wang X, Liao S, Wang P, Huang S. Molecular mechanisms underlying the negative effects of transient heatwaves on crop fertility. PLANT COMMUNICATIONS 2024; 5:101009. [PMID: 38915200 DOI: 10.1016/j.xplc.2024.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/04/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
Transient heatwaves occurring more frequently as the climate warms, yet their impacts on crop yield are severely underestimated and even overlooked. Heatwaves lasting only a few days or even hours during sensitive stages, such as microgametogenesis and flowering, can significantly reduce crop yield by disrupting plant reproduction. Recent advances in multi-omics and GWAS analysis have shed light on the specific organs (e.g., pollen, lodicule, style), key metabolic pathways (sugar and reactive oxygen species metabolism, Ca2+ homeostasis), and essential genes that are involved in crop responses to transient heatwaves during sensitive stages. This review therefore places particular emphasis on heat-sensitive stages, with pollen development, floret opening, pollination, and fertilization as the central narrative thread. The multifaceted effects of transient heatwaves and their molecular basis are systematically reviewed, with a focus on key structures such as the lodicule and tapetum. A number of heat-tolerance genes associated with these processes have been identified in major crops like maize and rice. The mechanisms and key heat-tolerance genes shared among different stages may facilitate the more precise improvement of heat-tolerant crops.
Collapse
Affiliation(s)
- Qian Yao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ping Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Shuhua Liao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Pu Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shoubing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Zhu X, Wang M, Huang Z, Chen M, Xu P, Liao S, Gao Y, Zhao Y, Chen H, He J, Luo Y, Wei X, Zhu L, Liu C, Huang J, Zhao X, Zhao J, Zhang Z, Zhuang C, Liu Z, Zhou H. The OsMYC2-JA feedback loop regulates diurnal flower-opening time via cell wall loosening in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2585-2598. [PMID: 38972041 DOI: 10.1111/tpj.16910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Diurnal flower-opening time (DFOT), the time of spikelet opening during the day, is an important trait for hybrid rice (Oryza sativa L.) seed production. Hybrids between indica and japonica rice varieties have strong heterosis, but the parental lines usually have different, nonoverlapping DFOTs. This reduces the success of hybrid seed production in crosses between indica and japonica subspecies, thus hindering the utilization of indica and japonica inter-subspecies heterosis. However, little is known about the molecular mechanisms regulating DFOT in rice. Here, we obtained japonica rice lines with a DFOT 1.5 h earlier than the wild type by overexpressing OsMYC2, a gene encoding a key transcription factor in the jasmonate (JA) signaling pathway. OsMYC2 is activated by JA signaling and directly regulates the transcription of genes related to JA biosynthesis and cell wall metabolism. Overexpressing OsMYC2 led to significantly increased JA contents and decreased cellulose and hemicellulose contents in lodicule cells, as well as the softening of lodicule cell walls. This may facilitate the swelling of lodicules, resulting in early diurnal flower-opening. These results suggest that the OsMYC2-JA feedback loop regulates DFOT in rice via cell wall remodeling. These findings shed light on the understanding of regulatory mechanism of the DFOT of plants, which should promote the development of indica and japonica varieties suitable for hybrid rice breeding.
Collapse
Affiliation(s)
- Xiaopei Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Mumei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Zhen Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Minghao Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Peng Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shitang Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yannan Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yongzhen Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huixuan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiahui He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yutong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoying Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Liya Zhu
- Instrumental Analysis and Research Center of South China Agricultural University, Guangzhou, 510642, China
| | - Chuanhe Liu
- Instrumental Analysis and Research Center of South China Agricultural University, Guangzhou, 510642, China
| | - Jilei Huang
- Instrumental Analysis and Research Center of South China Agricultural University, Guangzhou, 510642, China
| | - Xinhui Zhao
- Yahua Seeds Science Academy of Hunan, Changsha, 410119, China
| | - Junliang Zhao
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zemin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
8
|
Zhou L, Mao Y, Yang Y, Wang J, Zhong X, Han Y, Zhang Y, Shi Q, Huang X, Meyers BC, Zhu J, Yang Z. Temperature and light reverse the fertility of rice P/TGMS line ostms19 via reactive oxygen species homeostasis. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2020-2032. [PMID: 38421616 PMCID: PMC11182586 DOI: 10.1111/pbi.14322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/30/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024]
Abstract
P/TGMS (Photo/thermo-sensitive genic male sterile) lines are crucial resources for two-line hybrid rice breeding. Previous studies revealed that slow development is a general mechanism for sterility-fertility conversion of P/TGMS in Arabidopsis. However, the difference in P/TGMS genes between rice and Arabidopsis suggests the presence of a distinct P/TGMS mechanism in rice. In this study, we isolated a novel P/TGMS line, ostms19, which shows sterility under high-temperature conditions and fertility under low-temperature conditions. OsTMS19 encodes a novel pentatricopeptide repeat (PPR) protein essential for pollen formation, in which a point mutation GTA(Val) to GCA(Ala) leads to ostms19 P/TGMS phenotype. It is highly expressed in the tapetum and localized to mitochondria. Under high temperature or long-day photoperiod conditions, excessive ROS accumulation in ostms19 anthers during pollen mitosis disrupts gene expression and intine formation, causing male sterility. Conversely, under low temperature or short-day photoperiod conditions, ROS can be effectively scavenged in anthers, resulting in fertility restoration. This indicates that ROS homeostasis is critical for fertility conversion. This relationship between ROS homeostasis and fertility conversion has also been observed in other tested rice P/TGMS lines. Therefore, we propose that ROS homeostasis is a general mechanism for the sterility-fertility conversion of rice P/TGMS lines.
Collapse
Affiliation(s)
- Lei Zhou
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Yi‐Chen Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Yan‐Ming Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Jun‐Jie Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Xiang Zhong
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Yu Han
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Yan‐Fei Zhang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Qiang‐Sheng Shi
- Jiangxi Yangtze River Economic Zone Research InstituteJiujiang UniversityJiujiangJiangxiChina
| | - Xue‐hui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | | | - Jun Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Zhong‐Nan Yang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life SciencesShanghai Normal UniversityShanghaiChina
| |
Collapse
|